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Chapter 1
Introduction

The semantic gap between the low level information that can be derived from the
visual data and the conceptual view the user has of the same data is a major
bottleneck in video retrieval systems. It has dictated that solutions to image and
video indexing could only be applied in narrow domains using specific concept
detectors, e.g., sunset or face. This leads to lexica of at most 10-20 concepts.
The use of multimodal indexing, advances in machine learning, and the availability
of some large, annotated information sources, e.g., the TRECVID benchmark, has
paved the way to increase lexicon size by orders of magnitude (now 100 concepts, in a
few years 1,000). This brings it within reach of research in ontology engineering, i.e.
creating and maintaining large, typically 10,000+ structured sets of shared concepts.
When this goal is reached we could search for videos in our home collection or on
the web based on their semantic content, we could develop semantic video editing
tools, or develop tools that monitor various video sources and trigger alerts based on
semantic events. This tutorial lays the foundation for these exciting new horizons.

Semantic video indexing requires a multi-disciplinary approach. To analyze the
sensory and textual data, techniques from signal processing, speech recognition,
computer vision, and natural language processing are needed. To understand the
information, knowledge engineering and machine learning play an important role.
For storing the tremendous amounts of data, database systems are required with
high performance, the same holds for the network technology involved. Apart from
technology, the role of the user in multimedia is even more important than in tradi-
tional systems, hence visualization and human computer interfacing form another
fundamental basis in multimedia.

In this tutorial we do not focus on one of the underlying fields, but aim to provide
the necessary insight in these fields to be able to use them in building solutions.

We begin our notes with the characteristics of video collections one can encounter
in various domains in chapter 2 and end with the user interacting with the system
to retrieve those stored video fragments. In between we discuss the methodologies
required to make this possible. The first step is representing the raw image and video
data in a way that it can be used in further processing in chapter 3. Tools for this are
often based on machine learning so a short description of the underlying methods is
given in chapter 4. Then we proceed to basic video analysis in chapter 5 and finally
the core of the system: generic techniques for deriving concepts from a large lexicon
in chapter 6. These concepts from the basis for the interactive retrieval system in
chapter 7. The different chapters and their relations are depicted in figure 1.1.

7



8 Chapter 1. Introduction

Figure 1.1: Overall architecture of a video indexing and retrieval system, giving a blueprint

for the lecture notes.



Chapter 2
Data, Domains, and Applications

As indicated in the introduction multimedia information is appearing in all different
kinds of application in various domains. Here we focus on video documents as their
richest form they contain visual, auditory, and textual information. In this chapter
we will consider how to analyze these domains and how to prepare the data for
insertion into the database. To that end we first describe, in section 2.1 different
domains and the way video data is produced and used. From there we categorize
the data from the various applications in order to be able to select the right class of
tools later (section 2.2). Then we proceed to the way the data is actually acquired
in section 2.3. The role of external knowledge is considered in section 2.4. We then
consider in detail how a video document is created, as this forms the basis for later
indexing (section 2.5). Finally, we consider how this leads to a general framework
which can be applied in different domains.

2.1 Data and applications

In the broadcasting industry the use of video documents is of course obvious. Large
amounts of data are generated in the studios creating news, films, soaps, sport pro-
grams, and documentaries. In addition, their sponsors create significant amount of
material in the form of commercials. Storing the material produced in a multimedia
information systems allows to reuse the material later. Currently, one of the most
important applications for the broadcasting industry is to do multi-channelling i.e.
distributing essentially the same information via the television, internet and mo-
bile devices. In addition interactive television is slowly, but steadily, growing e.g.
allowing to vote on your different idol. More and more of the video documents
in broadcasting are created digitally, however the related information still is not
distributed alongside the programs and hence not always available for storing it in
the information system.

Whereas the above video material is professionally produced, we see lot of unpro-
fessional videos being shot by people with their private video camera, their webcam,
or more recently with their PDA or telephone equipped with a camera. The range
of videos one can encounter here is very large, as cameras can be used for virtually
everything. However, in practice, many of the videos will mostly contain people
or holiday scenes. The major challenge in consumer applications is organizing the
data in such a way that you can later find all the material you shot e.g. by location,
time, persons, or event.

In education the use of video material is somewhat related to the creation of doc-
umentaries in broadcasting, but has added interactive possibilities. Furthermore,

9



10 Chapter 2. Data, Domains, and Applications

you see and more and more lectures and scientific presentations being recorded with
a camera and made accessible via the web. They can form the basis for new teaching
material.

For businesses the use of electronic courses is an effective way of reducing the
timeload for instruction. Next to this, videos are used in many cases for recording
business meetings. Rather than scribing the meeting, action lists are sufficient as
the videos can replace the extensive written notes. Furthermore, it allows people
who were not attending the meeting to understand the atmosphere in which cer-
tain decisions were made. Another business application field is the observation of
customers. This is of great importance for marketing applications.

Let’s now move to the public sector where among other reasons, but for a large
part due to september 11, there has been an increased interest in surveillance ap-
plications guarding public areas and detecting specific people, riots and the like.
What is characteristic for these kind of applications is that the interest is only in
a very limited part of the video, but clearly one does not know beforehand which
part contains the events of interest. Not only surveillance, but also cameras on cash
machines and the like provide the police with large amounts of material. In forensic
analysis, video is therefore also becoming of great importance. Another application
in the forensic field is the detection and identification of various videos found on
PC’s or the Internet containing material like child pornography or racism. Finally,
video would be a good way of recording a crime scene for later analysis.

Somewhat related to surveillance is the use of video observation in health care.
Think for example of a video camera in an old peoples home automatically identi-
fying if someone falls down or has some other problem.

2.2 Categorization of data

Although all of the above applications use video, the nature of the videos is quite
different for the different applications. We now give some categorizations to make
it easier to understand the characteristics of the videos in the domain. A major
distinction is between produced and observed video.

Definition 1 (Produced video data) videos that are created by an author who
is actively selecting content and where the author has control over the appearance
of the video.

Typical situations where the above is found is in the broadcasting industry. Most
of the programs are made according to a given format. The people and objects in
the video are known and planned.

For analysis purposes it is important to further subdivide this category into
three levels depending in which stage of the process we receive the data:

• raw data: the material as it is shot.

• edited data: the material that is shown in the final program

• recorded data: the data as we receive it in our system

Edited data is the richest form of video as it has both content and a layout.
When appropriate actions are taken directly when the video is produced, many
indices can directly be stored with the data. In practice, however, this production
info is often not stored. In that case recorded data becomes difficult to analyze as
things like layout information have to be reconstructed from the data.

The other major category is formed by:
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Definition 2 (Observed video data) videos where a camera is recording some
scene and where the author does not have means to manipulate or plan the content.

This kind of video found is found in most of the applications, and the most typ-
ical examples are surveillance videos and meetings. However, also in broadcasting
this is found. E.g. in soccer videos the program as a whole is planned, but the
content itself cannot be manipulated by the author of the document.

Two other factors concerning the data are important:

• quality of the data: what’s the resolution and signal-to-noise ratio of the data.

The quality of the video can vary significantly for the different applications,
ranging from high-resolution, high quality videos in the broadcasting industry, to
very low quality data from small cameras incorporated in mobile phones.

A final important factor is the

• Application control : how much control does one have on the circumstances
under which the data is recorded.

Again the broadcasting industry goes to extreme cases here. E.g. in films
the content is completely described in a script and lighting conditions are almost
completely controlled, if needed enhanced using filters. In security applications
the camera can be put at a fixed position which we now. For mobile phones the
recording conditions are almost arbitrary.

Finally, a video is always shot for some reason following [77] we define:

• Purpose the reason for which the video document is made being entertainment,
information, communication, or data analysis.

2.3 Data acquisition

A lot of video information is already recorded in digital form and hence can easily be
transported to the computer. If the video is shot in analog way a capture device has
to be used in the computer to digitize the sensory data. In both cases the result is a
stream of frames where each frame is typically an RGB-image. A similar thing holds
for audio. Next to the audiovisual data there can be a lot of accompanying textual
information like the teletext channel containing text in broadcasting, the script of a
movie, scientific documents related to a presentation given, or the documents which
are subject of discussion at a business meeting.

Now let us make the result of acquisition of multimedia data more precise. For
each modality the digital is a temporal sequence of fundamental units, which in itself
do not have a temporal dimension. The nature of these units is the main factor
discriminating the different modalities. The visual modality of a video document is
a set of ordered images, or frames. So the fundamental units are the single image
frames. Similarly, the auditory modality is a set of samples taken within a certain
time span, resulting in audio samples as fundamental units. Individual characters
form the fundamental units for the textual modality.

As multimedia datastreams are very large data compression is usually applied,
except when the data can be processed directly and there is no need for storing the
video. For video the most common compression standards are MPEG-1, MPEG-2
and MPEG-4. For audio mp3 is the best known compression standard.

Finally, apart from the multimedia data, there is lot of factual information
related to the video sources, like e.g. the date of a meeting, the value at the stock
market of the company discussed in a video, or viewing statistics for broadcast.
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2.4 Ontology creation

As indicated above, many information sources are used for a video. Furthermore,
videos rarely occur in isolation. Hence, there is always a context in which the video
has to be considered. To that end for indexing and analysis purposes it is important
to make use of external knowledge sources. Examples are plenty. In news broadcast
news sites on the internet provide info on current issues, the CIA factbook contains
information on current countries and presidents. Indexing film is greatly helped by
considering the Internet Movie Database and so on. Furthermore, within a company
or institute local knowledge sources might be present that can help in interpreting
the data. For security applications a number of images of suspect people might be
available.

All of the above information and knowledge sources have their own format and
style of use. It is therefore important to structure the different knowledge sources
into ontologies and make the information elements instantiations of concepts in the
ontology.

Examples of ontologies are SnoMed, MeSH and the Gene Ontology for health
care, AAT and Iconclass for art, and the generic ontologies WordNet and Cyc.
Ontologies have various uses in the indexing and retrieval process. If existing, well-
established ontologies are used: they provide a shared vocabulary, meaning that
the terms themselves are agreed upon as well as their meaning, since meaning are
partially captured in the (hierarchical) structure of the ontology. Ambiguous terms
can be disambiguated, and relations between concepts in the ontology can be used
to support the annotation and search process [69,71]. Ontologies are currently being
used for manual annotation [74,143], and where manual annotations are not feasible
or available, they have been used to aid retrieval based on captions or other text
associated with the visual data [150].

2.5 Produced video documents
∗ As a baseline for video we consider how video documents are created in a pro-
duction environment. In chapter 5 we will then consider the indexing of recorded
videos in such an environment as in this manner all different aspects of a video will
be covered.

An author uses visual, auditory, and textual channels to express his or her ideas.
Hence, the content of a video is intrinsically multimodal. Let us make this more
precise. In [114] multimodality is viewed from the system domain and is defined
as “the capacity of a system to communicate with a user along different types of
communication channels and to extract and convey meaning automatically”. We
extend this definition from the system domain to the video domain, by using an
authors perspective as:

Definition 3 (Multimodality) The capacity of an author of the video document
to express a predefined semantic idea, by combining a layout with a specific content,
using at least two information channels.

We consider the following three information channels or modalities, within a video
document:

• Visual modality : contains the mise-en-scène, i.e. everything, either naturally
or artificially created, that can be seen in the video document;

• Auditory modality : contains the speech, music and environmental sounds that
can be heard in the video document;

∗This section is adapted from [156].
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• Textual modality : contains textual resources that describe the content of the
video document;

For each of those modalities, definition 3 naturally leads to a semantic perspec-
tive i.e. which ideas did the author have, a content perspective indicating which
content is used by the author and how it is recorded, and a layout perspective indi-
cating how the author has organized the content to optimally convey the message.
We will now discuss each of the three perspectives involved.

2.5.1 Semantic index

The first perspective expresses the intended semantic meaning of the author. De-
fined segments can have a different granularity, where granularity is defined as the
descriptive coarseness of a meaningful unit of multimodal information [34]. To
model this granularity, we define segments on five different levels within a semantic
index hierarchy. The first three levels are related to the video document as a whole.
The top level is based on the observation that an author creates a video with a
certain purpose. We define:

• Purpose: set of video documents sharing similar intention;

The next two levels define segments based on consistent appearance of layout or
content elements. We define:

• Genre: set of video documents sharing similar style;

• Sub-genre: a subset of a genre where the video documents share similar con-
tent;

The next level of our semantic index hierarchy is related to parts of the content,
and is defined as:

• Logical units: a continuous part of a video document’s content consisting of
a set of named events or other logical units which together have a meaning;

Where named event is defined as:

• Named events: short segments which can be assigned a meaning that doesn’t
change in time;

Note that named events must have a non-zero temporal duration. A single image
extracted from the video can have meaning, but this meaning will never be perceived
by the viewer when this meaning is not consistent over a set of images.

At the first level of the semantic index hierarchy we use purpose. As we only
consider video documents that are made within a production environment the pur-
pose of data analysis is excluded. Genre examples range from feature films, news
broadcasts, to commercials. This forms the second level. On the third level are the
different sub-genres, which can be e.g. horror movie or ice hockey match. Examples
of logical units, at the fourth level, are a dialogue in a drama movie, a first quarter
in a basketball game, or a weather report in a news broadcast. Finally, at the low-
est level, consisting of named events, examples can range from explosions in action
movies, goals in soccer games, to a visualization of stock quotes in a financial news
broadcast.

2.5.2 Content

The content perspective relates segments to elements that an author uses to create
a video document. The following elements can be distinguished [19]:
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• Setting : time and place in which the video’s story takes place, can also em-
phasize atmosphere or mood;

• Objects: noticeable static or dynamic entities in the video document;

• People: human beings appearing in the video document;

Typically, setting is related to logical units as one logical unit is taken in the same
location. Objects and people are the main elements in named events.

2.5.3 Recording the scene

The appearance of the different content elements can be influenced by an author
of the video document by using modality specific style elements. For the visual
modality an author can apply different style elements. She can use specific colors
and lighting which combined with the natural lighting conditions defines the ap-
pearance of the scene. Camera angles and camera distance can be used to define the
scale and observed pose of objects and people in the scene. Finally, camera move-
ment in conjunction with the movement of objects and people in the scene defines
the dynamic appearance. Auditory style elements are the loudness, rhythmic, and
musical properties. The textual appearance is determined by the style of writing
and the phraseology i.e. the choice of words, and the manner in which something
is expressed in words. All these style elements contribute to expressing an author’s
intention.

2.5.4 Layout

The layout perspective considers the syntactic structure an author uses for the video
document.

Upon the fundamental units an aggregation is imposed, which is an artifact from
creation. We refer to this aggregated fundamental units as sensor shots, defined as
a continuous sequence of fundamental units resulting from an uninterrupted sensor
recording. For the visual and auditory modality this leads to:

• Camera shots: result of an uninterrupted recording of a camera;

• Microphone shots: result of an uninterrupted recording of a microphone;

For text, sensor recordings do not exist. In writing, uninterrupted textual expres-
sions can be exposed on different granularity levels, e.g. word level or sentence level,
therefore we define:

• Text shots: an uninterrupted textual expression;

Note that sensor shots are not necessarily aligned. Speech for example can continue
while the camera switches to show the reaction of one of the actors. There are
however situations where camera and microphone shots are recorded simultaneously,
for example in live news broadcasts.

An author of the video document is also responsible for concatenating the dif-
ferent sensor shots into a coherent structured document by using transition edits.
“He or she aims to guide our thoughts and emotional responses from one shot to
another, so that the interrelationships of separate shots are clear, and the transi-
tions between sensor shots are smooth” [19]. For the visual modality abrupt cuts,
or gradual transitions†, like wipes, fades or dissolves can be selected. This is im-
portant for visual continuity, but sound is also a valuable transitional device in

†A gradual transition actually contains pieces of two camera shots, for simplicity we regard it
as a separate entity.



2.6. Discussion 15

Visual Auditory Textual

Layout

Content

Semantic Index

S O P

Sensor Shots

Transition Edits

Special Effects

Fundamental Units

S O PS O P

Named events

Logical units

Sub-genre

Genre

Video data

Purpose

Visual Auditory Textual

Layout

Content

Semantic Index

S O P

Sensor Shots

Transition Edits

Special Effects

Fundamental Units

S O PS O P

Named events

Logical units

Sub-genre

Genre

Video data

Purpose

Figure 2.1: A unifying framework for multimodal video indexing based on an author’s per-

spective. The letters S, O, P stand for setting, objects and people. An example layout of the

auditory modality is highlighted, the same holds for the others.

video documents. Not only to relate shots, but also to make changes more fluid or
natural. For the auditory transitions an author can have a smooth transition using
music, or an abrupt change by using silence [19]. To indicate a transition in the
textual modality, e.g. closed captions, an author typically uses “>>>”, or different
colors. They can be viewed as corresponding to abrupt cuts as their use is only to
separate shots, not to connect them smoothly.

The final component of the layout are the optional visual or auditory special
effects, used to enhance the impact of the modality, or to add meaning. Overlayed
text, which is text that is added to video frames at production time, is also con-
sidered a special effect. It provides the viewer of the document with descriptive
information about the content. Moreover, the size and spatial position of the text
in the video frame indicate its importance to the viewer. “Whereas visual effects
add descriptive information or stretch the viewer’s imagination, audio effects add
level of meaning and provide sensual and emotional stimuli that increase the range,
depth, and intensity of our experience far beyond what can be achieved through
visual means alone” [19]. Note that we don’t consider artificially created content
elements as special effects, as these are meant to mimic true settings, objects, or
people.

2.6 Discussion

Based on the discussion in the previous sections we come to a unifying multimodal
video indexing framework based on the perspective of an author. This framework



16 Chapter 2. Data, Domains, and Applications

is visualized in figure 2.1. It forms the basis for the discussion of methods for video
indexing in chapter 5.

Although the framework is meant for produced video it is in fact a blueprint for
other videos also. Basically, all of the above categories of videos can be mapped to
the framework. However, not in all cases, all modalities will be used, and maybe
there is no layout as no editing has taken place and so on.

Keyterms in this chapter

Ontologies, sensory data, digital multimedia data, data compression, purpose, genre,
sub-genre, logical unit, named events, setting, objects, people, sensor shots, camera
shots, microphone shots, text shots, transition edits, special effects



Chapter 3
Data Representation and Similarity

When a person is capturing data with a camera, microphone, or any other sensor
a lot of data is collected. Example of applications that take this to the extreme for
personal information can be found in [48] [72].

In this chapter we consider what the different data types are that play a role
in any multimedia environment. We will put a considerable emphasis on ways of
representing the multimedia content as this forms the basis for all later analysis.

3.1 Basic data types

Before multimedia entered the world all information systems just contained factual
data. For factual data the common categorization is as follows [183]:

• nominal data: these values are taken from a selected set of symbols, where no
relation is supposed between the different symbols.

• ordinal data: these values are taken from a selected set of symbols, where an
ordering relation is supposed between the different symbols.

• interval data: quantities measured in fixed and equal units.

• ratio data: quantities for which the measurement scheme inherently defines a
zero point.

An example of nominal data is the set of names of museums in Amsterdam
{Rijksmuseum, Stedelijk Museum, Van Gogh Museum, ....}. For ordinal data a
typical example is a scale composed of {low, medium, high}. Temperature measured
in degrees Celcius is an example of interval data. Although a zero point is defined
20 degrees Celcius is not viewed as twice as hot as 10 degrees. Finally, time in
seconds is a clear example of ratio data.

Geographic information systems have brought us the additional datatypes po-
sition in 2D p = (x, y), and position in 3D, p = (x, y, z) when the position of
a person of object is measured over time these become p(t) = (x(t), y(t)) and
p(t) = (x(t), y(t), z(t)) respectively. Now when considering the use of a camera
we have in addition the notion of orientation of the camera as function of time
θ(t) = (θ1(t), θ2(t), θ3(t)). Other important time dependent functions are acceler-
ation A(t) and speed S(t). A less frequently occurring time-dependent function is
brain activity F (t). This can be of great importance when measuring the emotional
state of a person.

17
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Another very important data type is the graph. A graph G = {V,E} is composed
of a set of vertices V and a set of edges E. The edges connect pairs of elements in
E. A path in the graph is a set of subsequent edges where the vertex at the end
of an edge is connected to the starting vertex on the next edge (except for the last
element of the path). Several types of graphs exist. A directed graph is a graph
where the edges have a direction associated with it. A directed acyclic graph is a
graph where the edges have a direction, any path in the graph visits a vertex at
most once. A tree is a special case of a directed acyclic graph.

3.2 Categorization of multimedia descriptions

To be able to retrieve multimedia objects with the same ease as we are used to when
accessing text or factual data as well as being able to filter out irrelevant items in
the large streams of multimedia reaching us requires appropriate descriptions of the
multimedia data. Although it might seem that multimedia retrieval is the trivial
extension of text retrieval it is in fact far more difficult. Most of the data is of sensory
origin (image, sound, video) and hence techniques from digital signal processing and
computer vision are required to extract relevant descriptions. Such techniques in
general yield features which do not relate directly to the user’s perception of the
data, the so called semantic gap. More precisely defined as [151]:

The semantic gap is the lack of coincidence between the information that
one can extract from the sensory∗ data and the interpretation that the
same data have for a user in a given situation.

Consequently, there are two levels of descriptions of multimedia content one on
either side of the semantic gap. In addition to the content description there are
also descriptions which are mostly concerned with the carrier of the information.
Examples are the pixel size of an image, or the sampling rate of an audio fragment.
It can also describe information like the owner of the data or the time the data was
generated. It leads to the following three descriptive levels [70]:

• perceptual descriptions: descriptions that can be derived from the data

• conceptual descriptions: descriptions that cannot be derived directly from the
data as an interpretation is necessary.

• non-visual/auditory descriptions: descriptions that cannot be derived from
the data at all.

The non-visual/auditory descriptions are typically related to the carrier of the
multimedia data, like the resolution of an image or the data of creation of an audio
file.

Standards for the exchange of multimedia information like MPEG-7 [104] [105]
[99] give explicit formats for descriptions attached to the multimedia object. How-
ever, these standards do not indicate how to find the values/descriptions to be used
for a specific multimedia data object. Especially not how to do this automatically.

Clearly the semantic gap is exactly what separates the perceptual and conceptual
level. In this chapter we will consider the representation of the different modalities
at the perceptual level. In later chapters we will consider indexing techniques which
are deriving descriptions at the conceptual level. If such indexing techniques can be
developed for a specific conceptual term, this term basically moves to the perceptual
category as the system can generate such a description automatically without human
intervention.

∗In the reference this is restricted to visual data, but the definition is applicable to other sensory
data like audio as well.
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3.3 Basic notions

Multimedia data can be described at different levels. The first distinction to be
made is between the complete data item like an entire video, a song, or a text
document and subparts of the data which can attain different forms. A second
distinction is between the content of the multimedia data and the layout. The
layout is closely related to the way the content is presented to the viewer, listener,
or reader.

Now let us take a closer look at what kind of subparts one can consider. This is
directly related to the methods available for deriving those parts, and it has a close
resemblance to the different classes of descriptions considered.

Four different objects are considered:

• perceptual object : a subpart in the data which can be derived by weak segmen-
tation, i.e. segmentation of the datafield based on perceptual characteristics
of the data.

• conceptual object : a part of the data which can be related to conceptual
descriptions and which cannot be derived from the data without an interpre-
tation, the process of finding these objects is called strong segmentation.

• partition: the result of a partitioning of the datafield, which is not dependent
on the data itself.

• layout object : the basic data elements which are structured and related by
the layout.

Examples of the above categories for the different modalities will be considered
in the subsequent sections. In the rest of the notes we will use :

• multimedia item : a full multimedia data item, a layout element, or an element
in the partitioning of a full multimedia item.

• multimedia object is used it can be either a conceptual or perceptual object.

Hence, a multimedia item can be for example a complete video, an image, or an
audio CD, but also a shot in a video, or the upper left quadrant of an image. A
multimedia object can e.g. be a paragraph in a text, or a house in an image.

3.4 Audio representation

The info in this section is mostly based on [96].

3.4.1 Audio features

An audio signal is a digital signal in which amplitude is given as function of time.
When analyzing audio one can consider the time-domain signal directly, but it can
be advantageous to consider the signal also on the basis of the frequencies in the
signal. The Fourier transform is a well known technique to compute the contribution
of the different frequencies in the signal. The result is called the audio spectrum of
the signal. An example of a signal and its spectrum are shown in figure 3.1.

We now consider audio features which can be derived directly from the signal.

• Average Energy: the average squared amplitude of the signal, an indication
of the loudness.
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Figure 3.1: An example of a signal in the time-domain (top) and its spectrum (bottom).

• Zero Crossing Rate: a measure indicating how often the amplitude switches
from positive to negative and vice versa.

• Rhythm: measures based on the pattern produced by emphasis and duration
of notes in music or by stressed and unstressed syllables in spoken words.

• Linear Prediction Coefficients (LPC): measure of how well a sample in the
signal can be predicted based on previous samples.

In the frequency domain there are is also an abundance of features to compute.
Often encountered features are:

• Bandwidth: the frequency range of the sound, in its simplest form the differ-
ence between the largest and smallest non-zero frequency in the spectrum.

• Fundamental frequency: the dominant frequency in the spectrum.

• Brightness (or spectral centroid): the is normalized sum of all frequencies
times how much this frequency is present in the signal.

• Mel-Frequency Cepstral Coefficients (MFCC): a set of coefficients designed
such that they correspond to how humans hear sound.

• Pitch: degree of highness or lowness of a musical note or voice.

• Harmonicity: degree to which the signal is built out of multiples of the fun-
damental frequency.

• Timbre: characteristic quality of sound produced by a particular voice or
instrument (subjective).
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3.4.2 Audio segmentation

An audio signal can be long and over time the characteristics of the audio signal
and hence its features will change. Therefore, in practice one partitions the signal
into small segments of say a duration of 10 milliseconds. For each of those segments
any of the features mentioned can then be calculated.

An audio signal can contain music, speech, silence, and other sounds (like cars
etc.). The aim of weak segmentation of audio aims at decomposing the signal into
these four components. An important step is decomposing the signal based on
different ranges of frequency. A second important factor is harmonicity as this
distinguishes music from other audio.

Strong segmentation of audio aims at detecting different conceptual objects like
cars, or individual instruments in a musical piece. This will require to build models
for each of the different concepts.

3.4.3 Temporal relations

When I have two different audio segments A and B , there is a selected set of
temporal relations that can hold between A and B namely precedes, meets, overlaps,
starts, equals, finishes, during and there inverses denoted by add i at the end of
the name (if B precedes A the relation precedes i holds between B and A). These
are known as the Allen’s relations [8]. As equals is symmetric there are 13 such
relations in total. The relations are such that for any two intervals A and B one
and exactly one of the relations hold.

3.5 Image representation

3.5.1 Image features

A digital image is an array of pixels, where each pixel has a color. The basic
representation for the color of the pixel is the triple R(ed), G(reen), B(lue). There
are however many other color spaces which are more appropriate in certain tasks.
We consider HSV and Lab here.

A first thing to realize is that the color of an object is actually a color spectrum,
indicating how much a certain wavelength is present (white light contains an equal
amount of all wavelengths). This is the basis for defining HSV. To be precise the
three components of HSV are as follows: H(ue) is the dominant wavelength in the
color spectrum. It is what you typically mean when you say the object is red, yellow,
blue, green, purple etc. S(aturation) is a measure for the amount of white in the
spectrum. It defines the purity of a color distinguishing for example signal-red from
pink. Finally, the V(olume) is a measure for the brightness or intensity of the color.
This make the difference between a dark and a light color if they have the same H
and S values.

Lab is another color space that is used often. The L is similar to the V in HSV.
The a and b are similar to H and V. The important difference is that in the Lab
space the distance between colors in the color space is approximately equal to the
perceived difference in the colors. This is important in defining similarity see section
3.8.

In the above, the color is assigned to individual pixels. All these colors will
generate patterns in the image, which can be small, or large. These patterns are
denoted with the general term texture. Texture is of great importance in classifying
different materials like the line-like pattern in a brick wall, or the dot-like pattern
of sand.
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In an image there will be in general different colors and/or textures. This means
there will be many positions in the image where there is a significant change in image
data, in particular a change in color or texture. These changes form (partial) lines
called edges.

The above measure give a local description of the data in the image. In many
cases global measures, summarizing the information in the image are used. Most
commonly these descriptions are in the form of color histograms counting how many
pixels have a certain color. It can however, also, be a histogram on the directions
of the different edge pixels in the image.

An image histogram looses all information on spatial configurations of the pixels.
If I have a peak in the histogram at the color red, the pixels can be scattered all
around the image, or it can be one big red region. Color coherence vectors are an
alternative representation which considers how many pixels in the neighborhood
have the same color. A similar representation can be used for edge direction.

The above histograms and coherence vectors can be considered as summaries of
the data, they are non-reversible. I cannot find back the original image if I have
the histogram. The following two descriptions do have that property.

The Discrete Cosine Transform (DCT) is a transform which takes an image and
computes it frequency domain description. This is exactly the same as considered
for audio earlier, but now in two dimensions. Coefficients of the low frequency
components given a measure of the amount of large scale structure where high-
frequency information gives information on local detailed information. The (Haar)
wavelet transform is a similar representation, which also takes into account where
in the image the specific structure is found.

3.5.2 Image segmentation

For images we can also consider the different ways of segmenting an image. A
partition decomposes the image into fixed regions. Commonly this is either a fixed
set of rectangles, or one fixed rectangle in the middle of the image, and a further
partition of the remaining space in a fixed number of equal parts.

Weak segmentation boils down to grouping pixels in the image based on a ho-
mogeneity criterion on color or texture, or by connecting edges. It leads to a de-
composition of the image where each region in the decomposition has a uniform
color or texture.

For strong segmentation, finding specific conceptual objects in the image, we
again have to rely on models for each specific object, or a large set of hand-annotated
examples.

3.5.3 Spatial relations

If I have two rectangular regions we can consider the Allen’s relations separately
for the x- and y- coordinate. However, in general regions have arbitrary shape.
There are various 2D spatial relations that I can consider. Relations like left-
of, above, surrounded-by, and nearest neighbor are an indication of the relative
positions of regions in the image. Constraints like inside, enclosed-by are indications
of topological relations between regions.

3.6 Video representation

3.6.1 Video features

As a video is a set of temporally ordered images its representation clearly shares
many of the representations considered above for images. However, the addition of
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a time component also adds many new aspects.
In particular we can consider the observed movement of each pixel from one

frame to another called the optic flow, or we can consider the motion of individual
objects segmented from the video data.

3.6.2 Video segmentation

A partition of an image can be any combination of a temporal and spatial partition.
For weak segmentation we have, in addition to color and texture based grouping of
pixels, motion based grouping which groups pixels if the have the same optic flow
i.e. move in the same direction with the same speed. Strong segmentation requires
again object models. The result of either weak or strong segmentation is called a
spatio-temporal object.

For video there is one special case of weak segmentation which is temporal
segmentation. Thus, the points in time are detected where there is a significant
change in the content of the frame. This will be considered in a more elaborate
form later.

3.6.3 Spatio-temporal relations

Spatio-temporal relations are clearly a combination of spatial and temporal rela-
tions. One should note, however, that in a video spatial relations between two
objects can vary over time. Two objects A and B can be in the relation A left-of
B at some point in time, while the movement of A and B can yield the relation B
left-of A at a later point in time.

3.7 Text representation

3.7.1 Text features

The basic representation for text is the so called bag-of-words approach. In this
approach a kind of histogram is made indicating how often a certain word is present
in the text. This histogram construction is preceded by a stop word elimination
step in which words like the, in, etc. are removed. One also performs stemming on
the words bringing each word back to its base. E.g. “biking” will be reduced to the
verb “to bike”.

The bag-of-words model commonly used is the Vector Space Model [136]. The
model is based on linear algebra. A document is modeled as a vector of words where
each word is a dimension in Euclidean space. Let T = {t1, t2, . . . , tn} denote the
set of terms in the collection. Then we can represent the terms dT

j in document dj

as a vector ~x = (x1, x2, . . . , xn) with:

xi =
{
tij if ti ∈ dT

j ;
0 if ti 6∈ dT

j .
(3.1)

Where tij represents the frequency of term ti in document dj . Combining all doc-
ument vectors creates a term-document matrix. An example of such a matrix is
shown in figure 3.2.

Depending on the context, a word has an amount of information. In an archive
about information retrieval, the word ’retrieval’ does not add much information
about this document, as the word ’retrieval’ is very likely to appear in many
documents in the collection. The underlying rationale is that words that occur
frequently in the complete collection have low information content. However, if a
single document contains many occurrences of a word, the document is probably
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Figure 3.2: A Term Document matrix.

relevant. Therefore, a term can be given a weight, depending on its information
content. A weighting scheme has two components: a global weight and a local
weight. The global importance of a term is indicating its overall importance in the
entire collection, weighting all occurrences of the term with the same value. Local
term weighting measures the importance of the term in a document. Thus, the value
for a term i in a document j is L(i, j) ∗G(i), where L(i, j) is the local weighting for
term i in document j and G(i) is the global weight. Several different term weighting
schemes have been developed. We consider the following simple form here known
as Inverse Term Frequency Weigthing. The weight wi

j of a term ti in a document j
is given by

wi
j = tij ∗ log(

N

ti∗
) (3.2)

where N is the number of documents in the collection and ti∗ denotes the total
number of times word ti occurs in the collection. The logarithm dampens the effect
of very high term frequencies.

Going one step further one can also consider the co-occurrence of certain words
in particular which words follow each other in the text. If one applies this to a
large collection of documents to be used in analyzing other documents it is called a
bi-gram language model. It gives the probability that a certain word is followed by
another word. It is therefore also an instantiation of a Markov model. When three
or more general n subsequent words are used we have a 3-gram or n-gram language
model.

3.7.2 Text segmentation

Different parts of a document may deal with different topics and therefore it can
be advantageous to partition a document into partitions of fixed size for which the
word histogram is computed.

A useful technique, which can be considered an equivalent of weak segmentation,
is part-of-speech tagging [98]. In this process each word is assigned the proper
class e.g. verb, noun, etc. A simple way of doing this is by making use of a
dictionary and a bi-gram language model. One can also take the tagged result and
find larger chunks as aggregates of the individual words. This technique is known
as chunking [2].

A more sophisticated, but less general approach, is to generate a grammar for
the text and use a parser to do the part of speech tagging. It is, however, very
difficult to create grammars which can parse an arbitrary text.
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3.7.3 Textual relations

As text can be considered as a sequence of words, the order in which words are
placed in the text yields directly a relation ”precedes”. This is similar to the Allen’s
relations for time, but as words cannot overlap, there is no need for the other
relations.

In the case where also the layout of the text is taking into account i.e. how it
is printed on paper, many other relations will appear as we can now consider the
spatial relations between blocks in the documents.

3.8 Similarity

When considering collections of multimedia items, it is not sufficient to describe
individual multimedia items. It is equally important to be able to compare different
multimedia items. To that end we have to define a so called (dis)similarity function
S to compare two multimedia items I1 and I2. The function S measures to what
extent I1 and I2 look or sound similar, to what extent they share a common style, or
to what extent they have the same interpretation. Thus, in general we distinguish
three different levels of comparison:

• Perceptual similarity

• Layout similarity

• Semantic similarity

Each of these levels will now be described.

3.8.1 Perceptual similarity

Computing the dissimilarity of two multimedia items based on their data is mostly
done by comparing their feature vectors. For an image this can for example be a
HSV color histogram, but it can also be a HSV histogram followed by a set of values
describing the texture in the image.

One dissimilarity function between the Euclidean distance. As not all elements in
the vector might be equally important the distances between the individual elements
can be weighted. To make the above more precise let F 1 = {f1

i }i=1,...,n and F 2 =
{f2

i }i=1,...,n be the two vectors describing multimedia item I1 and I2 respectively.
Then the dissimilarity SE according to weighted Euclidean distance is given by:

SE(F1, F2) =

√√√√ n∑
i=1

wi(f2
i − f1

i )2

with ~w = {wi}i=1,n a weighting vector.
For color histograms (or any other histogram for that matter) the histogram

intersection is also used often to denote dissimilarity. It does not measure Euclidean
distance but takes the minimum of the two entries. Using the same notation as
above we find:

S∩(F1, F2) =
n∑

i=1

min (f2
i , f

1
i )

In [164] it is shown that it is advantageous for computing the similarity that one
computes the cumulative histogram F̂ rather than the regular histogram. This is
due to the fact that the use of cumulative histograms reduces the effect of having to



26 Chapter 3. Data Representation and Similarity

limit the number of different bins in a histogram. The histograms entries are then
computed as:

F̂ (m) =
m∑

k=0

Fk,

where F is the regular histogram. After computing the cumulative histogram,
histogram intersection can be used to compute the similarity between the two his-
tograms.

For comparing two texts it is common to compute the similarity rather than
dissimilarity. Given the vector-space representation the similarity between two text
vectors ~q and ~d both containing n elements is defined as:

S = ~q · ~d , (3.3)

where · denotes the inner product computed as

~q · ~d =
n∑

i=1

~qi ∗ ~di

If you would consider the vector as a histogram indicating how many times a certain
word occurs in the document (possibly weighted by the importance of the term) it
boils down to histogram multiplication. Hence, when a terms occurs often in both
texts the contribution of that term to the value of the inner product will be high.

A problem with the above formulation is the fact that larger documents will
contain more terms and hence are on average more similar than short pieces of
text. Therefore, in practice the vectors are normalized by their length

||~q|| =

√√√√ n∑
i=1

~q2i

Leading to the so called Cosine Similarity.

S =
~q · ~d

||~q||||~d||

This measure is called the cosine similarity as it can be shown that it equals the
cosine of the angle between the two length normalized vectors.

3.8.2 Layout similarity

To measure the (dis)similarity of two multimedia items based on their layout a
common approach is to transform the layout of the item to a string containing the
essential layout structure. For simplicity we consider the layout of a video as this
is easily transformed to a 1D-string, it can however be extended to 2 dimensions
e.g. when comparing the layout of two printed documents. When the layouts of
two multimedia items are described using strings they can be compared by making
use of the edit-distance in [5] defined as follows:

Definition 4 (Edit Distance) Given two strings A : a1, a2, a3, ..., an and B =
b1, b2, b3, ..., bm over some alphabet Σ, a set of allowed edit operations E and a
unit cost for each operation, the edit distance of A and B is the minimum cost to
transform A into B by making use of edit operations.
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Figure 3.3: Example of the semantic distance of two instantiations c1, c2 of concepts C1

and C2 organized in a tree structure. In this case the distance would be equal to 3.

As an example let’s take two video sequences and consider the transitions cut
(c), wipe (w), and dissolve (d) and let a shot be denoted by symbol s. Hence,
Σ = {c, w, d, s}. Two example sequences could now look like

A = scswsdscs

B = sdswscscscs

Now let E = {insertion,deletion,substitution} and for simplicity let each operation
have equal cost. To transform A into B we twice have to do a substitution to change
the effects c and d used and two insert operations to add the final cs. Hence, in
this case the edit distance would be equal to 4.

3.8.3 Semantic similarity

When multimedia items are described using concepts which are derived from an
ontology, either annotated by the user or derived using pattern recognition, we can
compare two multimedia items based on their semantics.

When the ontology is organized as a hierarchical tree an appropriate measure
is the semantic distance i.e. the dissimilarity of two instantiations c1, c2 of the
concepts C1 and C2 is to take the number of steps in the tree one has to follow to
move from concept C1 to C2. If the ontology is organized as a set of hierarchical
views this leads to a vector where each element in the vector is related to one of
the views. A very simple example is shown in figure 3.3.
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Chapter 4
Machine Learning Tools

4.1 Introduction

In the previous chapter we have made a first step in limiting the size of the semantic
gap, by representing multimedia data in terms of various features and similarities.
In particular, we have considered features which are of the perceptual class. In
this chapter we will consider general techniques to use these features to find the
conceptual label of a multimedia object by considering its perceptual features.

The techniques required to do the above task are commonly known as pattern
recognition, where pattern is the generic term used for any set of data elements or
features. The descriptions in this chapter are taken for the largest part from the
excellent review of pattern recognition in [76].

4.2 Pattern recognition methods

Many methods for pattern recognition exist. Most of the methods fall into one of
the four following categories:

• Template matching : the pattern to be recognized is compared with a learned
template, allowing changes in scale and pose;

This simple and intuitive method can work directly on the data. For images
a template is a usually a small image (let’s say 20x20 pixels), for audio is it
a set of samples. Given a set of templates in the same class, one template
representing the class is computed, e.g. by pixelwise averaging. In its simplest
form any new pattern is compared pixelwise (for images) or samplewise (for
audio) to the set of stored templates. The new pattern is then assigned to the
class for which the correlation between the templates is highest.

In practice template matching becomes more difficult as one cannot assume
that two templates to be compared are near exact copies of one another. An
image might have a different scale, the object in the image might have a
different pose, or the audio template might have a different loudness. Hence,
substantial preprocessing is required before template matching can take place.
Invariant features can help in this problem (see section 4.5).

• Statistical classification: the pattern to be recognized is classified based on
the distribution of patterns in the space spanned by pattern features;
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• Syntactic or structural matching : the pattern to be recognized is compared to
a small set of learned primitives and grammatical rules for combining primi-
tives;

For applications where the patterns have a apparent structure these methods
are appealing. Thew allow the introduction of knowledge on how the patterns
in the different classes are built from the basic primitives.

As an example consider graphical symbols. Every symbol is built from lines,
curves, and corners, which are combined into more complex shapes likes
squares and polygons. Symbols can be distinguished by looking how the
primitives are combined into creating the symbol.

A major disadvantage of such methods is that it requires that all primitives in
the pattern are detected correctly, which is not the case if the data is corrupted
by noise.

• Neural networks: the pattern to be recognized is input to a network which
has learned nonlinear input-output relationships;

Neural networks mimic the way humans recognize patterns. They can be viewed
as massively parallel computing systems consisting of an extremely large number
of simple processors with many interconnections. In the human brain those simple
processors are called neurons, when simulated on a computer one calls them per-
ceptrons. In both cases, the processors have a set of weighted inputs and “fire” if
all inputs are above a certain threshold.

To train a neural network, input patterns are fed to the system and the expected
output is defined. Then the weights for the different connections are automatically
learned by the system. In most systems there are also a lot of perceptrons which
are neither connected to the input or output, but are part of the so-called hidden
layer. Such a neural network is called a multi-layer perceptron.

For specific cases neural networks and statistical classifiers coincide. Neural
networks are appealing as they can be applied in many different situations. It is,
however, difficult to understand why a neural network assigns a certain class to an
input pattern.

Examples of the above methods are found throughout the lecture notes. The sta-
tistical methods are the most commonly encountered ones, they will be considered
in more detail next.

4.3 Statistical methods

We consider methods here which assume that the patterns to be recognized are
described as a feature vector, thus every pattern can be associated with a specific
point in the feature space. In addition a distance function should be provided,
which in our case would be a similarity function as defined in section 3.8. As an
example consider the following very simple classification problem: a set of images
of characters (i,o,a) for which only two features are calculated namely the width
and the height of the bounding box of the character, and similarity is defined as
the Euclidean distance.

Before we start describing different methods, let us first consider the general
scheme for building classifiers. The whole process is divided into two stages:

• Training : in this stage the system builds a model of the data and yields a
classifier based on a set of training patterns for which class information is
provided by a ”supervisor”.
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Figure 4.1: Illustration of classification based on k-nearest neighbors.

In the above a supervisor is defined. In literature those methods are there-
fore called supervised classification methods. The process is as follows. Every
pattern is preprocessed to remove noise etc. Then a set of features are calcu-
lated, and a classifier is learned through a statistical analysis of the dataset.
To improve the results, the system can adjust the preprocessing, select the
best features, or try other features.

• Testing : patterns from a test set are given to the system and the classifier
outputs the optimal label.

In this process the system should employ exactly the same preprocessing steps
and extract the same features as in the learning phase.

To evaluate the performance of the system the output of the classifier for the
test patterns is compared to the label the supervisor has given to the test patterns.
This leads to a confusion matrix, where one can see how often patterns are confused.
In the above example it would for example indicate how many “i’s” were classified
as being part of the class “o”.

After testing the performance of the system is known and the classifier is used
for classifying unknown patterns into their class.

To make things more precise. Let the c categories be given by ω1, ω2, ...., ωc.
Furthermore, let the vector consisting of n features be given as ~x = (x1, x2, ..., xn).

A classifier is a system that takes a feature vector ~x and assigns to it the optimal
class ωi. The confusion matrix is the matrix C where the elements cij denote the
number of elements which have true class ωi, but are classified as being in class ωj .

Conceptually the most simple classification scheme is

• k-Nearest Neighbor : assigns a pattern to the majority class among the k
patterns with smallest distance in feature space;

For this method, after selection of the relevant features a distance measure d
has to be defined. In principle, this is the similarity function described in chapter 3.
Very often it is simply Euclidean distance in feature space. Having defined d,
classification boils down to finding the nearest neighbor(s) in feature space. In 1-
nearest neighbor classification the pattern ~x is assigned to the same class the nearest
neighbor has. In k-nearest neighbors one uses majority voting on the class labels of
the k points nearest in space. An example is shown in figure 4.1.

The major disadvantage of using k-nearest neighbors is that it is computationally
expensive to find the k-nearest neighbors if the number of data objects is large.

In statistical pattern recognition a probabilistic model for each class is derived.
Hence, one only has to compare a new pattern with one model for each class.
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Figure 4.2: Example of a 2D linear separator.

The crux of statistical pattern recognition is then to model the distribution of
feature values for the different classes i.e. giving a way to compute the conditional
probability P (~x|ωi).

• Bayes Classifier : assigns a pattern to the class which has the maximum esti-
mated posterior probability;

Thus, assign input pattern ~x to class ωi if

P (ωi|~x) > P (ωj |~x) for all j 6= i (4.1)

When feature values are be expected to be normally distributed (i.e. a Gaussian
distribution) the above can be used to find optimal linear boundaries in the feature
space. An example is shown in figure 4.2.

Note, that in general we do not know the parameters of the distribution (the
mean µ and the standard deviation σ in the case of the normal distribution). These
have to be estimated from the data. Most commonly, the mean and standard
deviation of the training samples in each class are used.

If only a limited set of samples per class are available a Parzen estimator can
be used. In this method a normal distribution is placed at every sample with fixed
standard deviation. The probability of a sample to belong to the class is computed
as a weighted linear combination of all these distributions. The weight is directly
proportional to the distance of the new sample to the individual samples in the
class.

In the Bayes classifier all features are considered at once, which is more accurate,
but also more complicated than using features one by one. The latter leads to the

• Decision Tree: assigns a pattern to a class based on a hierarchical division of
feature space;

To learn a decision tree a feature and a threshold are selected which give a
decomposition of the training set into two parts such that the one part contains
all elements for which the value is smaller than the threshold, and the other part
the remaining patterns. Then for each of the parts the process is repeated till the
patterns into a part are assumed to be all of the same class. All the decisions made
can be stored in a tree, hence the name. The relation between a decision tree in
feature space is illustrated in figure 4.3.

At classification time a pattern is taken and for the feature in the root node
of the decision tree, the value of the corresponding feature is compared to the
threshold. If the value is smaller the left branch of the tree is followed, the right
branch is followed otherwise. This is repeated till a leaf of the tree is reached, which
corresponds to a single class.

Finally, a very popular classification method is based on
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Figure 4.3: Example of a hierarchical division of space based on a decision tree.

• Support Vector Machines: the SVM tries to find an optimal hyperplane be-
tween two classes by maximizing the margin between these two classes ;

In the SVM framework each pattern x is represented in an n-dimensional space,
spanned by extracted features. Within this feature space an optimal hyperplane
is searched that separates it into two different categories, where the categories are
represented by +1 and −1 respectively. The hyperplane has the following form:
ω|(w ·x+ b)| ≥ 1, where w is a weight vector, and b is a threshold. A hyperplane is
considered optimal when the distance to the closest training examples is maximum
for both categories. This distance is called the margin, see the example in figure 4.4.
The problem of finding the optimal hyperplane is a quadratic programming problem
of the following form [176]:

min
w,ξ

{1
2
w ·w + C

( l∑
i=1

ξi

)}
(4.2)

Under the following constraints:

ω|(w · xi + b)| ≥ 1− ξi, i = 1, 2, . . . , l (4.3)

Where C is a parameter that allows to balance training error and model complexity,
l is the number of shots in the training set, and ξi are slack variables that are
introduced when the data is not perfectly separable. These slack variables are useful
when analyzing multimedia, since results of individual feature detectors typically
include a number of false positives and negatives.

All of the above models assume that the features of an object remain fixed.
For data which has a temporal dimension this is often not the case, when time
progresses the features might change. In such cases it is needed to consider models
which explicitly take the dynamic aspects into account.

The Hidden Markov Model is a suitable tool for describing such time-dependent
patterns which can in turn be used for classification. It bears a close relation to the
Markov model considered in chapter 3.

• Hidden Markov Model (HMM): assigns a pattern to a class based on a sequen-
tial model of state and transition probabilities [98,130];

Let us first describe the components which make up a Hidden Markov Model.

1. A set S = s1, ...., sm of possible states in which the system can be.

2. A set of symbols V which can be output when the system is in a certain state

3. The state transition probabilities A indicating the conditional probability that
at time t+1 it moves to state si if before it was in state sj : p(qt+1 = si|qt = sj)
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Figure 4.4: Visual representation of the Support Vector Machine framework. Here a two-

dimensional feature space consisting of two categories is visualized. The solid bold line is

chosen as optimal hyperplane because of the largest possible margin. The circled data points

closest to the optimal hyperplane are called the support vectors

4. The probabilities that a certain symbol in V is output when the system is in
a certain state.

5. Initial probabilities that the system starts in a certain state.

An example of a HMM is shown in figure 4.5.
There are two basic tasks related to the use of HMM for which efficient methods

exist in literature:

1. Given a sequential pattern how likely is that it is generated by some given
Hidden Markov Model?

2. Given a sequential pattern and a Hidden Markov Model what is the most
likely sequence of states the system went through?

To use HMMs for classification we first have to find models for each class. This
is often done in a supervised way. From there all the probabilities required are
estimated by using the training set. Now to classify a pattern task 1 mentioned
above is used to find the most likely model and thus the most likely class. Task 2
can be used to take a sequence and classify each part of the sequence with it most
likely state.

Many variations of HMMs exists. For example, in the above description discrete
variables were used. One can also use continuous variables leading to continuous
observation density Markov models. Another extension are product HMM where
first an HMM is trained for every individual feature, the results of which are then
combined in a new HMM for integration.

4.4 Dimensionality reduction

In many practical pattern recognition problems the number of features is very high
and hence the feature space is of a very high dimension. A 20-dimensional feature
space is hard to imagine and visualize, but is not very large in pattern recognition.
Luckily enough there is often redundant information in the space and one can reduce
the number of dimensions to work with. One of the best known methods for this
purpose is Principal Component Analysis (PCA).
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Figure 4.5: Example of a Hidden Markov Model.
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Figure 4.6: An example of dimension reduction, from 2 dimensions to 1 dimension. (a)

Two-dimensional datapoints. (b) Rotating the data so the vectors responsible for the most

variation are perpendicular. (c) Reducing 2 dimensions to 1 dimension so that the dimension

responsible for the most variation is preserved.

Explaining the full details of the PCA is beyond the scope of the lecture notes,
so we explain its simplest form, reducing a 2D feature space to a 1D feature space.
See figure figure 4.6.

The first step is to find the line which best fits the data. Then every datapoint
is projected onto this line. Now, to build a classifier we only consider how the
different categories can be distinguished along this 1D line. Much simpler than the
equivalent 2D problem. For higher dimensions the principle is the same, but instead
of a line one can now also use the best fitting plane which corresponds to using 2 of
the principle components. In fact, the number of components in component analysis
is equal to the dimension of the original space. By leaving out one or more of the
least important components, one gets the principal components.

4.5 Invariance

Selecting the proper classifier is important in obtaining good results, but finding
good features is even more important. This is a hard task as it depends on both
the data and the classification task. A key notion in finding the proper features is
invariance defined as [151]:

A feature f of t is invariant under W if and only if ft remains the same regardless
the unwanted condition expressed by W ,

t1
W∼ t2 =⇒ ft1 = ft2 (4.4)

To illustrate, consider again the simple example of bounding boxes of characters.
If I want to say something about the relation between the width w and height h of
the bounding box I could consider computing the difference w − h, but if I would
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scale the picture by a factor 2 I would get a result which is twice as large. If,
however, I would take the aspect ratio w/h it would be invariant under scaling.

In general, we observe that invariant features are related to the intrinsic proper-
ties of the element in the image or audio. An object in the image will not change if
I use a different lamp. A feature invariant for such changes in color would be good
for classifying the object. On the other hand, the variant properties do have a great
influence on how I perceive the image or sound. A loud piece of music might be far
more annoying than hearing the same piece of music at normal level.

Keyterms in this chapter

Classification, training, testing, confusion matrix, principal component analysis, k-
nearest neighbor, template matching, Bayes classifier, decision tree, support vector
machine, hidden Markov model, invariance



Chapter 5
Basic Video Analysis∗

5.1 Introduction

For browsing, searching, and manipulating video documents, an index describing
the video content is required. It forms the crux for applications like digital libraries
storing multimedia data, or filtering systems [115] which automatically identify rele-
vant video documents based on a user profile. To cater for these diverse applications,
the indexes should be rich and as complete as possible.

Until now, construction of an index is mostly carried out by documentalists who
manually assign a limited number of keywords to the video content. The specialist
nature of the work makes manual indexing of video documents an expensive and
time consuming task. Therefore, automatic classification of video content is neces-
sary. This mechanism is referred to as video indexing and is defined as the process
of automatically assigning content-based labels to video documents [58].

When assigning an index to a video document, three issues arise. The first is
related to granularity and addresses the question: what to index, e.g. the entire
document or single frames. The second issue is related to the modalities and their
analysis and addresses the question: how to index, e.g. a statistical pattern classifier
applied to the auditory content only. The third issue is related to the type of index
one uses for labelling and addresses the question: which index, e.g. the names of
the players in a soccer match, their time dependent position, or both.

Which element to index clearly depends on the task at hand, but is for a large
part also dictated by the capabilities of the automatic indexing methods, as well as
on the amount of information that is already stored with the data at production
time. As discussed in chapter 2 one of the most complex tasks is the interpretation of
a recording of a produced video as we have to reconstruct the layout and analyze the
content. If, however, we are analyzing the edited video with all layout information as
well as scripts are available in for example MPEG-7 format the layout reconstruction
and a lot of indexing is not needed and one can continue to focus on the remaining
indexing tasks.

Most solutions to video indexing address the how question with a unimodal
approach, using the visual [32, 55, 120, 165, 170, 191, 195], auditory [39, 52, 100, 117,
118, 124, 184], or textual modality [23, 65, 196]. Good books [46, 61] and review
papers [20, 24] on these techniques have appeared in literature. Instead of using
one modality, multimodal video indexing strives to automatically classify (pieces
of) a video document based on multimodal analysis. Only recently, approaches

∗This chapter is adapted from [156].
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Figure 5.1: Data flow in unimodal video document segmentation.

using combined multimodal analysis were reported [7, 12, 38, 73, 109, 125, 139] or
commercially exploited, e.g. [33, 128,179].

One review of multimodal video indexing is presented in [181]. The authors
focus on approaches and algorithms available for processing of auditory and visual
information to answer the how and what question. We extend this by adding
the textual modality, and by relating the which question to multimodal analysis.
Moreover, we put forward a unifying and multimodal framework. Our work should
therefore be seen as an extension to the work of [20, 24, 181]. Combined they form
a complete overview of the field of multimodal video indexing.

The multimodal video indexing framework is defined in section section 2.5. This
framework forms the basis for structuring the discussion on video document seg-
mentation in section 5.2. In section 5.3 the role of conversion and integration in
multimodal analysis is discussed. An overview of the index types that can be dis-
tinguished, together with some examples, will be given in section 5.4. Finally, in
section 5.5 we end with a perspective on open research questions.

As indicated earlier we focus here on the indexing of a recording of produced
and authored documents. Hence, we start off form the recorded datastream without
making use of any descriptions that could have been added at production time.
Given that this is the most elaborate task many of the methods are also applicable
in the other domains that we have considered in chapter 2.

5.2 Video document segmentation

For analysis purposes the process of authoring should be reversed. To that end, first
a segmentation should be made that decomposes a video document in its layout
and content elements. Results can be used for indexing specific segments. In many
cases segmentation can be viewed as a classification problem, and hence pattern
recognition techniques are appropriate. However, in video indexing literature many
heuristic methods are proposed. We will first discuss reconstruction of the layout
for each of the modalities. Finally, we will focus on segmentation of the content.
The data flow necessary for analysis is visualized in figure 5.1.
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5.2.1 Layout reconstruction

Layout reconstruction is the task of detecting the sensor shots and transition edits
in the video data. For analysis purposes layout reconstruction is indispensable.
Since the layout guides the spectator in experiencing the video document, it should
also steer analysis.

For reconstruction of the visual layout, several techniques already exist to seg-
ment a video document on the camera shot level, known as shot boundary detection†.
Various algorithms are proposed in video indexing literature to detect cuts in video
documents, all of which rely on computing the dissimilarity of successive frames.
The computation of dissimilarity can be at the pixel, edge, block, or frame level.
Which one is important is largely dependent on the kind of changes in content
present in the video, whether the camera is moving etc. The resulting dissimilari-
ties as function of time are compared with some fixed or dynamic threshold. If the
dissimilarity is sufficiently high a cut is declared.

Block level features are popular as they can be derived from motion vectors,
which can be computed directly from the visual channel, when coded in MPEG,
saving decompression time.

For an extensive overview of different cut detection methods we refer to the
survey of Brunelli in [24] and the references therein. An overview of the current
performance of cut detection algorithms can be found at the TRECVID benchmark
on-line proceedings [1].

Detection of transition edits in the visual modality can be done in several ways.
Since the transition is gradual, comparison of successive frames is insufficient. The
first researchers exploiting this observation where Zhang et al [190]. They intro-
duced the twin-comparison approach, using a dual threshold that accumulates sig-
nificant differences to detect gradual transitions. For an extensive coverage of other
methods we again refer to [24], we just summarize the methods mentioned. First,
so called plateau detection uses every k -th frame. Another approach is based on
effect modelling, where video production-based mathematical models are used to
spot different edit effects using statistical classification. Finally, a third approach
models the effect of a transition on intensity edges in subsequent frames.

Detection of abrupt cuts in the auditory layout can be achieved by detection of
silences and transition points, i.e. locations where the category of the underlying
signal changes. In literature different methods are proposed for their detection.

In [117] it is shown that average energy, En, is a sufficient measure for detecting
silence segments. En is computed for a window, i.e. a set of n samples. If the
average for all the windows in a segment are found lower than a threshold, a silence
is marked. Another approach is taken in [192]. Here En is combined with the zero-
crossing rate (ZCR), where a zero-crossing is said to occur if successive samples
have different signs. A segment is classified as silence if En is consistently lower
than a set of thresholds, or if most ZCRs are below a threshold. This method also
includes unnoticeable noise.

Li et al [90] use silence detection for separating the input audio segment into
silence segments and signal segments. For the detection of silence periods they use a
three-step procedure. First, raw boundaries between silence and signal are marked
in the auditory data. In the succeeding two steps a fill-in process and a throwaway
process are applied to the results. In the fill-in process short silence segments
are relabelled signal and in the throwaway process low energy signal segments are
relabelled silence.

Besides silence detection [90] also detects transition points in the signal segments
by using break detection and break merging. They compute an onset break, when a

†As an ironic legacy from early research on video parsing, this is also referred to as scene-change
detection.
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clear increase of signal energy is detected, and an offset break, when a clear decrease
is found, to indicate a potential change in category of the underlying signal, by
moving a window over the signal segment and compare En of different halves of the
window at each sliding position. In the second step, adjacent breaks of the same
type are merged into a single break.

In [192] music is distinguished from speech, silence, and environmental sounds
based on features of the ZCR and the fundamental frequency. To assign the prob-
ability of being music to an audio segment, four features are used: the degree of
being harmonic (based on the fundamental frequency), the degree to which the au-
dio spectrum exhibits a clear peak during a period of time an indication for the
presence of a fundamental frequency , the variance of the ZCR, and the range of
the amplitude of the ZCR.

The first step in reconstructing the textual layout is referred to as tokenization,
in this phase the input text is divided into units called tokens or characters. Detec-
tion of text shots can be achieved in different ways, depending on the granularity
used. If we are only interested in single words we can use the occurrence of white
space as the main clue. However, this signal is not necessarily reliable, because of
the occurrence of periods, single apostrophes and hyphenation [98]. When more
context is taken into account one can reconstruct sentences from the textual layout.
Detection of periods is a basic heuristic for the reconstruction of sentences, about
90% of periods are sentence boundary indicators [98]. Transitions are typically
found by searching for predefined patterns.

Since layout is very modality dependent, a multimodal approach for its recon-
struction won’t be very effective. The task of layout reconstruction can currently
be performed quite reliably. However, results might improve even further when
more advanced techniques are used, for example methods exploiting the learning
capabilities of statistical classifiers.

5.2.2 Content segmentation

In subsection 2.5.2 we introduced the elements of content. Here we will discuss how
to detect them automatically, using different detection algorithms exploiting visual,
auditory, and textual information sources.

People detection

Detection of people in video documents can be done in several ways. They can be
detected in the visual modality by means of their faces or other body parts, in the
auditory modality by the presence of speech, and in the textual modality by the
appearance of names. In the following, those modality specific techniques will be
discussed in more detail. For an in-depth coverage of the different techniques we
refer to the cited references.

Most approaches using the visual modality simplify the problem of people de-
tection to detection of a human face. Face detection techniques aim to identify
all image regions which contain a face, regardless of its three-dimensional position,
orientation, and lighting conditions used, and if present return their image location
and extents [187]. This detection is by no means trivial because of variability in
location, orientation, scale, and pose. Furthermore, facial expressions, facial hair,
glasses, make-up, occlusion, and lightning conditions are known to make detection
error prone.

Over the years various methods for the detection of faces in images and image
sequences are reported, see [187] for a comprehensive and critical survey of current
face detection methods. From all methods currently available the one proposed by
Rowley in [131] performs the best [126]. The neural network-based system is able to
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detect about 90% of all upright and frontal faces, and more important the system
only sporadically mistakes non-face areas for faces.

When a face is detected in a video, face recognition techniques aim to identify
the person. A common used method for face recognition is matching by means of
Eigenfaces [121]. In eigenface methods templates of size let’s say 20x20 are used.
For the example numbers this leads to a 20x20=400 dimensional space. Using
Principal Component Analysis a subspace capturing the most relevant information
is computed. Every component in itself is again a 20x20 template. It allows to
identify which information is most important in the matching process. A drawback
of applying face recognition for video indexing, is its limited generic applicability
[139]. Reported results [14,121,139] show that face recognition works in constrained
environments, preferably showing a frontal face close to the camera. When using
face recognition techniques in a video indexing context one should account for this
limited applicability.

In [102] people detection is taken one step further, detecting not only the head,
but the whole human body. The algorithm presented first locates the constituent
components of the human body by applying detectors for head, legs, left arm, and
right arm. Each individual detector is based on the Haar wavelet transform using
specific examples. After ensuring that these components are present in the proper
geometric configuration, a second example-based classifier combines the results of
the component detectors to classify a pattern as either a person or a non-person.

A similar part-based approach is followed in [44] to detect naked people. First,
large skin-colored components are found in an image by applying a skin filter that
combines color and texture. Based on geometrical constraints between detected
components an image is labelled as containing naked people or not. Obviously this
method is suited for specific genres only.

The auditory channel also provides strong clues for presence of people in video
documents through speech in the segment. When layout segmentation has been
performed, classification of the different signal segments as speech can be achieved
based on the features computed. Again different approaches can be chosen.

In [192] five features are checked to distinguish speech from other auditory sig-
nals. First one is the relation between amplitudes of ZCR and energy curves. The
second one is the shape of the ZCR curve. The third and fourth features are the
variance and the range of the amplitude of the ZCR curve. The fifth feature is
about the property of the fundamental frequency within a short time window. A
decision value is defined for each feature. Based on these features, classification is
performed using the weighted average of these decision values.

A more elaborated audio segmentation algorithm is proposed in [90]. The au-
thors are able to segment not only speech but also speech together with noise, speech
or music with an accuracy of about 90%. They compared different auditory feature
sets, and conclude that temporal and spectral features perform bad, as opposed to
Mel-frequency cepstral coefficients (MFCC) and linear prediction coefficients (LPC)
which achieve a much better classification accuracy.

When a segment is labelled as speech, speaker recognition can be used to identify
a person based on his or her speech utterance. Different techniques are proposed,
e.g. [107, 118]. A generic speaker identification system consisting of three modules
is presented in [118]. In the first module feature extraction is performed using a set
of 14 MFCC from each window. In the second module those features are used to
classify each moving window using a nearest neighbor classifier. The classification
is performed using a ground truth. In the third module results of each moving
window are combined to generate a single decision for each segment. The authors
report encouraging performance using speech segments of a feature film.

A strong textual cue for the appearance of people in a video document are words
which are names. In [139], for example, natural language processing techniques us-
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ing a dictionary, thesaurus, and parser are used to locate names in transcripts.
The system calculates four different scores. The first measure is a grammatical
score based on the part-of-speech tagging to find candidate nouns. The second is
a lexical score indicating whether a detected noun is related to persons. The situ-
ational score is the third score giving an indication whether the word is related to
social activities involving people. Finally, the positional score for each word in the
transcripts measures where in the text of the newsreader the word is mentioned.
A net likelihood score is then calculated which together with the name candidate
and segment information forms the system’s output. Related to this problem is the
task of named entity recognition, which is known from the field of computational
linguistics. Here one seeks to classify every word in a document into one of eight
categories: person, location, organization, date, time, percentage, monetary value,
or none of the above [17]. In the reference name recognition is viewed as a classifi-
cation problem, where every word is either part of some name, or not. The authors
use a variant of an HMM for the name recognition task based on a bi-gram language
model. Compared to any other reported learning algorithm, their name recognition
results are consistently better.

In conclusion, people detection in video can be achieved using different approaches,
all having limitations. Variance in orientation and pose, together with occlusion,
make visual detection error prone. Speech detection and recognition is still sensitive
to noise and environmental sounds. Also, more research on detection of names in
text is needed to improve results. As the errors in different modalities are not neces-
sarily correlated, a multimodal approach in detection of persons in video documents
can be an improvement. Besides improved detection, fusion of different modalities
is interesting with respect to recognition of specific persons.

Object detection

Object detection forms a generalization of the problem of people detection. Specific
objects can be detected by means of specialized visual detectors, motion, sounds,
and appearance in the textual modality. Object detection methods for the different
modalities will be highlighted here.

Approaches for object detection based on visual appearance can range from
detection of specific objects to detection approaches of more general objects. An
example from the former is given in [141], where the presence of passenger cars in
image frames is detected by using multiple histograms. Each histogram represents
the joint statistics of a subset of wavelet coefficients and their position on the object.
The authors use statistical modelling to account for variation, which enables them
to reliably detect passenger cars over a wide range of points of view.

In the above, we know what we are looking for and the number of classes is
small so one can perform strong segmentation. If not, grouping based on motion
i.e. weak segmentation is the best in absence of other knowledge. Moreover, since
the appearance of objects might vary widely, rigid object motion detection is often
the most valuable feature. Thus, when considering the approach for general object
detection, motion is a useful feature. A typical method to detect moving objects
of interest starts with a segmentation of the image frame. Regions in the image
frame sharing similar motion are merged in the second stage. Result is a motion-
based segmentation of the video. In [113] a method is presented that segments a
single video frame into independently moving visual objects. The method follows
a bottom-up approach, starting with a color-based decomposition of the frame.
Regions are then merged based on their motion parameters via a statistical test,
resulting in superior performance over other methods, e.g. [9, 185].

Specific objects can also be detected by analyzing the auditory layout segmen-
tation of the video document. Typically, segments in the layout segmentation first
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need to be classified as environmental sounds. Subsequently, the environmental
sounds are further analyzed for the presence of specific object sound patterns.
In [184,192] for example, specific object sound patterns e.g. dog bark, ringing tele-
phones, and different musical instruments are detected by selecting the appropriate
auditory features.

Detecting objects in the textual modality also remains a challenging task. A
logical intermediate step in detecting objects of interest in the textual modality is
part-of-speech tagging. Though limited, the information we get from tagging is still
quite useful. By extracting and analyzing the nouns in tagged text for example,
and to apply chunking [2], one can make some assumptions about objects present.
To our knowledge chunking has not yet been used in combination with detection of
objects in video documents. Its application however, might prove to be a valuable
extension to unimodal object detection.

Successful detection of objects is limited to specific examples. A generic object
detector still forms the holy grail in video document analysis. Therefore, multimodal
object detection seems interesting. It helps if objects of interest can be identified
within different modalities. Then the specific visual appearance, the specific sound,
and its mentioning in the accompanying textual data can yield the evidence for
robust recognition.

Setting detection

For the detection of setting, motion is not so relevant, as the setting is usually static.
Therefore, techniques from the field of content-based image retrieval can be used.
See [151] for a complete overview of this field. By using for example key frames,
those techniques can easily be used for video indexing. We focus here on methods
that assign a setting label to the data, based on analysis of the visual, auditory, or
textual modality.

In [167] images are classified as either indoor or outdoor, using three types
of visual features: one for color, texture, and frequency information. Instead of
computing features on the entire image, the authors use a multi-stage classification
approach. First, sub-blocks are classified independently, and afterwards another
classification is performed using the k-nearest neighbor classifier.

Outdoor images are further classified into city and landscape images in [175].
Features used are color histograms, color coherence vectors, Discrete Cosine Trans-
form (DCT) coefficients, edge direction histograms, and edge direction coherence
vectors. Classification is done with a weighted k-nearest neighbor classifier with
leave-one out method. Reported results indicate that the edge direction coherence
vector has good discriminatory power for city vs. landscape. Furthermore, it was
found that color can be an important cue in classifying natural landscape images
into forests, mountains, or sunset/sunrise classes. By analyzing sub-blocks, the au-
thors detect the presence of sky and vegetation in outdoor image frames in another
paper. Each sub-block is independently classified, using a Bayesian classification
framework, as sky vs. non-sky or vegetation vs. non-vegetation based on color,
texture, and position features [174].

Detecting setting based on auditory information, can be achieved by detecting
specific environmental sound patterns. In [184] the authors reduce an auditory seg-
ment to a small set of parameters using various auditory features, namely loudness,
pitch, brightness, bandwidth, and harmonicity. By using statistical techniques over
the parameter space the authors accomplish classification and retrieval of several
sound patterns including laughter, crowds, and water. In [192] classes of natural
and synthetic sound patterns are distinguished by using an HMM, based on timbre
and rhythm. The authors are capable of classifying different environmental set-
ting sound patterns, including applause, explosions, rain, river flow, thunder, and
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Figure 5.2: Role of conversion and integration in multimodal video document analysis.

windstorm.
The transcript is used in [31] to extract geographic reference information for the

video document. The authors match named places to their spatial coordinates. The
process begins by using the text metadata as the source material to be processed. A
known set of places along with their spatial coordinates, i.e. a gazetteer, is created
to resolve geographic references. The gazetteer used consists of approximately 300
countries, states and administrative entities, and 17000 major cities worldwide.
After post processing steps, e.g. including related terms and removing stop words,
the end result are segments in a video sequence indexed with latitude and longitude.

We conclude that the visual and auditory modality are well suited for recognition
of the environment in which the video document is situated. By using the textual
modality, a more precise (geographic) location can be extracted. Fusion of the
different modalities may provide the video document with semantically interesting
setting terms such as: outside vegetation in Brazil near a flowing river. Which can
never be derived from one of the modalities in isolation.

5.3 Multimodal analysis

After reconstruction of the layout and content elements, the next step in the inverse
analysis process is analysis of the layout and content to extract the semantic index.
At this point the modalities should be integrated. However, before analysis, it might
be useful to apply modality conversion of some elements into more appropriate form.
The role of conversion and integration in multimodal video document analysis will
be discussed in this section, and is illustrated in figure 5.2.

5.3.1 Conversion

For analysis, conversion of elements of visual and auditory modalities to text is
most appropriate.

A typical component we want to convert from the visual modality is overlayed
text. Video Optical Character Recognition (OCR) methods for detection of text
in video frames can be divided into component-based, e.g. [146], or texture-based
methods, e.g. [91]. A method utilizing the DCT coefficients of compressed video
was proposed in [194]. By using Video OCR methods, the visual overlayed text
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object can be converted into a textual format. The quality of the results of Video
OCR vary, depending on the kind of characters used, their color, their stability over
time, and the quality of the video itself.

From the auditory modality one typically wants to convert the uttered speech
into transcripts. Available speech recognition systems are known to be mature
for applications with a single speaker and a limited vocabulary. However, their
performance degrades when they are used in real world applications instead of a lab
environment [24]. This is especially caused by the sensitivity of the acoustic model
to different microphones and different environmental conditions. Since conversion
of speech into transcripts still seems problematic, integration with other modalities
might prove beneficial.

Note that other conversions are possible, e.g. computer animation can be viewed
as converting text to video. However, these are relevant for presentation purposes
only.

5.3.2 Integration

The purpose of integration of multimodal layout and content elements is to improve
classification performance. To that end the addition of modalities may serve as a
verification method, a method compensating for inaccuracies, or as an additional
information source.

An important aspect, indispensable for integration, is synchronization and align-
ment of the different modalities, as all modalities must have a common timeline.
Typically the time stamp is used. We observe that in literature modalities are con-
verted to a format conforming to the researchers main expertise. When audio is
the main expertise, image frames are converted to (milli)seconds, e.g. [73]. In [7,38]
image processing is the main expertise, and audio samples are assigned to image
frames or camera shots. When a time stamp isn’t available, a more advanced align-
ment procedure is necessary. Such a procedure is proposed in [78]. The error prone
output of a speech recognizer is compared and aligned with the accompanying closed
captions of news broadcasts. The method first finds matching sequences of words
in the transcript and closed caption by performing a dynamic-programming‡ based
alignment between the two text strings. Segments are then selected when sequences
of three or more words are similar in both resources.

To achieve the goal of multimodal integration, several approaches can be fol-
lowed. We categorize those approaches by their distinctive properties with respect
to the processing cycle, the content segmentation, and the classification method
used. The processing cycle of the integration method can be iterated, allowing
for incremental use of context, or non-iterated. The content segmentation can be
performed by using the different modalities in a symmetric, i.e. simultaneous, or
asymmetric, i.e. ordered, fashion. Finally, for the classification one can choose
between a statistical or knowledge-based approach. An overview of the different
integration methods found in literature is in table 5.1.

Most integration methods reported are symmetric and non-iterated. Some follow
a knowledge-based approach for classification of the data into classes of the semantic
index hierarchy [43,106,125,137,171]. In [171] for example, the auditory and visual
modality are integrated to detect speech, silence, speaker identities, no face shot /
face shot / talking face shot using knowledge-based rules. First, talking people are
detected by detecting faces in the camera shots, subsequently a knowledge-based
measure is evaluated based on the amount of speech in the shot.

Many methods in literature follow a statistical approach [7, 26, 37, 38, 73, 78,
79, 109, 139, 182]. An example of a symmetric, non-iterated statistical integration

‡Dynamic programming is a programming technique in which intermediate results in some
iterative process are stored so they can be reused in later iterations, rather than recomputed.
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Table 5.1: An overview of different integration methods.

Content Segmentation Classification Method Processing Cycle
Symmetric Asymmetric Statistical Knowledge Iterated Non-Iterated

[7] X X X
[12] X X X
[26] X X X
[37] X X X
[38] X X X
[43] X X X
[73] X X X
[73] X X X
[78] X X X
[79] X X X
[106] X X X
[109] X X X
[125] X X X
[137] X X X
[139] X X X
[163] X X X
[171] X X X
[182] X X X

method is the Name-It system presented in [139]. The system associates detected
faces and names, by calculating a co-occurrence factor that combines the analysis
results of face detection and recognition, name extraction, and caption recognition.
A high-occurrence factor indicates that a certain visual face template is often asso-
ciated with a certain name in either the caption in the image, or in the associated
text hence a relation between face and name can be concluded.

Hidden Markov Models are frequently used as a statistical classification method
for multimodal integration [7, 37, 38, 73]. A clear advantage of this framework is
that it is not only capable to integrate multimodal features, but is also capable
to include sequential features. Moreover, an HMM can also be used as a classifier
combination method.

When modalities are independent, they can easily be included in a product
HMM. In [73] such a classifier is used to train two modalities separately, which are
then combined symmetrically, by computing the product of the observation prob-
abilities. It is shown that this results in significant improvement over a unimodal
approach.

In contrast to the product HMM method, a neural network-based approach
doesn’t assume features are independent. The approach presented in [73], trains
an HMM for each modality and category. A three layer perceptron is then used to
combine the outputs from each HMM in a symmetric and non-iterated fashion.

Another advanced statistical classifier for multimodal integration was recently
proposed in [109]. A probabilistic framework for semantic indexing of video doc-
uments based on so called multijects and multinets is presented. The multijects
model content elements which are integrated in the multinets to model the rela-
tions between objects, allowing for symmetric use of modalities. For the integration
in the multinet the authors propose a Bayesian belief network [119], which is a
probabilistic description of the relation between different variables. Significant im-
provements of detection performance is demonstrated. Moreover, the framework
supports detection based on iteration. Viability of the Bayesian network as a sym-
metric integrating classifier was also demonstrated in [79], however that method
doesn’t support iteration.

In contrast to the above symmetric methods, an asymmetric approach is pre-
sented in [73]. A two-stage HMM is proposed which first separates the input video
document into three broad categories based on the auditory modality, in the second
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stage another HMM is used to split those categories based on the visual modality.
A drawback of this method is its application dependency, which may result in less
effectiveness in other classification tasks.

An asymmetric knowledge-based integration method, supporting iteration, was
proposed in [12]. First, the visual and textual modality are combined to generate
semantic index results. Those form the input for a post-processing stage that uses
those indexes to search the visual modality for the specific time of occurrence of the
semantic event.

For exploration of other integration methods, we again take a look in the field
of content-based image retrieval. From this field methods are known to integrate
the visual and textual modality by combining images with associated captions or
HTML tags. Early reported methods used a knowledge base for integration, e.g. the
Piction system [163]. This system uses modalities asymmetrically, it first analyzes
the caption to identify the expected number of faces and their expected relative
positions. Then a face detector is applied to a restricted part of the image, if no
faces are detected an iteration step is performed that relaxes the thresholds. More
recently, Latent Semantic Indexing (LSI) [35] has become a popular means for
integration [26, 182]. LSI is symmetric and non-iterated and works by statistically
associating related words to the conceptual context of the given document. In effect
it relates documents that use similar terms, which for images are related to features
in the image. Thus, it has a strong relation to co-occurrence based methods. In [26]
LSI is used to capture text statistics in vector form from an HTML document.
Words with specific HTML tags are given higher weights. In addition, the position
of the words with respect to the position of the image in the document is also
accounted for. The image features, that is the color histogram and the dominant
orientation histogram, are also captured in vector form and combined they form a
unified vector that the authors use for content-based search of a WWW-based image
database. Reported experiments show that maximum improvement was achieved
when both visual and textual information are employed.

In conclusion, video indexing results improve when a multimodal approach is
followed. Not only because of enhancement of content findings, but also because
more information is available. Most methods integrate in a symmetric and non-
iterated fashion. Usage of incremental context by means of iteration can be a
valuable addition to the success of the integration process. Usage of combined
statistical classifiers in multimodal video indexing literature is still scarce, though
various successful statistical methods for classifier combinations are known, e.g.
bagging, boosting, or stacking [76]. So, probably results can be improved even
more substantially when advanced classification methods from the field of statistical
pattern recognition, or other disciplines are used, preferably in an iterated fashion.

5.4 Semantic video indexes

The methodologies described in section 5.3 have been applied to extract a variety
of the different video indexes described in subsection 2.5.1. In this section we
systematically report on the different indexes and the information from which they
are derived. As methods for extraction of purpose are not mentioned in literature,
this level is excluded. Figure 5.3 presents an overview of all indexes and the methods
in literature which can derive them.

5.4.1 Genre

“Editing is an important stylistic element because it affects the overall rhythm of the
video document” [19]. Hence, layout related statistics are well suited for indexing
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a video document into a specific genre. Most obvious element of this editorial style
is the average shot length. Generally, the longer the shots, the slower the rhythm
of the video document.

The rate of shot changes together with the presence of black frames is used
in [67] to detect commercials within news broadcast. The rationale behind detection
of black frames is that they are often broadcasted for a fraction of a second before,
after, and between commercials. However, black frames can also occur for other
reasons. Therefore, the authors use the observation that advertisers try to make
commercials more interesting by rapidly cutting between different shots, resulting
in a higher shot change rate. A similar approach is followed in [92], for detecting
commercials within broadcasted feature films. Besides the detection of monochrome
frames and shot change rate, the authors use the edge change ratio and motion
vector length to capture high action in commercials.

Average shot length, the percentage of different types of edit transitions, and six
visual content features, are used in [170] to classify a video document into cartoons,
commercials, music, news and sports video genres. As a classifier a specific decision
tree called C4.5 is used [85] which can work both on real and symbolic values.

In [37] the observation is made that different genres exhibit different temporal
patterns of face locations. They furthermore observe that the temporal behavior of
overlaid text is genre dependent. In fact the following genre dependent functions
can be identified:

• News: annotation of people, objects, setting, and named events;

• Sports: player identification, game related statistics;

• Movies/TV series: credits, captions, and language translations;

• Commercials: product name, claims, and disclaimers;

Based on results of face and text tracking, each frame is assigned one of 15 labels,
describing variations on the number of appearing faces and/or text lines together
with the distance of a face to the camera. These labels form the input for an HMM,
which classifies an input video document into news, commercials, sitcoms, and soaps
based on maximum likelihood.

Detection of generic sport video documents seems almost impossible due to the
large variety in sports. In [84], however, a method is presented that is capable of
identifying mainstream sports videos. Discriminating properties of sport videos are
the presence of slow-motion replays, large amounts of overlayed text, and specific
camera/object motion. The authors propose a set of eleven features to capture
these properties, and obtain 93% accuracy using a decision tree classifier. Analysis
showed that motion magnitude and direction of motion features yielded the best
results.

Methods for indexing video documents into a specific genre using a multimodal
approach are reported in [43, 73, 79]. In [73] news reports, weather forecasts, com-
mercials, basketball, and football games are distinguished based on audio and visual
information. The authors compare different integration methods and classifiers and
conclude that a product HMM classifier is most suited for their task, see also 5.3.2.

The same modalities are used in [43]. The authors present a three-step approach.
In the first phase, content features such as color statistics, motion vectors and audio
statistics are extracted. Secondly, layout features are derived, e.g. shot lengths,
camera motion, and speech vs. music. Finally, a style profile is composed and an
educational guess is made as to the genre in which a shot belongs. They report
promising results by combining different layout and content attributes of video for
analysis, and can find five (sub)genres, namely news broadcasts, car racing, tennis,
commercials, and animated cartoons.
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Besides auditory and visual information, [79] also exploits the textual modality.
The segmentation and indexing approach presented uses three layers to process
low-, mid-, and high-level information. At the lowest level features such as color,
shape, MFCC, ZCR, and the transcript are extracted. Those are used in the mid-
level to detect faces, speech, keywords, etc. At the highest level the semantic
index is extracted through the integration of mid-level features across the different
modalities, using Bayesian networks, as noted in subsection 5.3.2. In its current
implementation the presented system classifies segments as either part of a talk
show, commercial or financial news.

5.4.2 Sub-genre

Research on indexing sub-genres, or specific instances of a genre, has been geared
mainly towards sport videos [43, 73, 135] and commercials [32]. Obviously, future
index techniques may also extract other sub-genres, for example westerns, comedies,
or thrillers within the feature film genre.

Four sub-genres of sport video documents are identified in [135]: basketball, ice
hockey, soccer, and volleyball. The full motion fields in consecutive frames are used
as a feature. To reduce the feature space, Principal Component Analysis is used.
For classification two different statistical classifiers were applied. It was found that a
continuous observation density Markov model gave the best results. The sequences
analyzed were post-edited to contain only the play of the sports, which is a drawback
of the presented system. For instance, no crowd scenes or time outs were included.
Some sub-genres of sport video documents are also detected in [43,73], as noted in
section 5.4.1.

An approach to index commercial videos based on semiotic and semantic prop-
erties is presented in [32]. The general field of semiotics is the study of signs and
symbols, what they mean and how they are used. For indexing of commercials the
semiotics approach classifies commercials into four different sub-genres that relate
to the narrative of the commercial. The following four sub-genres are distinguished:
practical, critical, utopic, and playful commercials. Perceptual features e.g. satu-
rated colors, horizontal lines, and the presence or absence of recurring colors, are
mapped onto the semiotic categories. Based on research in the marketing field,
the authors also formalized a link between editing, color, and motion effects on the
one hand, and feelings that the video arouses in the observer on the other. Char-
acteristics of a commercial are related to those feelings and have been organized
in a hierarchical fashion. A main classification is introduced between commercials
that induce feelings of action and those that induce feelings of quietness. The au-
thors subdivide action further into suspense and excitement. Quietness is further
specified in relaxation and happiness.

5.4.3 Logical units

Detection of logical units in video documents is extensively researched with respect
to the detection of scenes or Logical Story Units (LSU) in feature films and sitcoms.
An overview and evaluation of such methods is presented in [177]. A summary of
that paper follows. After that we consider how to give the LSU a proper label.

Logical story unit detection

In cinematography an LSU is defined as a series of shots that communicate a unified
action with a common locale and time [19]. Viewers perceive the meaning of a video
at the level of LSUs [20,133].



50 Chapter 5. Basic Video Analysis

A problem for LSU segmentation using visual similarity is that it seems to
conflict with its definition based on the semantic notion of common locale and
time. There is no one-to-one mapping between the semantic concepts and the data-
driven visual similarity. In practice, however, most LSU boundaries coincide with a
change of locale, causing a change in the visual content of the shots. Furthermore,
usually the scenery in which an LSU takes place does not change significantly, or
foreground objects will appear in several shots, e.g. talking heads in the case of a
dialogue. Therefore, visual similarity provides a proper base for common locale.

There are two complicating factors regarding the use of visual similarity. Firstly,
not all shots in an LSU need to be visually similar. For example, one can have a
sudden close-up of a glass of wine in the middle of a dinner conversation showing
talking heads. This problem is addressed by the overlapping links approach [60]
which assigns visually dissimilar shots to an LSU based on temporal constraints.
Secondly, at a later point in the video, time and locale from one LSU can be repeated
in another, not immediate succeeding LSU.

The two complicating factors apply to the entire field of LSU segmentation
based on visual similarity. Consequently, an LSU segmentation method using visual
similarity depends on the following three assumptions:

Assumption 1 The visual content in an LSU is dissimilar from the visual content
in a succeeding LSU.

Assumption 2 Within an LSU, shots with similar visual content are repeated.

Assumption 3 If two shots σx and σy are visually similar and assigned to the
same LSU, then all shots between σx and σy are part of this LSU.

For parts of a video where the assumptions are not met, segmentation results
will be unpredictable.

Given the assumptions, LSU segmentation methods using visual similarity can
be characterized by two important components, viz. the shot distance measurement
and the comparison method. The former determines the (dis)similarity mentioned
in assumptions 1 and 2. The latter component determines which shots are compared
in finding LSU boundaries. Both components are described in more detail.

Shot distance measurement. The shot distance δ represents the dissimilarity
between two shots and is measured by combining (typically multiplying) measure-
ments for the visual distance δv and the temporal distance δt. The two distances
will now be explained in detail.

Visual distance measurement consists of dissimilarity function δv
f for a visual

feature f measuring the distance between two shots. Usually a threshold τv
f is used

to determine whether two shots are close or not. δv
f and τv

f have to be chosen
such that the distance between shots in an LSU is small (assumption 2), while the
distance between shots in different LSUs is large (assumption 1).

Segmentation methods in literature do not depend on specific features or dis-
similarity functions, i.e. the features and dissimilarity functions are interchangeable
amongst methods.

Temporal distance measurement consists of temporal distance function δt. As
observed before, shots from not immediate succeeding LSUs can have similar con-
tent. Therefore, it is necessary to define a time window τ t, determining what shots
in a video are available for comparison. The value for τ t, expressed in shots or
frames, has to be chosen such that it resembles the length of an LSU. In practice,
the value has to be estimated since LSUs vary in length.

Function δt is either binary or continuous. A binary δt results in 1 if two shots
are less than τ t shots or frames apart and ∞ otherwise [189]. A continuous δt

reflects the distance between two shots more precisely. In [133], δt ranges from 0 to
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Table 5.2: Classification of LSU segmentation methods.

Temporal distance function

Comparison method Binary Continuous
Sequential Overlapping links Continuous video coherence

[60], [86], [89], [6], [29] [82], [166], [95]
Clustering Time constrained clustering Time adaptive grouping

[189], [93], [135] [133], [82], [178]

1. As a consequence, the further two shots are apart in time, the closer the visual
distance has to be to assigned them to the same LSU. Time window τ t is still used
to mark the point after which shots are considered dissimilar. Shot distance is then
set to ∞ regardless of the visual distance.

The comparison method is the second important component of LSU segmenta-
tion methods. In sequential iteration, the distance between a shot and other shots
is measured pair-wise. In clustering, shots are compared group-wise. Note that in
the sequential approach still many comparisons can be made, but always of one pair
of shots at the time.

Methods from literature can now be classified according to the framework. The
visual distance function is not discriminatory, since it is interchangeable amongst
methods. Therefore, the two discriminating dimensions for classification of methods
are temporal distance function and comparison method. Their names in literature
and references to methods are given in table 5.2. Note that in [82] 2 approaches are
presented.

Labelling logical units

Detection of LSU boundaries alone is not enough. For indexing, we are especially
interested in its accompanying label.

A method that is capable of detecting dialogue scenes in movies and sitcoms, is
presented in [7]. Based on audio analysis, face detection, and face location analysis
the authors generate output labels which form the input for an HMM. The HMM
outputs a scene labeled as either, establishing scene, transitional scene, or dialogue
scene. According to the results presented, combined audio and face information
gives the most consistent performance of different observation sets and training
data. However, in its current design, the method is incapable of differentiating
between dialogue and monologue scenes.

A technique to characterize and index violent scenes in general TV drama and
movies is presented in [106]. The authors integrate cues from both the visual and
auditory modality symmetrically. First, a measure of activity for each video shot
is computed as a measure of action. This is combined with detection of flames
and blood using a predefined color table. The corresponding audio information
provides supplemental evidence for the identification of violent scenes. The focus is
on the abrupt change in energy level of the audio signal, computed using the energy
entropy criterion. As a classifier the authors use a knowledge-based combination of
feature values on scene level.

By utilizing a symmetric and non-iterated multimodal integration method four
different types of scenes are identified in [137]. The audio signal is segmented
into silence, speech, music, and miscellaneous sounds. This is combined with a
visual similarity measure, computed within a temporal window. Dialogues are then
detected based on the occurrence of speech and an alternated pattern of visual
labels, indicating a change of speaker. When the visual pattern exhibits a repetition
the scene is labeled as story. When the audio signal isn’t labeled as speech, and
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the visual information exhibits a sequence of visually non-related shots, the scene
is labeled as action. Finally, scenes that don’t fit in the aforementioned categories
are indexed as generic scenes.

In contrast to [137], a unimodal approach based on the visual information source
is used in [188] to detect dialogues, actions, and story units. Shots that are visually
similar and temporally close to each other are assigned the same (arbitrary) label.
Based on the patterns of labels in a scene, it is indexed as either dialogue, action,
or story unit.

A scheme for reliably identifying logical units which clusters sensor shots accord-
ing to detected dialogues, similar settings, or similar audio is presented in [125]. The
method starts by calculating specific features for each camera and microphone shot.
Auditory, color, and orientation features are supported as well as face detection.
Next an Euclidean metric is used to determine the distance between shots with re-
spect to the features, resulting in a so called distance table. Based on the distance
tables, shots are merged into logical units using absolute and adaptive thresholds.

News broadcasts are far more structured than feature films. Researchers have
exploited this to classify logical units in news video using a model-based approach.
Especially anchor shots, i.e. shots in which the newsreader is present, are easy
to model and therefore easy to detect. Since there is only minor body movement
they can be detected by comparison of the average difference between (regions
in) successive frames. This difference will be minimal. This observation is used
in [55,145,191]. In [55,145] also the restricted position and size of detected faces is
used.

Another approach for the detection of anchor shots is taken in [16,59,75]. Rep-
etition of visually similar anchor shots throughout the news broadcast is exploited.
To refine the classification of the similarity measure used, [16] requires anchor shots
candidates to have a motion quantity below a certain threshold. Each shot is clas-
sified as either anchor or report. Moreover, textual descriptors are added based
on extracted captions and recognized speech. To classify report and anchor shots,
the authors in [75] use face and lip movement detection. To distinguish anchor
shots, the aforementioned classification is extended with the knowledge that anchor
shots are graphically similar and occur frequently in a news broadcast. The largest
cluster of similar shots is therefore assigned to the class of anchor shots. Moreover,
the detection of a title caption is used to detect anchor shots that introduce a new
topic. In [59] anchor shots are detected together with silence intervals to indicate
report boundaries. Based on a topics database the presented system finds the most
probable topic per report by analyzing the transcribed speech. Opposed to [16,75],
final descriptions are not added to shots, but to a sequence of shots that constitute
a complete report on one topic. This is achieved by merging consecutive segments
with the same topic in their list of most probable topics.

Besides the detection of anchor persons and reports, other logical units can be
identified. In [38] six main logical units for TV broadcast news are distinguished,
namely, begin, end, anchor, interview, report, and weather forecast. Each logical
unit is represented by an HMM. For each frame of the video one feature vector
is calculated consisting of 25 features, including motion and audio features. The
resulting feature vector sequence is assigned to a logical unit based on the sequence
of HMMs that maximizes the probability of having generated this feature vector
sequence. By using this approach parsing and indexing of the video is performed in
one pass through the video only.

Other examples of highly structured TV broadcasts are talk and game shows.
In [80] a method is presented that detects guest and host shots in those video
documents. The basic observation used is that in most talk shows the same person
is host for the duration of the program but guests keep on changing. Also host shots
are typically shorter since only the host asks questions. For a given show, the key
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frames of the N shortest shots containing one detected face are correlated in time
to find the shot most often repeated. The key host frame is then compared against
all key frames to detect all similar host shots, and guest shots.

In [186] a model for segmenting soccer video into the logical units break and play
is given. A grass-color ratio is used to classify frames into three views according to
video shooting scale, namely global, zoom-in, and close-up. Based on segmentation
rules, the different views are mapped. Global views are classified as play and close-
ups as breaks if they have a minimum length. Otherwise a neighborhood voting
heuristic is used for classification.

5.4.4 Named events

Named events are at the lowest level in the semantic index hierarchy. For their
detection different techniques have been used.

A three-level event detection algorithm is presented in [57]. The first level of the
algorithm extracts generic color, texture, and motion features, and detects spatio-
temporal object. The mid-level employs a domain dependent neural network to
verify whether the detected objects belong to conceptual objects of interest. The
generated shot descriptors are then used by a domain-specific inference process at
the third level to detect the video segments that contain events of interest. To test
the effectiveness of the algorithm the authors applied it to detect animal hunt events
in wildlife documentaries.

Violent events and car chases in feature films are detected in [103], based on
analysis of environmental sounds. First, low level sounds as engines, horns, explo-
sions, or gunfire are detected, which constitute part of the high level sound events.
Based on the dominance of those low level sounds in a segment it is labeled with a
high level named event.

Walking shots, gathering shots, and computer graphics shots in broadcast news
are the named events detected in [75]. A walking shot is classified by detecting the
characteristic repetitive up and down movement of the bottom of a facial region.
When more than two similar sized facial regions are detected in a frame, a shot is
classified as a gathering shot. Finally, computer graphics shots are classified by a
total lack of motion in a series of frames.

The observation that authors use lightning techniques to intensify the drama of
certain scenes in a video document is exploited in [169]. An algorithm is presented
that detects flashlights, which is used as an identifier for dramatic events in feature
films, based on features derived from the average frame luminance and the frame
area influenced by the flashing light. Five types of dramatic events are identified
that are related to the appearance of flashlights, i.e. supernatural power, crisis,
terror, excitement, and generic events of great importance.

Whereas a flashlight can indicate a dramatic event in feature films, slow motion
replays are likely to indicate semantically important events in sport video docu-
ments. In [116] a method is presented that localizes such events by detecting slow
motion replays. The slow-motion segments are modelled and detected by an HMM.

One of the most important events in a sport video document is a score. In [12] a
link between the visual and textual modalities is made to identify events that change
the score in American football games. The authors investigate whether a chain of
keywords, corresponding to an event, is found from the closed caption stream or not.
In the time frames corresponding to those keywords, the visual stream is analyzed.
Key frames of camera shots in the visual stream are compared with predefined
templates using block matching based on the color distribution. Finally, the shot
is indexed by the most likely score event, for example a touchdown.

Besides American football, methods for detecting events in tennis [101, 165,
193], soccer [21, 53], baseball [132, 193] and basketball [140, 195] are reported in
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literature. Commonly, the methods presented exploit domain knowledge and simple
(visual) features related to color, edges, and camera/object motion to classify typical
sport specific events e.g. smashes, corner kicks, and dunks using a knowledge-
based classifier. An exception to this common approach is [132], which presents
an algorithm that identifies highlights in baseball video by analyzing the auditory
modality only. Highlight events are identified by detecting excited speech of the
commentators and the occurrence of a baseball pitch and hit.

Besides semantic indexing, detection of named events also forms a great resource
for reuse of video documents. Specific information can be retrieved and reused in
different contexts, or reused to automatically generate summaries of video docu-
ments. This seems especially interesting for, but is not limited to, video documents
from the sport genre.

5.4.5 Discussion

Now that we have described the different semantic index techniques, as encountered
in literature, we are able to distinguish the most prominent content and layout
properties per genre. As variation in the textual modality is in general too diverse
for differentiation of genres, and more suited to attach semantic meaning to logical
units and named events, we focus here on properties derived from the visual and
auditory modality only. Though, a large amount of genres can be distinguished, we
limit ourselves to the ones mentioned in the semantic index hierarchy in figure 5.3,
i.e. talk show, music, sport, feature film, cartoon, sitcom, soap, documentary, news,
and commercial. For each of those genres we describe the characteristic properties.

Most prominent property of the first genre, i.e. talk shows, is their well-defined
structure, uniform setting, and prominent presence of dialogues, featuring mostly
non-moving frontal faces talking close to the camera. Besides closing credits, there
is in general a limited use of overlayed text.

Whereas talk shows have a well-defined structure and limited setting, music
clips show great diversity in setting and mostly have ill-defined structure. More-



5.4. Semantic video indexes 55

over, music will have many short camera shots, showing lots of camera and object
motion, separated by many gradual transition edits and long microphone shots con-
taining music. The use of overlayed text is mostly limited to information about the
performing artist and the name of the song on a fixed position.

Sport broadcasts come in many different flavors, not only because there exist a
tremendous amount of sport sub-genres, but also because they can be broadcasted
live or in summarized format. Despite this diversity, most authored sport broadcasts
are characterized by a voice over reporting on named events in the game, a watching
crowd, high frequency of long camera shots, and overlayed text showing game and
player related information on a fixed frame position. Usually sport broadcasts
contain a vast amount of camera motion, objects, and players within a limited
uniform setting. Structure is sport-specific, but in general, a distinction between
different logical units can be made easily. Moreover, a typical property of sport
broadcasts is the use of replays showing events of interest, commonly introduced
and ended by a gradual transition edit.

Feature film, cartoon, sitcom, and soap share similar layout and content prop-
erties. They are all dominated by people (or toons) talking to each other or taking
part in action scenes. They are structured by means of scenes. The setting is mostly
limited to a small amount of locales, sometimes separated by means of visual, e.g.
gradual, or auditory, e.g. music, transition edits. Moreover, setting in cartoons
is characterized by usage of saturated colors, also the audio in cartoons is almost
noise-free due to studio recording of speech and special effects. For all mentioned
genres the usage of overlayed text is limited to opening and/or closing credits. Fea-
ture film, cartoon, sitcom, and soap differ with respect to people appearance, usage
of special effects, presence of object and camera motion, and shot rhythm. Ap-
pearing people are usually filmed frontal in sitcoms and soaps, whereas in feature
films and cartoons there is more diversity in appearance of people or toons. Special
effects are most prominent in feature films and cartoons, laughter of an imaginary
public is sometimes added to sitcoms. In sitcoms and soaps there is limited camera
and object motion. In general cartoons also have limited camera motion, though
object motion appears more frequently. In feature films both camera and object
motion are present. With respect to shot rhythm it seems legitimate to state that
this has stronger variation in feature films and cartoons. The perceived rhythm will
be slowest for soaps, resulting in more frequent use of camera shots with relative
long duration.

Documentaries can also be characterized by their slow rhythm. Other properties
that are typical for this genre are the dominant presence of a voice over narrating
about the content in long microphone shots. Motion of camera and objects might
be present in the documentary, the same holds for overlayed text. Mostly there is
no well-defined structure. Special effects are seldom used in documentaries.

Most obvious property of news is its well-defined structure. Different news
reports and interviews are alternated by anchor persons introducing, and narrating
about, the different news topics. A news broadcast is commonly ended by a weather
forecast. Those logical units are mostly dominated by monologues, e.g. people
talking in front of a camera showing little motion. Overlayed text is frequently used
on fixed positions for annotation of people, objects, setting, and named events. A
report on an incident may contain camera and object motion. Similarity of studio
setting is also a prominent property of news broadcasts, as is the abrupt nature of
transitions between sensor shots.

Some prominent properties of the final genre, i.e. commercials, are similar to
those of music. They have a great variety in setting, and share no common structure,
although they are authored carefully, as the message of the commercial has to be
conveyed in twenty seconds or so. Frequent usage of abrupt and gradual transition,
in both visual and auditory modality, is responsible for the fast rhythm. Usually
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lots of object and camera motion, in combination with special effects, such as a
loud volume, is used to attract the attention of the viewer. Difference with music
is that black frames are used to separate commercials, the presence of speech, the
superfluous and non-fixed use of overlayed text, a disappearing station logo, and
the fact that commercials usually end with a static frame showing the product or
brand of interest.

Due to the large variety in broadcasting formats, which is a consequence of
guidance by different authors, it is very difficult to give a general description for
the structure and characterizing properties of the different genres. When consid-
ering sub-genres this will only become more difficult. Is a sports program showing
highlights of today’s sport matches a sub-genre of sport or news? Reducing the
prominent properties of broadcasts to instances of layout and content elements, and
splitting of the broadcasts into logical units and named events seems a necessary
intermediate step to arrive at a more consistent definition of genre and sub-genre.
More research on this topic is still necessary.

5.5 Conclusion

Viewing a video document from the perspective of its author, enabled us to present
a framework for multimodal video indexing. This framework formed the starting
point for our review on different state-of-the-art video indexing techniques. More-
over, it allowed us to answer the three different questions that arise when assigning
an index to a video document. The question what to index was answered by re-
viewing different techniques for layout reconstruction. We presented a discussion on
reconstruction of content elements and integration methods to answer the how to
index question. Finally, the which index question was answered by naming different
present and future index types within the semantic index hierarchy of the proposed
framework.

At the end of this review we stress that multimodal analysis is the future. How-
ever, more attention, in the form of research, needs to be given to the following
factors:

1. Content segmentation

Content segmentation forms the basis of multimodal video analysis. In con-
trast to layout reconstruction, which is largely solved, there is still a lot to be
gained in improved segmentation for the three content elements, i.e. people,
objects, and setting. Contemporary detectors are well suited for detection
and recognition of content elements within certain constraints. Most meth-
ods for detection of content elements still adhere to a unimodal approach. A
multimodal approach might prove to be a fruitful extension. It allows to take
additional context into account. Bringing the semantic index on a higher level
is the ultimate goal for multimodal analysis. This can be achieved by the in-
tegrated use of different robust content detectors or by choosing a constrained
domain that ensures the best detection performance for a limited detector set.

2. Modality usage

Within the research field of multimodal video indexing, focus is still too much
geared towards the visual and auditory modality. The semantic rich textual
modality is largely ignored in combination with the visual or auditory modal-
ity. Specific content segmentation methods for the textual modality will have
their reflection on the semantic index derived. Ultimately this will result in
semantic descriptions that make a video document as accessible as a text
document.
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3. Multimodal integration

The integrated use of different information sources is an emerging trend in
video indexing research. All reported integration methods indicate an im-
provement of performance. Most methods integrate in a symmetric and non-
iterated fashion. Usage of incremental context by means of iteration can be
a valuable addition to the success of the integration process. Most successful
integration methods reported are based on the HMM and Bayesian network
framework, which can be considered as the current state-of-the-art in multi-
modal integration. There seems to be a positive correlation between usage of
advanced integration methods and multimodal video indexing results. This
paves the road for the exploration of classifier combinations from the field
of statistical pattern recognition, or other disciplines, within the context of
multimodal video indexing.

4. Technique taxonomy

We presented a semantic index hierarchy that grouped different index types as
found in literature. Moreover we characterized the different genres in terms
of their most prominent layout and content elements, and by splitting its
structure into logical units and named events. What the field of video indexing
still lacks is a taxonomy of different techniques that indicates why a specific
technique is suited the best, or unsuited, for a specific group of semantic index
types.

The impact of the above mentioned factors on automatic indexing of video doc-
uments will not only make the process more efficient and more effective than it is
now, it will also yield richer semantic indexes. This will form the basis for a range
of new innovative applications.

Keyterms in this chapter

Shot boundary detection, edit detection, layout reconstruction, people detection, ob-
ject detection, setting detection, conversion, synchronization, multimodal integra-
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tics or knowledge based integration, semantic video index, logical story unit de-
tection, overlapping links, visual distance, temporal distance, logical unit labelling,
named event detection





Chapter 6
Semantic Video Indexing∗

6.1 Introduction

Query-by-keyword is the paradigm on which machine-based text search is still based.
Elaborating on the success of text-based search engines, query-by-keyword also
gains momentum in multimedia retrieval. For multimedia archives it is hard to
achieve access, however, when based on text alone. Multimodal indexing is essen-
tial for effective access to video archives. For the automatic detection of specific
concepts, the state-of-the-art has produced sophisticated and specialized indexing
methods, see our previous work [156] and the work of Naphade and Huang [110] for
an overview. Other than their textual counterparts, generic methods for semantic
indexing in multimedia are neither generally available, nor scalable in their compu-
tational needs, nor robust in their performance. As a consequence, semantic access
to multimedia archives is still limited. Therefore, there is a case to be made for a
new approach to semantic video indexing.

The main problem for any semantic video indexing approach is the semantic gap
between data representation and their interpretation by humans, as identified by
Smeulders et al. [151]. In efforts to reduce the semantic gap, many video indexing
approaches focus on specific semantic concepts with a small intra-class and large
inter-class variability of content. Typical concepts and their detectors are sunsets
by Smith and Chang [152] and the work by Zhang et al. on news anchors [191].
These concepts have become icons for video indexing. Although they have aided
in achieving progress, this approach is limited when considering the plethora of
concepts waiting to be detected. It is simply impossible to bridge the semantic gap
by designing a tailor-made solution for each concept.

In this paper, we propose a novel approach for generic semantic indexing of mul-
timedia archives. It builds on the observation that produced video is the result of
an authoring process. When producing a video, an author departs from a concep-
tual idea. The semantic intention is then articulated in (sub) consciously selected
conventions and techniques for the purpose of emphasizing aspects of the content.
The intention is communicated in context to the audience by a set of commonly
shared notions. We aim to link the knowledge of years of media science research to
semantic video analysis, see for example Boggs and Petrie [19] and Bordwell and
Thompson [22]. We use the authoring-driven process of video production as the
leading principle for generic video indexing.

Viewing semantic video indexing from an authoring perspective has the advan-
tage that the most successful existing video indexing methods may be combined

∗This chapter is adapted from [158].
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in one architecture. We first consider the vast amount of work performed in de-
veloping detection methods for specialized concepts [7, 12, 57, 63, 152, 180, 191]. If
we measure the success of these methods in terms of benchmark detection perfor-
mance, Informedia [63, 180] stands out. They focus on combining techniques from
computer vision, speech recognition, natural language understanding, and artificial
intelligence into a video indexing and retrieval environment. This has resulted in
a large set of isolated and specialized concept detectors [63]. We build our generic
indexing approach in part on the outputs of their detectors, but we do not use them
in isolation.

In comparison to specialized detection methods, generic semantic indexing is
rare. We discuss three successful examples of generic semantic indexing approaches
[10, 40, 159]. In the first one, Fan et al. [40] propose the ClassView framework.
The framework combines hierarchical semantic indexing with hierarchical retrieval.
At the lowest level, the framework supports indexing of shots into concepts based
on a large set of low-level visual features. At the second level a Bayes classifier
maps concepts to semantic clusters. By assigning shots to a hierarchy of concepts,
the framework supports queries based on semantic and visual similarity. As the
authors indicate, the framework will provide more meaningful results if it would
support multimodal content analysis. We aim for generic semantic indexing also,
but we include multimodal analysis from the beginning. In the second generic
method [10], Amir et al. propose a system for semantic indexing using a detection
pipeline. The pipeline starts with multimodal feature extraction. Based on these
features the pipeline then generates several unimodal statistical models for a lexi-
con of semantic concepts. For integration of modalities and models at the concept
level, Ensemble Fusion, amongst others, is applied. This fusion scheme includes
normalization of confidence scores, several combiner functions, and parameter op-
timization, see also [172]. All multimodal concepts then serve as the input for a
so called Multinet [111] that uses the combination of concepts for final semantic
classification. The pipeline optimizes the result by rule-based post filtering. We in-
terpret the success of the system by the fact that all modules in the pipeline select
the best of multiple hypotheses, and the exhaustive use of machine learning. More-
over, the authors were among the first to recognize that semantic indexing profits
substantially from context. We adopt and extend their ideas related to hypothesis
selection, machine learning, and the use of context for semantic indexing. All of
the above generic methods ignore the important influence of the video production
style in the analysis process. In addition to content and context, we identify layout
and capture in [159] as important factors for semantic indexing of produced video.
We propose in [159] a generic framework for produced video indexing combining
four sets of style detectors in an iterative semantic classifier. Results indicate that
the method obtains high accuracy for rich semantic concepts, rich meaning that
concepts share many similarities in their video production process. The framework
is less suited for concepts that are not stylized. In the current paper, we generalize
the idea of using style for semantic indexing.

We propose a generic approach for semantic indexing, we call the semantic
pathfinder. It combines the most successful methods for semantic video index-
ing [10,63,159,180] into an integrated architecture. The design principle is derived
from the video production process, covering notions of content, style, and context.
The architecture is built on several detectors, multimodal analysis, hypothesis se-
lection, and machine learning. The semantic pathfinder combines analysis steps at
increasing levels of abstraction, corresponding to well-known facts from the study
of film and television production [19, 22]. Its virtue is its ability to learn the best
path, from all explored analysis steps, on a per-concept basis. To demonstrate
the effectiveness of the semantic pathfinder, the semantic indexing experiments are
evaluated within the 2004 NIST TRECVID video retrieval benchmark [148,149].
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The organization of this paper is as follows. First, we introduce the TRECVID
benchmark in Section 6.2. Our system architecture for generic semantic indexing is
presented in Section 6.3. We present results in Section 6.4.

6.2 TRECVID Benchmark

Evaluation of multimedia systems has always been a delicate issue. Due to copy-
rights and the sheer volume of data involved, multimedia archives are fragmented
and mostly inaccessible. Therefore, comparison of systems has traditionally been
difficult, often impossible even. To accommodate these hardships NIST started
organizing the TRECVID video retrieval benchmark. The benchmark aims to pro-
mote progress in video retrieval via open, metrics-based evaluation [148,149]. Tasks
include camera shot segmentation, story segmentation, semantic concept detection†,
and several search tasks. Because of its widespread acceptance in the field, result-
ing in large participation of teams from both academic and corporate research labs
worldwide, the benchmark can be regarded as the de facto standard to evaluate
performance of multimedia indexing and retrieval research. We have participated
in the semantic concept detection task of the 2004 NIST TRECVID video retrieval
benchmark.

6.2.1 Multimedia Archive

The video archive of the 2004 TRECVID benchmark extends the data set used in
2003. The archive is composed of 184 hours of ABC World News Tonight and CNN
Headline News and is recorded in MPEG-1 format. The training data consists
of the archive used in 2003. It contains approximately 120 hours covering the
period of January until June 1998. The 2004 test data contains the remaining
64 hours, covering the period of October until December 1998. Together with
the video archive, CLIPS-IMAG [129] provided a camera shot segmentation. We
evaluate semantic indexing within the TRECVID benchmark, to demonstrate the
effectiveness of the semantic pathfinder for semantic access to multimedia archives.

6.2.2 Evaluation Criteria

Participation in TRECVID is based on the submission of results for one or more of
the concepts in the semantic concept detection task. Where a submission, or run,
contains a ranked list of at most 2000 camera shots per semantic concept, and for
each concept, participants are allowed to submit up to 10 runs.

To determine the accuracy of submissions we use average precision and precision
at 100, following the standard in TRECVID evaluations. The average precision is a
single-valued measure that is proportional to the area under a recall-precision curve.
This value is the average of the precision over all relevant judged shots. Hence, it
combines precision and recall into one performance value. Let Lk = {l1, l2, . . . , lk}
be a ranked version of the answer set A. At any given rank k let R ∩ Lk be the
number of relevant shots in the top k of L, where R is the total number of relevant
shots. Then average precision is defined as:

average precision =
1
R

A∑
k=1

R ∩ Lk

k
ψ(lk) , (6.1)

†TRECVID refers to this task as the feature extraction task, to prevent misunderstanding with
feature extraction as defined in the semantic pathfinder we refer to it as the semantic concept
detection task.
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Figure 6.1: Data flow conventions as used in this paper. Different arrows indicate difference

in data flows.

where indicator function ψ(lk) = 1 if lk ∈ R and 0 otherwise. As the denominator
k and the value of ψ(lk) are dominant in determining average precision, it can be
understood that this metric favours highly ranked relevant shots.

TRECVID uses a pooled ground truth P , to reduce labor-intensive manual
judgments of all submitted runs. They take from each submitted run a fixed number
of ranked shots, which is combined into a list of unique shots. Every submission
is then evaluated based on the results of assessing this merged subset, i.e. instead
of using R in Eq. (6.1), P is used, where P ⊂ R. This is a fair comparison for
submitted runs, since it assures that for each submitted run at least a fixed number
of shots are evaluated at the more important top of the ranked list. However, using
a pooled ground truth based on manual judgment comes with a price. In addition
to mistakes by relevance assessors that may appear, using a pooling mechanism for
evaluation means that the ground truth of the test data is incomplete.

Apart from average precision, we also report the precision at depth 100 in the
result set. This value gives the fraction of correctly annotated shots within the first
100 retrieved results.

6.3 Semantic Pathfinder

Before we elaborate on the video indexing architecture, we first define a lexicon
ΛS of 32 semantic concepts. The lexicon is indicative for future efforts to detect
as much as 1000 concepts [62]. At present, it serves as a non-trivial illustration of
concept possibilities. In addition, the anticipated positive influence of the lexicon
on the result of the 10 benchmark concepts is taken into account. The semantic
concept lexicon consists of the following concepts:

• ΛS = {airplane take off, American football, animal, baseball, basket scored,
beach, bicycle, Bill Clinton, boat, building, car, cartoon, financial news an-
chor, golf, graphics, ice hockey, Madeleine Albright, news anchor, news subject
monologue, outdoor, overlayed text, people, people walking, physical violence,
road, soccer, sporting event, stock quotes, studio setting, train, vegetation,
weather news};

The lexicon contains both general concepts, like people, car, and beach, as well as
specific concepts such as airplane take off and news subject monologue. We aim to
detect all 32 concepts with the proposed system architecture.

The semantic pathfinder is composed of three analysis steps. It follows the
reverse authoring process. Each analysis step in the path detects semantic concepts.
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Figure 6.2: The semantic pathfinder for one concept, using the conventions of figure 6.1.

In addition, one can exploit the output of an analysis step in the path as the
input for the next one. The semantic pathfinder starts in the content analysis
step. In this analysis step, we follow a data-driven approach of indexing semantics.
The style analysis step is the second analysis step. Here we tackle the indexing
problem by viewing a video from the perspective of production. This analysis
step aids especially in indexing of rich semantics. Finally, to enhance the indexes
further, in the context analysis step, we view semantics in context. One would
expect that some concepts, like vegetation, have their emphasis on content where
the style (of the camera work that is) and context (of concepts like graphics) do
not add much. In contrast, more complex events, like people walking, profit from
incremental adaptation of the analysis to the intention of the author. The virtue
of the semantic pathfinder is its ability to find the best path of analysis steps on a
per-concept basis.

The analysis steps in the semantic pathfinder exploit a common architecture,
with a standardized input-output model, to allow for semantic integration. The
conventions to describe the system architecture are indicated in figure 6.1. An
overview of the semantic pathfinder is given in figure 6.2.

6.3.1 Analysis Step General Architecture

We perceive semantic indexing in video as a pattern recognition problem. We first
need to segment a video. We opt for camera shots, indicated by i, following the
standard in TRECVID evaluations. Given pattern x, part of a shot, the aim is to
detect a semantic concept ω from shot i using probability p(ω|xi). Each analysis
step in the semantic pathfinder extracts xi from the data, and exploits a learning
module to learn p(ω|xi) for all ω in the semantic lexicon ΛS . We exploit supervised
learning to learn the relation between ω and xi. The training data of the multimedia
archive, together with labeled samples, are for learning classifiers. The other data,
the test data, are set aside for testing. The general architecture for supervised
learning in each analysis step is illustrated in figure 6.3.

Supervised learning requires labeled examples. In part, we rely on the ground
truth provided in TRECVID 2003 [94]. We remove the many errors from this
annotation effort. It is extended manually to arrive at an incomplete, but reliable
ground truth‡ for all concepts in lexicon ΛS . We split the training data a priori into
a non-overlapping training set and validation set to prevent overfitting of classifiers
in the semantic pathfinder. It should be noted that a reliable validation set would

‡[Online]. Available: http://www.science.uva.nl/~cgmsnoek/tv/.
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Figure 6.3: General architecture of an analysis step in the semantic pathfinder, using the

conventions of figure 6.1.

ideally require an as large as possible percentage of positively labeled examples,
which is comparable to the training set. In practice this may be hard to achieve,
however, as some concepts are sparse. The training set we use contains 85% of
the training data, the validation set contains the remaining 15%. We summarize
the percentage of positively annotated examples for each concept in training and
validation set in table 6.1.

We choose from a large variety of supervised machine learning approaches to
obtain p(ω|xi). For our purpose, the method of choice should be capable of handling
video documents. To that end, ideally it must learn from a limited number of
examples, it must handle unbalanced data, and it should account for unknown or
erroneously detected data. In such heavy demands, the Support Vector Machine
(SVM) framework [27, 176] has proven to be a solid choice [10, 155]. The usual
SVM method provides a margin, γ(xi), in the result. We prefer Platt’s conversion
method [127] to achieve a posterior probability of the result. It is defined as:

p(ω|xi) =
1

1 + exp(αγ(xi) + β)
, (6.2)

where the parameters α and β are maximum likelihood estimates based on training
data. SVM classifiers thus trained for ω, result in an estimate p(ω|xi, ~q), where ~q
are parameters of the SVM yet to be optimized.

The influence of the SVM parameters on concept detection is significant [108].
We obtain good parameter settings for a classifier, by using an iterative search on
a large number of SVM parameter combinations. We measure average precision
performance of all parameter combinations and select the combination that yields
the best performance, ~q∗. Here we use a 3-fold cross validation [76] to prevent
overfitting of parameters. The result of the parameter search over ~q is the improved
model p(ω|xi, ~q

∗), contracted to p∗(ω|xi).

This concludes the introduction of the general architecture of all analysis steps
in the semantic pathfinder.
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Table 6.1: Semantic concepts and the percentage of positively labeled examples used for the

training set and the validation set.

Semantic Concept Training (%) Validation (%) Semantic Concept Training (%) Validation (%)

Weather news 0.51 0.43 Golf 0.14 0.25

Stock quotes 0.26 0.30 People 3.89 3.99

News anchor 3.91 3.99 American football 0.05 0.10

Overlayed text 0.26 0.17 Outdoor 7.52 8.60

Basket scored 1.07 0.97 Car 1.57 2.10

Graphics 1.06 1.05 Bill Clinton 0.97 1.41

Baseball 0.74 0.66 News subject monologue 3.84 3.96

Sporting event 2.27 2.44 Animal 1.35 1.34

People walking 1.92 1.97 Road 1.44 1.98

Financial news anchor 0.35 0.35 Beach 0.42 0.61

Ice hockey 0.36 0.47 Train 0.21 0.36

Cartoon 0.60 0.73 Madeleine Albright 0.18 0.02

Studio setting 4.94 4.65 Building 4.95 4.81

Physical violence 2.73 3.14 Airplane take off 0.89 0.87

Vegetation 1.60 1.59 Bicycle 0.28 0.27

Boat 0.55 0.45 Soccer 0.06 0.09

6.3.2 Content Analysis Step

We view video in the content analysis step from the data perspective. In general,
three data streams or modalities exist in video, namely the auditory modality, the
textual modality, and the visual one. As speech is often the most informative part
of the auditory source, we focus on visual features, and on textual features obtained
from transcribed speech. After modality specific data processing, we combine fea-
tures in a multimodal representation. The data flow in the content analysis step is
illustrated in figure 6.4.

Visual Analysis

In the visual modality, we aim for segmentation of an image frame f into regional
visual concepts. Ideally, a segmentation method should result in a precise parti-
tioning of f according to the object boundaries, referred to as strong segmentation.
However, weak segmentation, where f is partitioned into internally homogenous
regions within the boundaries of the object, is often the best one can hope for [151].
We obtain a weak segmentation based on a set of visual feature detectors. Prior
to segmentation we remove the border of each frame, including the space occupied
by a possible ticker tape. The basis of feature extraction in the visual modality is
weak segmentation.

Invariance was identified in [151] as a crucial aspect of a visual feature detector,
e.g. to design features which limit the influence of accidental recording circum-
stances. We use color invariant visual features [49] to arrive at weak segmentation.
The invariance covers the photometric variation due to shadow and shading, and
geometrical variation due to scale and orientation. This invariance is needed as the
conditions under which semantic concepts appear in large multimedia archives may
vary greatly.

The feature extraction procedure we adhere to, computes per pixel a number of
invariant features in vector ~u. This vector then serves as the input for a multi-class
SVM [27] that associates each pixel to one of the regional visual concepts defined
in a visual concept lexicon ΛV , using a labeled training set. Based on ΛS , we define
the following set of regional visual concepts:

• ΛV = {colored clothing, concrete, fire, graphic blue, graphic purple, graphic
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Figure 6.4: Feature extraction and classification in the content analysis step, special case of

figure 6.3.

yellow, grassland, greenery, indoor sport court, red carpet, sand, skin, sky,
smoke, snow/ice, tuxedo, water body, wood};

As we use invariant features, only a few examples per visual concept class are needed;
in practice less then 10 per class. This pixel-wise classification results in the image
vector ~wf , where ~wf contains one component per regional visual concept, indicating
the percentage of pixels found for this class. Thus, ~wf is a weak segmentation of
frame f in terms of regional visual concepts from ΛV , see figure 6.5 for an example
segmentation.

We use Gaussian color measurements to obtain ~u for weak segmentation [49].
We decorrelate RGB color values by linear transformation to the opponent color
system [49]:  E

Eλ

Eλλ

 =

0.06 0.63 0.27
0.3 0.04 −0.35
0.34 −0.6 0.17

 RG
B

 . (6.3)

Smoothing these values with a Gaussian filter, G(σ), suppresses acquisition and
compression noise. Moreover, we extract texture features by applying Gaussian
derivative filters. We vary the size of the Gaussian filters, σ = {1, 2, 3.5}, to obtain
a color representation that is compatible with variations in the target object size
(leaving out pixel position parameters):

Êj(σ) = Gj(σ) ∗ E, Êλj(σ) = Gj(σ) ∗ Eλ, Êλλj(σ) = Gj(σ) ∗ Eλλ , (6.4)

where j ∈ {∅, x, y} indicates either spatial smoothing or spatial differentiation and
that from now on the hat symbol (̂·) implies a dependence on σ. Normalizing each
opponent color value by its intensity suppresses global intensity variations. This
results in two chromaticity values per color pixel:

Ĉλ =
Êλ

Ê
, Ĉλλ =

Êλλ

Ê
. (6.5)

Furthermore, we obtain rotationally invariant features by taking Gaussian derivative
filters and combining the responses into two chromatic gradients:

Ĉλw =
√
Ĉ2

λx + Ĉ2
λy, Ĉλλw =

√
Ĉ2

λλx + Ĉ2
λλy , (6.6)
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Figure 6.5: Computation of the visual features, see figure 6.4, is based on weak segmentation

of an image frame into regional visual concepts. A combination over time is used to select one

frame as representative for the shot.

where Ĉλx, Ĉλy, Ĉλλx, and Ĉλλy are defined as:

Ĉλx =
ÊλxÊ − ÊλÊx

Ê2
, Ĉλλx =

ÊλλxÊ − ÊλλÊx

Ê2
,

Ĉλy =
ÊλyÊ − ÊλÊy

Ê2
, Ĉλλy =

ÊλλyÊ − ÊλλÊy

Ê2
. (6.7)

The seven measurements computed in Eq. (6.4–6.6), and each calculated over three
scales, yield a 21 dimensional invariant feature vector ~u per pixel.

Segmenting image frames into regional visual concepts at the granularity of a
pixel is computationally intensive. We estimate that the processing of the entire
TRECVID data set would have taken around 250 days on the fastest sequential
machine available to us. As a first reduction of the analysis load, we analyze 1 out
of 15 frames only. For the remaining image processing effort we apply the Parallel-
Horus software architecture [144]. This architecture, consisting of a large collection
of low-level image processing primitives, allows the programmer to write sequen-
tial applications with efficient parallel execution on commonly available commodity
clusters. Application of Parallel-Horus, in combination with a distributed cluster
consisting of 200 dual 1-Ghz Pentium-III CPUs [13], reduced the processing time
to less than 60 hours [144].

The features over time are combined into one vector for the shot i. Averaging
over individual frames is not a good choice, as the visual representation should
remain intact. Instead, we opt for a selection of the most representative frame or
visual vector. To decide which f is the most representative for i, weak segmented
image ~wf is the input for an SVM that computes a probability p∗(ω|~wf ). We select
~wf that maximizes the probability for a concept from ΛS within i, given as:

~vi = arg max
f∈fi

p∗(ω|~wf ) . (6.8)

The visual vector ~vi, containing the best weak segmentation, is the final result of
the visual analysis.

Textual Analysis

In the textual modality, we aim to learn the association between uttered speech and
semantic concepts. A detection system transcribes the speech into text. From the
text we remove the frequently occurring stopwords. After stopword removal, we are
ready to learn semantics.

To learn the relation between uttered speech and concepts, we connect words to
shots. We make this connection within the temporal boundaries of a shot. We derive
a lexicon of uttered words that co-occur with ω using the shot-based annotations
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of the training data. For each concept ω, we learn a separate lexicon, Λω
T , as this

uttered word lexicon is specific for that concept. We modify the procedure for
Person X concepts, i.e. Madeleine Albright and Bill Clinton, to optimize results.
In broadcast news, a news anchor or reporter mentions names or other indicative
words just before or after a person is visible. To account for this observation, we
stretch the shot boundaries with five seconds on each side for Person X concepts.
For these concepts, this procedure assures that the textual feature analysis considers
even more textual content. For feature extraction we compare the text associated
with each shot with Λω

T . This comparison yields a text vector ~ti for shot i, which
contains the histogram of the words in association with ω.

Multimodal Analysis and Classification

The result of the content analysis step is a multimodal vector ~mi that integrates
all unimodal results. We concatenate the visual vector ~vi with the text vector ~ti,
to obtain ~mi. After this modality fusion, ~mi serves as the input for the supervised
learning module. To optimize parameter settings, we use 3-fold cross validation on
the training set. The content analysis step associates probability p∗(ω|~mi) with a
shot i, for all ω in ΛS .

6.3.3 Style Analysis Step

In the style analysis step we conceive of a video from the production perspective.
Based on the four roles involved in the video production process [153, 159], this
step analyzes a video by four related style detectors. Layout detectors analyze
the role of the editor. Content detectors analyze the role of production design.
Capture detectors analyze the role of the production recording unit. Finally, context
detectors analyze the role of the preproduction team, see figure 6.6. Note that in
contrast to the content analysis step, where we learn specific content features from
a data set, content features in the style analysis step are generic and independent
of the data set.

Style Analysis

We develop detectors for all four production roles as feature extraction in the style
analysis step. We refer to our previous work for specific implementation details of
the detectors [153, 159, Appendix A]. We have chosen to convert the output of all
style detectors to an ordinal scale, as this allows for easy fusion.

For the layout L the length of a camera shot is used as a feature, as this is known
to be an informative descriptor for genre [156]. Overlayed text is another informative
descriptor. Its presence is detected by a text localization algorithm [138]. To
segment the auditory layout, periods of speech and silence are detected based on
an automatic speech recognition system [47]. We obtain a voice-over detector by
combining the speech segmentation with the camera shot segmentation [159]. The
set of layout features is thus given by: L = {shot length, overlayed text, silence,
voice-over}.

As concerns the content C, a frontal face detector [142] is applied to detect
people. We count the number of faces, and for each face its location is derived [159].
Apart from faces, we also detect the presence of cars [142]. In addition, we measure
the average amount of object motion in a camera shot [155]. Based on speaker
identification [47] we identify each of the three most frequent speakers. The camera
shot is checked for the presence on the basis of speech from one of the three [159].
The length of text strings recognized by Video Optical Character Recognition [138]
is used as a feature [159]. In addition, the strings are used as input for a named
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Figure 6.6: Feature extraction and classification in the style analysis step, special case of

figure 6.3.

entity recognizer [180]. On the transcribed text obtained by the LIMSI automatic
speech recognition system [47], we also apply named entity recognition. The set
of content features is thus given by: C ={faces, face location, cars, object motion,
frequent speaker, overlayed text length, video text named entity, voice named entity}.

For capture T , we compute the camera distance from the size of detected
faces [142, 159]. It is undefined when no face is detected. In addition to cam-
era distance, several types of camera work are detected [11], e.g. pan, tilt, zoom,
and so on. Finally, for capture we also estimate the amount of camera motion [11].
The set of capture features is thus given by: T = {camera distance, camera work,
camera motion}.

The context S serves to enhance or reduce the correlation between semantic
concepts. Detection of vegetation can aid in the detection of a forest for example.
Likewise, the co-occurrence of a space shuttle and a bicycle in one shot is improbable.
As the performance of semantic concept detectors is unknown and likely to vary
between concepts, we exploit iteration to add them to the context. The rationale
here is to add concepts that are relatively easy to detect first. They aid in detection
performance by increasing the number of true positives or reducing the number of
false positives. As initial concept we detect news reporters. We recognize news
reporters by edit distance matching of strings, obtained from the transcript and
video text, with a database of names of CNN and ABC affiliates [159]. The other
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Figure 6.7: Feature extraction and classification in the context analysis step, special case of

figure 6.3.

concepts that are added to the context stem from ΛS . To prevent bias from domain
knowledge, we use the performance on the validation set of all concepts from ΛS

in the content analysis step as the ordering for the context. For this ordering we
again refer to table 6.1. To assign detection results for the first and least difficult
concept, ω1 = weather news, we rank all shot results on p∗i (ω1|~mi). This ranking
is then exploited to categorize results for ω1 into one of five levels. The basic set of
context features is thus given by: S = {news reporter, content analysis step ω1}.

The concatenation of {L, C, T ,S} for shot i yields the style vector ~si. This vector
forms the input for an iterative classifier that trains a style model for each concept
in lexicon ΛS .

Iterative Style Classification

We start from an ordering of concepts in the context, as defined above. The iteration
of the classifier begins with concept ω1. After concatenation with the other style
features this yields ~si,1 the first style vector of the first iteration. ~si,1 contains the
combined results of the content analysis step and the style analysis step. We classify
ω1 again based on ~si,1. This yields the a posterior probability p∗(ω1|~si,1). When
p∗(ω|~si) ≥ δ the concept ω1 is considered present in the style representation, else it
is considered absent. The threshold δ is set a priori at a fixed value of 0.5. In this
process the classifier replaces the feature for concept ω1, from the content analysis
step, by the new feature ω+

1 . The style analysis step adds more aspects of the
author influence to the results obtained with the content analysis step. In the next
iteration of the classification procedure, the classifier adds ω2 = stock quotes from
the content analysis step to the context. This yields ~si,2. As explained above, the
classifier replaces the ω2 feature from the content analysis step by the styled version
ω+

2 based on p∗(ω2|~si,2). This iterative process is repeated for all ω in lexicon ΛS .
We classify all ω in ΛS again in the style analysis step. As the result of the con-

tent analysis step is only one of the many features in our style vector representation
in the style analysis step, we also use 3-fold cross validation on the training set to
optimize parameter settings in this analysis step. We use the resulting probability
as output for concept detection in the style analysis step. In addition, it forms the
input for the next analysis step in our semantic pathfinder.

6.3.4 Context Analysis Step

The context analysis step adds context to our interpretation of the video. Our
ultimate aim is the reconstruction of the author’s intent by considering detected
concepts in context.
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Table 6.2: Test set precision at 100 after the three steps, for a lexicon of 32 concepts. The

best result is given in bold. The corresponding path is selected in the semantic pathfinder.
Semantic Concept Content Analysis Step Style Analysis Step Context Analysis Step Semantic Pathfinder

News subject monologue 0.55 1.00 1.00 1.00

Weather news 1.00 1.00 1.00 1.00

News anchor 0.98 0.98 0.99 0.99

Overlayed text 0.84 0.99 0.93 0.99

Sporting event 0.77 0.98 0.93 0.98

Studio setting 0.95 0.96 0.98 0.98

Graphics 0.92 0.90 0.91 0.91

People 0.73 0.78 0.91 0.91

Outdoor 0.62 0.83 0.90 0.90

Stock quotes 0.89 0.77 0.77 0.89

People walking 0.65 0.72 0.83 0.83

Car 0.63 0.81 0.75 0.75

Cartoon 0.71 0.69 0.75 0.75

Vegetation 0.72 0.64 0.70 0.72

Ice hockey 0.71 0.68 0.60 0.71

Financial news anchor 0.40 0.70 0.71 0.70

Baseball 0.54 0.43 0.47 0.54

Building 0.53 0.46 0.43 0.53

Road 0.43 0.53 0.51 0.51

American football 0.46 0.18 0.17 0.46

Boat 0.42 0.38 0.37 0.37

Physical violence 0.17 0.25 0.31 0.31

Basket scored 0.24 0.21 0.30 0.30

Animal 0.37 0.26 0.26 0.26

Bill Clinton 0.26 0.35 0.37 0.26

Golf 0.24 0.19 0.06 0.24

Beach 0.13 0.12 0.12 0.12

Madeleine Albright 0.12 0.05 0.04 0.12

Airplane take off 0.10 0.08 0.08 0.08

Bicycle 0.09 0.08 0.07 0.08

Train 0.07 0.07 0.03 0.07

Soccer 0.01 0.01 0.00 0.01

Mean 0.51 0.53 0.54 0.57

Semantic Analysis

The style analysis step yields a probability for each shot i and all concepts ω in
ΛS . The probability indicates whether a concept is present. We use the 32 concept
scores as semantic features. We fuse them into context vector ~ci, see figure 6.7.

From ~ci we learn relations between concepts automatically. To that end, ~ci
serves as the input for a supervised learning module, which associates a contextual
probability p∗(ω|~ci) to a shot i for all ω in ΛS . To optimize parameter settings, we
use 3-fold cross validation on the previously unused data from the validation set.

The output of the context analysis step is also the output of the entire semantic
pathfinder on video documents. On the way we have included in the semantic
pathfinder, the results of the analysis on raw data, facts derived from production
by the use of style features, and a context perspective of the author’s intent by using
semantic features. For each concept we obtain a probability based on content, style,
and context. We select from the three possibilities the one that maximizes average
precision based on validation set performance. The semantic pathfinder provides
us with the opportunity to decide whether a one-shot analysis step is best for the
concept only concentrating on content, or a two-analysis step classifier increasing
discriminatory power by adding production style to content, or that a concept profits
most from a consecutive analysis path using content, style, and context.
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(a) (b)

Figure 6.8: Influence of the style analysis step (a) and the context analysis step (b) on

precision at 100 performance for a lexicon of 32 semantic concepts. Note a considerable

decrease (American football) or increase (news subject monologue) in performance when adding

production style information. The same phenomenon is repeated for context information in

golf (decrease) and people (increase).

6.4 Results

6.4.1 Detection of 32 Semantic Concepts

We evaluated detection results for all 32 concepts in each analysis step. Given the
already enormous size of the data sets and the large amounts of annotation – yet
limited in terms of completeness – we have performed one pass for 32 concepts
through the entire semantic pathfinder. We report the precision at 100, which
indicates the number of correct shots within the first 100 results – assuming there
are more than 100 relevant shots per concept – in table 6.2.

We observe from the results that the learned best path (printed in bold) indeed
varies over the concepts. The virtue of the semantic pathfinder is demonstrated by
the fact that for 12 concepts, the learning phase indicates it is best to concentrate on
content only. For 5 concepts, the semantic pathfinder demonstrates that a two-step
path is best (where in 15 cases addition of style features has a marginal positive or
negative effect). For 15 concepts, the context analysis step obtains a better result.
Context aids substantially in the performance for 5 concepts. As an aside we note
that the precision at 100, when averaged over all concepts, steadily increases from
0.51 to 0.57 while traversing the different semantic analysis paths.

The results demonstrate the virtue of the semantic pathfinder. Concepts are
divided by the analysis step after which they achieve best performance. Some
concepts are just content, style does not affect them. In such cases as American
football there is style-wise too much confusion with other sports to add new value
in the path. Shots containing stock quotes suffer from a similar problem. Here false
positives contain many stylistically similar results like graphical representations of
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survey and election results. For complex concepts, analysis based on content and
style is not enough. They require the use of context. The context analysis step is
especially good in detecting named events, like people walking, physical violence, and
basket scored. The results offer us the possibility to categorize concepts according
to the analysis step of the semantic pathfinder that yields the best performance.

The content analysis step seems to work particularly well for semantic concepts
that have a small intra-class variability of content: weather news and news anchor
for example. In addition, this analysis step aids in detection of accidental content
like building, vegetation, bicycle, and train. However, for some of those concepts, e.g.
bicycle and train, the performance is still disappointing. Another observation is that
when one aims to distinguish sub-genres, e.g. ice hockey, baseball, and American
football, the content analysis step is the best choice.

After the style analysis step, we obtain an increase in performance for 12 con-
cepts, see figure 6.8a. Especially when the concepts are semantically rich: e.g. news
subject monologue, financial news anchor, and sporting event, the style helps. As
expected, index results in the style analysis step improve on the content analysis
step when style is a distinguishing property of the concept and degrade the result
when similarity in style exists between different concepts.

Results after the context analysis step in figure 6.8b show that performance
increases for 13 concepts. The largest positive performance difference between the
context analysis step and the style analysis step occurs for concept people. Concept
people profits from sport-related concepts like baseball, basket scored, American
football, ice hockey, and sporting event. In contrast, golf suffers from detection
of outdoor and vegetation. When we detect golf, these concepts are also present
frequently. The inverse, however, is not necessarily the case, i.e. when we detect
outdoor it is not necessarily on a golf court. Based on these observations we conclude
that, apart from named events, detection results of the context analysis step are
similar to those of the style analysis step. Index results improve based on presence
of semantically related concepts, but the context analysis step is unable to capture
the semantic structure between concepts and for some concepts, this is leading to
a drop in performance.

The above results show that the semantic pathfinder facilitates generic video in-
dexing. In addition, the semantic pathfinder provides the foundation of a technique
taxonomy for solving semantic concept detection tasks. The fact that sub-genres
like ice hockey, golf, and American football behave similarly indicate the predictive
value of the pathfinder for other sub-genres. The same holds for semantically rich
concepts like news subject monologue, financial news anchor, and sporting event.
We showed that for named events, such as basket scored, physical violence, and
people walking, one should apply a detector that is based on the entire semantic
pathfinder. The significance of the semantic pathfinder is its generalizing power
combined with the fact that addition of new information in the analysis can be
considered by concept type.

6.4.2 Benchmark Comparison

We performed an experiment within the TRECVID benchmark to show the ef-
fectiveness of the semantic pathfinder for detection of semantic concepts among 12
present-day video indexing systems. The TRECVID 2004 procedure prescribes that
10 pre-defined concepts are evaluated. Hence, we report the official benchmark re-
sults for 10 concepts in our lexicon only. The 10 benchmark concepts are, however,
representative for the entire lexicon of 32. All evaluations are based on the semantic
pathfinder.

We compare our work with the 11 other participants in TRECVID 2004. We
select from each participant the system tuning with the best performance for a
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Figure 6.9: Comparison of semantic pathfinder results with 11 other present-day indexing

systems in the TRECVID 2004 benchmark [148,149].

concept out of a maximum of 10 tunings. For ease of explanation we do not take
the optimal tunings of the semantic pathfinder, as reported in [157], into account.
Instead, we use a similar parameter setting for all concepts. Hence, we favor other
systems in this comparison. Results are visualized in figure 6.9 for each concept.

Relative to other video indexing systems the semantic pathfinder performs the
best for two concepts, i.e. people walking and physical violence, and second for five
concepts, i.e. boat, Madeleine Albright, Bill Clinton, airplane take off, and road.
For two concepts we perform moderate, i.e. basket scored and beach. Here the best
approaches are based on specialized concept detection methods that exploit domain
knowledge. The big disadvantage of these methods is that they are specifically
designed and implemented for one concept. They do not scale to other concepts.
The benchmark results show that the semantic pathfinder allows for generic indexing
with state-of-the-art performance.

6.4.3 Usage Scenarios

The results from the semantic pathfinder facilitate the development of various ap-
plications. The lexicon of 32 semantic concepts allows for querying a video archive
by concept. In [161], we combined into a semantic video search engine query-by-
concept, query-by-keyword, query-by-example, and interactive filtering. In addition
to interactive search, the set of indexes is also applicable in a personalized retrieval
setting. A feasible scenario is that users with a specific interest in sports are pro-
vided with personalized summaries when and where they need it. The sketched
applications provide a semantic access to multimedia archives.
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6.5 Conclusion

We propose the semantic pathfinder for semantic access to multimedia archives.
The semantic pathfinder is a generic approach for video indexing. It is based on the
observation that produced video is the result of an authoring process. The semantic
pathfinder exploits the authoring metaphor in an effort to bridge the semantic
gap. The architecture is built on a variety of detector types, multimodal analysis,
hypothesis selection, and machine learning. The semantic pathfinder selects the best
path through content analysis, style analysis, and context analysis. After machine
learning it appears that the analysis is completed after content analysis only when
concepts share many similarities in their multimodal content. It appears also that
the semantic path runs up to style analysis when the professional habits of television
are evident to the concept. Finally, it exploits a path based on content, style, and
context for concepts that are primarily intentional, see table 6.2 and figure 6.8.

Experiments with a lexicon of 32 semantic concepts demonstrate that the se-
mantic pathfinder allows for generic video indexing, while confirming the value of
the authoring metaphor in indexing. In addition, the results over the various anal-
ysis steps indicate that a technique taxonomy exists for solving semantic concept
detection tasks; depending on whether content, style, or context is most suited
for indexing. Finally, the semantic pathfinder is successfully evaluated within the
2004 TRECVID benchmark. With one and the same set of system parameters two
concepts, i.e. people walking and physical violence, came out best against 11 other
present-day systems with average precision scores, remember that this measure in-
dicates the average of the precision after every relevant item is retrieved, of 0.170
and 0.086 respectively. For five concepts our system scored second best, i.e. boat
(0.117), Madeleine Albright (0.136), Bill Clinton (0.150), airplane take off (0.065),
and road (0.138). Just two performed poorly in this comparison, i.e. basket scored
(0.209) and beach (0.020). The results show that the semantic pathfinder allows
for state-of-the-art performance without the need of implementing specialized de-
tectors. We consider this the best indication of the validity of the approach.

A semantic pathfinder is as strong as its weakest analysis step. Introduction
of feature selection and knowledge representations in the various analysis steps will
improve results. In its current form the context analysis step takes the results of the
style analysis step for granted; and results are only adapted when there is enough
contextual evidence from the other concepts to do so. Improvement of the semantic
pathfinder along these lines is topic of future research.

For the moment, the average precision resulting from completely automatic in-
dexing ranges from 0.020 to 0.209. In absolute terms, these performance values are
still quite low. In 64 hours of produced video only a small fraction of the relevant
instances in the footage are retrieved within the first few ranked results. For select-
ing illustrative footage, this may already be sufficient. This is not yet so for tasks
that require accurate retrieval. However, the trend in results over the past years
indicates that automated search in video archives lures at the horizon.

Keyterms in this chapter

Authoring metaphor, generic video indexing, semantic pathfinder, content analysis,
style analysis, context analysis, TRECVID benchmark, average precision, precision
at 100





Chapter 7
Semantic Video Retrieval∗

7.1 Introduction

The technology for searching through text has evolved to a mature level of per-
formance. Browsers and search engines have found in the Internet a medium to
prosper, opening new ways to do business, science, and to be social. All of this
was realized in just 15 years. That success has whet the appetite for retrieval
of multimedia sources, specifically of the medium video. Present-day commercial
video search engines [18,54] often rely on just a filename and text metadata in the
form of closed captions [54] or transcribed speech [18]. This results in a disappoint-
ing performance, as quite often the visual content is not mentioned, or properly
reflected in the associated text. The text often covers the emotion of the video,
but this is highly specific for context and wears quickly. In addition, when videos
originate from non-English speaking countries, such as China or the Netherlands,
querying the content becomes more difficult because automatic speech recognition
is so much harder to achieve. At any rate, visual analysis up to the standards of
text will deliver robustness to the multimedia search.

In contrast to text-based video retrieval, the content-based image retrieval re-
search community has emphasized a visual-only approach. It has resulted in a wide
variety of image and video search systems [25, 28, 36, 45, 50, 56, 81, 97, 122,134,152].
A common denominator in these prototypes is their dependence on low-level visual
information such as color, texture, shape, and spatiotemporal features. Users query
an archive containing visual feature values rather than the images. They do so
by sketches, or by providing example images using a browser interface. Query-by-
example can be fruitful when users search for the same object under slightly varying
circumstances and when the target images are available indeed. If proper example
images are unavailable, content-based image retrieval techniques are not effective
at all. Moreover, users often do not understand similarity of low-level visual fea-
tures. They expect semantic similarity. In other words, when searching for cars, an
input image of a red car should also trigger the retrieval of yellow colored cars. The
current generation of video search engines offers low-level abstractions of the data,
where users seek high-level semantics. Thus, query-by-example retrieval techniques
are not that effective in fulfilling the users’ needs. The main problem for any video
retrieval methodology aiming for access is the semantic gap between image data
representation and their interpretation by humans [151]. Not surprisingly, the user
experience with (visual only) video retrieval is one of frustration. Therefore, a new
paradigm of semantics is required when aiming for access to video archives.

∗This chapter is adapted from [160].
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In a quest to narrow the semantic gap, recent research efforts have concen-
trated on automatic detection of semantic concepts in video. The feasibility of
mapping low-level (visual) features to high-level concepts was proven by pioneer-
ing work, which distinguished between concepts such as indoor and outdoor [167],
and cityscape and landscape [173]. The introduction of multimedia analysis, cou-
pled with machine learning, has paved the way for generic indexing approaches [3,
10, 40, 41, 109, 154, 157–159]. Currently yielding concept lexicons bounded by 101
concepts [154], and expected to evolve into multimedia ontologies [15] containing
as much as 1,000 concepts soon [62]. The speed at which these lexicons grow of-
fers great potential for future video retrieval systems. At present the lexicons are
not large enough, so they are no alternative yet for either the visual or textual re-
trieval paradigm. However, the availability of gradually increasing concept lexicons,
raises the question: how to augment query-by-concept for effective interactive video
retrieval?

We start from the premise that a video search engine should begin with off-line
learning of a large lexicon of multimedia concepts. In order to be effective in its
use, a video search engine should employ query-by-example, query-by-keyword, and
interaction with an advanced user interface to refine the search until satisfaction.
We propose a lexicon-driven paradigm to video retrieval. The uniqueness of the
proposed paradigm lies in its emphasis on automatic learning of a large lexicon of
concepts. When the lexicon is exploited for query-by-concept and combined with
query-by-keyword, query-by-example, and interactive filtering using an advanced
user interface, a powerful video search engine emerges, which we call the MediaMill
semantic video search engine. To demonstrate the effectiveness of our lexicon-
driven retrieval paradigm, the interactive search experiments with the MediaMill
system are evaluated within the 2004 and 2005 NIST TRECVID video retrieval
benchmark [147,149].

The organization of this paper is as follows. First, we formulate the problem
in terms of related work in Section 7.2. The blueprint of our lexicon-driven video
retrieval paradigm is presented in Section 7.3, where we describe the MediaMill
system. We present the experimental setup in which we evaluated our paradigm in
Section 7.4. We show the results of our experiments in Section 7.5.

7.2 Problem Formulation and Related Work

We aim at providing users with semantic access to video archives. Specifically, we
investigate whether this can be reached by machine learning. Then the question is
how this large lexicon of learned concepts can be combined with query-by-keyword,
query-by-example, and interactive manipulation to achieve effective video retrieval?

In response to this question, we focus on methodologies that advocate the com-
bination of lexicon learning, query-by-example, query-by-keyword, and interaction
for semantic access [4, 10, 30, 40, 168]. We observe that these state-of-the-art video
search systems are structured in a similar fashion. First, they include an engine
that indexes video data on a visual, textual, and semantic level. Systems typically
apply similarity functions to index the data in the visual and textual modality. This
similarity index facilitates retrieval in the form of query-by-example and query-by-
keyword. Video search engines often employ a semantic indexing component to
learn a lexicon of concepts and accompanying probability from provided examples.
All indexes are typically stored in a database at the granularity of a video shot.
A second component that all systems have in common is a retrieval engine, which
offers users an access to the stored indexes and the video data. The system has
an interface to compose queries, e.g. using query-by-keyword, query-by-example,
and query-by-concept. The retrieval engine handles the query requests, combines
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Figure 7.1: General framework for an interactive video search engine. In the indexing engine,

the system learns to detect a lexicon of semantic concepts. In addition, it computes similarity

distances. A retrieval engine then allows for several query selection methods. The system

combines requests and displays results to a user. Based on interaction a user refines search

results until satisfaction.

the results, and displays them to an interacting user. A general framework for in-
teractive video search engines is presented in figure 7.1. While proposed solutions
for effective video search engines share similar components, they stress different
elements in reaching their goal.

The interactive video retrieval system proposed by Adcock et al. [4] combines
textual analysis with an advanced user interface. Their textual analysis automati-
cally segments recognized speech transcripts on a topic-based story level. They ar-
gue that search results should be presented in these semantically meaningful story
units. Therefore, they present query-by-keyword results as story key frame col-
lages in the user interface. Their system does not support query-by-example and
query-by-concept.

In contrast to [4], Taskiran et al. [168] stress visual analysis for retrieval, in
particular similarity of low-level color features. In addition, the authors provide
users with a lexicon containing 1 concept, namely face. Obviously, a single concept
can never address a wide variety of search topics. Thus, user interaction with the
data is required. To that end, segmented shots are represented as an hierarchy of
clustered frames. The authors combine this representation with query-by-example
and query-by-concept by offering users query results in a so called similarity pyra-
mid. While users browse through the pyramid they are offered a sense of the video
archive at various level of (visual) detail. Unfortunately its effectiveness remains
unclear, as a verification on interactive retrieval experiments is missing.

In addition to visual analysis, Fan et al. [40] emphasize the utility of a lexicon,
containing 5 concepts, for video retrieval. The authors exploit a hierarchical clas-
sifier to index the video on shot, scene, and cluster level, allowing for hierarchical
browsing of video archives on concept-level and visual similarity. Unfortunately,
similar to [168], the paper lacks an evaluation of the utility of the proposed frame-
work for interactive video retrieval. A lexicon of 5 concepts aids for interactive
video retrieval, but is still limited.
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Table 7.1: Overview of state-of-the-art video retrieval systems, their key-components, and

evaluation details, sorted by lexicon size. Our contribution is denoted in bold.
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Adcock et al. [4] X 0 Story board TRECVID 2004

Taskiran et al. [168] X X 1 Similarity pyramid Specific

Fan et al. [40] X X 5 Hierarchical summarization Specific

Christel et al. [30] X X X 10 Story board TRECVID 2003

Amir et al. [10] X X X 17 Grid browser TRECVID 2003

Snoek et al. X X X 32 Grid browser TRECVID 2004

Snoek et al. X X X 101 Cross browser TRECVID 2005

One of the first systems to combine query-by-keyword, query-by-example, query-
by-concept, and advanced display of results is the Informedia system [30, 63, 180].
It is especially strong in interactive search scenarios. In [30], the authors explain
the success in interactive retrieval as a consequence of using storyboards, i.e. a
grid of key frame results that are related to a keyword-based query. As queries for
semantic concepts are hard to tackle using the textual modality only, the interface
also supports filtering based on semantic concepts. The filters are based on a lexicon
of 10 pre-indexed concepts with mixed performance [63]. Because the lexicon is
limited in terms of the number of concepts, the filters are applied after a keyword-
based search. The disadvantage of this approach is the dependence on keywords
for initial search. Because the visual content is often not reflected in the associated
text, user-interaction with this restricted answer set results in limited semantic
access. To limit the dependence on keywords, we emphasize query-by-concept in
the interactive video retrieval process, where possible.

A system for generic semantic indexing is proposed by Naphade et al. in [3, 10,
109]. The system exploits consecutive aggregations on features, multiple modalities,
and concepts. Finally, the system optimizes the result by rule-based post filtering.
They report good benchmark results on a lexicon of 17 concepts. In spite of the
use of this lexicon, interactive retrieval results with the web-driven MARVEL sys-
tem [10] are not competitive with [4, 30]. This is surprising, given the robustness
of the concept detectors. Hence, MARVEL has difficulty in properly leveraging the
concept detection results for interactive retrieval. A drawback of the interactive
system is the lack of speed of the web-based grid browser. Moreover, it has no
video playback functionality. However, the largest problem is the complex query
interface that offers too many possibilities to query on low-level (visual) features
and prevents users from quick retrieval of video segments of interest. We adopt and
extend their ideas related to semantic video indexing, but we take a different road
for interactive retrieval.

From the need to quantify effective video retrieval, we note that it has al-
ways been a delicate issue. Video archives are fragmented and mostly inaccessi-
ble due to copyrights and the sheer volume of data involved. As a consequence,
many researchers evaluate their video retrieval methodologies on specific data sets,
e.g. [40, 168]. To make matters worse, as the evaluation requires substantial effort,
they often evaluate sub-modules of the complete framework only. This is hampering
progress because methodologies can not be valued on their relative merit with re-
spect to interactive video retrieval performance. To tackle the evaluation problem,
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the American National Institute of Standards and Technology (NIST) started orga-
nizing the TRECVID video retrieval benchmark. The benchmark aims to promote
progress in video retrieval via open, metrics-based evaluation [147,149]. TRECVID
provides video archives, a common shot segmentation, speech transcripts, and search
topics that need to be solved by benchmark participants. Finally, they perform an
independent examination of results using standard information retrieval evaluation
measures. Because of its widespread acceptance in the field [147, 149], resulting in
large participation of teams from academic labs, e.g. Carnegie Mellon University
and Tsinghua University, and corporate research labs, e.g. IBM Research and FX
Palo Alto Laboratory, the TRECVID benchmark can be regarded as the de facto
standard to evaluate performance of video retrieval research.

To answer the questions related to combining video retrieval techniques and
their joint evaluation in an interactive video retrieval setting, we first summarize
our analysis of related work in table 7.1. It shows that interactive video retrieval
methodologies stress different components indeed. We argue that a large lexicon
of concepts matters most, i.e. query-by-concept should receive more emphasis in
favor of traditional retrieval techniques. In this paper, we propose a lexicon-driven
retrieval paradigm to equip users with semantic access to video archives (denoted in
bold in table 7.1). The paradigm combines learning of a large lexicon - currently con-
taining 32 concepts and 101 concepts respectively - with query-by-keyword, query-
by-example, and interaction using an advanced display of results. We introduce
the MediaMill semantic video search engine, which exploits a grid browser and a
cross browser for display of results, to demonstrate the effectiveness of the proposed
paradigm. Since the search engine combines several techniques, we will not discuss
in-depth technical details of individual components, nor will we evaluate them. In
contrast, we focus on the performance of the combined approach to interactive video
retrieval using accepted benchmarks. To that end, we evaluate our lexicon-driven
retrieval paradigm within the 2004 and 2005 NIST TRECVID benchmark. Interac-
tive retrieval using the proposed paradigm facilitates effective and efficient semantic
access to video archives.

7.3 The MediaMill Semantic Video Search Engine

With the MediaMill search engine we aim to retrieve from a video archive, composed
of n unique shots, the best possible answer set in response to a user information
need. To that end, the search engine combines learning of a large lexicon with
query-by-keyword, query-by-example, and interaction. The system architecture of
the search engine follows the general framework as sketched in figure 7.1. We now
explain the various components of the search engine in more detail, where needed
we provide pointers to published papers covering in-depth technical details.

7.3.1 Indexing Engine

Textual & Visual Feature Extraction

To arrive at a similarity distance for the textual modality we first derive words from
automatic speech recognition results, obtained with standard tools, e.g. [47]. We
exploit standard machine translation tools [83] in case the videos originate from non-
English speaking countries. This allows for a generic approach. We remove common
stop words from the English text using the SMART’s English stop list [136]. We
then construct a high dimensional vector space based on all remaining transcribed
words. We rely on latent semantic indexing [35] to reduce the search space to 400
dimensions. While doing so, the method takes co-occurrence of related words into
account by projecting them onto the same dimension. The rationale is that this
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Figure 7.2: Multimedia lexicon indexing is based on the semantic pathfinder [158], Chapter 6.

We highlight its successive analysis steps in the detail from figure 7.1. The semantic pathfinder

selects for each concept a best analysis path after validation.

reduced space is a better representation of the search space. When users exploit
query-by-keyword as similarity measure, the terms of the query are placed in the
same reduced space. The most similar shots, viz. the ones closest to the query
in that space, are returned, regardless of whether they contain the original query
terms.

In the visual modality the similarity query is by example. For all key frames in
the video archive, we compute the perceptually uniform Lab color histogram [51]
using 32 bins for each color channel. Users compare key frames with Euclidean
histogram distance.

Multimedia Lexicon Indexing

Generic semantic video indexing is required to obtain a large concept lexicon. In
literature, several approaches are proposed [3,10,40,41,109,154,158,159]. The utility
of supervised learning in combination with multimedia content analysis has proven
to be successful, with recent extensions to include video production style [159] and
the insight that concepts often co-occur in context [3, 10, 109]. We combine these
successful approaches into an integrated video indexing architecture.

The design principle of our architecture is derived from the idea that the essence
of produced video is its creation by an author. Style is used to stress the semantics
of the message, and to guide the audience in its interpretation. In the end, video
aims at an effective semantic communication. All of this taken together, the main
focus of semantic indexing must be to reverse this authoring process, for which we
proposed the semantic pathfinder [154, 158], Chapter 6. The semantic pathfinder
is composed of three analysis steps, see figure 7.2. The output of an analysis step
in the pathfinder forms the input for the next one. We build this architecture on
machine learning of concepts for the robust detection of semantics. An in depth
discussion of the various techniques used is presented in Chapter 6.

7.3.2 Retrieval Engine

Video retrieval engines are often dictated by technical possibilities rather than actual
user needs [87]. Frequently this results in an overly complex system. To shield the
user from technical complexity, while at the same time offering increased efficiency,
we store all computed indexes in a database. Users interact with the retrieval engine
based on query selection methods. Each query method acts as a ranking operator
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Figure 7.3: The MediaMill video search engine offers interacting users several methods for

query selection. In the detail from figure 7.1, we highlight three query-by-concept methods,

together with query-by-example, and query-by-keyword.

on the video archive. After a user issues a query it is processed and combined into
a final result, which is presented to the user. The elements of our retrieval engine
are now discussed in more detail.

Query Selection

The set of concepts in the lexicon forms the basis for interactive selection of query
results. We identify three ways to exploit the lexicon for querying, i.e. query-by-
direct concept, query-by-sub concept, and query-by-super concept. Users may rely
on query-by-direct concept for search topics related directly to concepts from the
lexicon. In case the lexicon contains the concept aircraft, all information needs
related to aircrafts benefit from query-by-direct concept. This is an enormous
advantage for the precision of the search. Users can also make a first selection when
a query includes a sub-concept or a super-concept of a concept in the lexicon. For
example, when searching for sports one can exploit query-by-sub concept using the
available sport sub-concepts tennis, soccer, baseball, and golf from the lexicon. In a
similar fashion, users may exploit query-by-super concept using animal to retrieve
footage related to ice bear. To aid the user in the selection of the query we make
lexicon concepts available in the form of a subset of the WordNet [42] taxonomy.
This helps the user to take well-established concept relations into account. The
layout of the interface has the same order as WordNet for maximum comfort. In
this way, the lexicon of concepts aids users in various ways in specifying their queries.

For search topics not covered by the concepts in the lexicon, users have to
rely on similarity distances in the form of query-by-keyword and query-by-example.
Applying query-by-keyword in isolation allows users to find very specific topics
only if they are mentioned in the transcription from automatic speech recognition.
Based on query-by-example, on either provided or retrieved images, key frames that
exhibit a similar color distribution can augment results further. This is especially
fruitful for repetitive key frames that contain similar visual content throughout the
archive, such as previews, graphics, and commercials.
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Figure 7.4: Interface of the MediaMill semantic video search engine. The system allows for

interactive query-by-concept using a large lexicon. In addition, it facilitates query-by-keyword

and query-by-example. For display of results users may rely on a cross browser or a grid browser.

Naturally, the search engine provides users the possibility to combine query
selection methods. This is helpful when a concept is too general and needs refine-
ment. For example when searching for Microsoft stock quotes, a user may combine
query-by-concept stock quotes with query-by-keyword Microsoft. While doing so,
the search engine exploits both the concept lexicon and the multimedia similarity
distances. We summarize the methods for query selection in figure 7.3.

Combining Query Results

To rank results, query-by-concept exploits semantic probabilities, while query-by-
keyword and query-by-example use similarity distances. When users mix query
interfaces, and hence several numerical scores, this introduces the question how to
combine the results. As noted in Section 7.2, one solution is to query the system in
a sequential fashion. In such a scenario, a user may start with query-by-keyword,
results obtained are subsequently filtered using query-by-concept. The disadvantage
of this approach is the dependence on the accuracy of the initial query method.
Therefore, we opt for a combination method that provides us the possibility to
exploit query results in parallel. Rankings offer us a comparable output across
various query results. Various ranking combination methods exist [68]. We employ a
standard approach, using summation of linear rank normalizations [88], to combine
query results.

Display of Results

The search engine supports two modes for displaying results. In the traditional grid
browser a ranked list of key frame results is visualized as a lattice of thumbnails
ordered left to right, top to bottom. However, ranking is a linear ordering. So,
ideally it should be visualized as such. This leaves room to use the other dimension
for visualization of the chronological series, or story, of the video program from
which a key frame is selected. This makes sense as frequently other items in the
same broadcast are relevant to a query also [4, 30]. Therefore, we also employ a
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cross browser, which facilitates quick selection of relevant results. If requested,
playback of specific shots is also possible. We rely on interaction by a user to
select query methods and combine retrieval results. Technically, the interface of the
search engine is implemented in OpenGL to allow for easy query selection and swift
visualization of results. We depict the various aspects of the user interface of the
MediaMill video search engine in figure 7.4.

7.4 Experimental Setup

We investigate the impact of the proposed lexicon-driven paradigm for interactive
video retrieval by performing 2 experiments with the MediaMill semantic video
search engine:

• Experiment 1: Interactive video retrieval with a 32 concept lexicon;

In the first experiment, we evaluate video retrieval effectiveness using the MediaMill
search engine in combination with a 32 concept lexicon and the grid browser.

• Experiment 2: Interactive video retrieval with a 101 concept lexicon;

In the second experiment, we evaluate video retrieval effectiveness using the Medi-
aMill search engine in combination with a 101 concept lexicon and the cross browser.
Finally, we compare interactive retrieval results obtained using the MediaMill search
engine with a dozen other video retrieval systems. To allow for comparison, we per-
form all experiments as part of the interactive search tasks of the 2004 and 2005
NIST TRECVID benchmark.

7.4.1 Interactive Search

The goal of the interactive search task is to satisfy a number of video information
needs. Given such a need, in the form of a search topic, a user is engaged in an
interactive session with a video search engine. Based on the results obtained, a user
rephrases queries; aiming at retrieval of more and more accurate results. To limit
the amount of user interaction and to measure search system efficiency, all individual
search topics are bounded by a 15-minute time limit. The 2004 interactive search
task contains 23 search topics in total, the 2005 edition has 24. In line with the
TRECVID submission procedure, a user was allowed to submit, for assessment by
NIST, up to a maximum of 1,000 ranked results for the various search topics.

The 2004 video archive includes 184 hours of ABC World News Tonight and
CNN Headline News. The training data contains approximately 120 hours covering
the period of January until June 1998. The test data holds the remaining 64 hours,
covering the period of October until December 1998. The 2005 archive contains 169
hours with 287 episodes from 13 broadcast news shows from US, Arabic, and Chinese
sources, recorded during November 2004. The test data contains approximately 85
hours. Together with the video archives came automatic speech recognition results
donated in 2004 by LIMSI [47] and in 2005 by a US government contractor. CLIPS-
IMAG [129] and the Fraunhofer Institute [123] provided a camera shot segmentation,
in 2004 and 2005 respectively. The camera shots serve as the unit for retrieval.
Similar to concept detection, TRECVID uses average precision to determine the
retrieval accuracy on individual search topics, see Section 6.2.2. As an indicator for
overall search system quality TRECVID computes the mean average precision over
all search topics from one run by a single user.
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Figure 7.5: Instances of the concepts from the lexicons used. The lexicon of 32 concepts

(TRECVID 2004) is given in italics, the 101 concept lexicon (TRECVID 2005) is denoted in

bold. Concepts which appear in both lexicons follow two conventions.

7.4.2 Lexicon Specification

We automatically detect a lexicon of semantic concepts in both the TRECVID
2004 and 2005 data using the semantic pathfinder, as discussed in Section 7.3.1.
In the 2004 data we detect a lexicon of 32 concepts, in the 2005 data a lexicon of
101 concepts†. We select concepts by following a predefined concept ontology for
multimedia [112] as leading example. Concepts in this ontology are chosen based on
presence in WordNet [42] and extensive analysis of video archive query logs. Where
concepts should be related to program categories, setting, people, objects, activities,
events, and graphics. In addition, a primary design choice was that concepts need
to be clear by looking at a static key frame only. We visualize instantiations of the
detected concepts in both lexicons in figure 7.5, additional details for 2004 data are
in [158], for 2005 data are in [154].

It should be noted that although we have a large lexicon of concepts, with
state-of-the-art results for generic indexing [158], performance of them is far from
perfect. This often results in noisy detection outcomes. To give an indication
of performance, we highlight our official TRECVID concept detection results on
test data in table 7.2. The TRECVID procedure prescribes that 10 pre-defined
concepts are evaluated. Hence, for each year, we can report the official benchmark
results for 10 concepts in our lexicon only. The benchmark concepts are, however,
representative for the entire lexicons.

We stress that the various topics became known only a few days before the
deadline of submission. Hence, they were unknown at the time we developed our
semantic concept detectors. Moreover, the test set performance of the concepts was
unknown at the time we performed our interactive search experiments. To show
the potential of our lexicon-driven paradigm we performed an experiment with a

†[Online]. Available: http://www.mediamill.nl/challenge/ [162].
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Table 7.2: MediaMill average precision results for the TRECVID 2004 [158] and 2005 [154]

concept detection task.

TRECVID 2004 TRECVID 2005

Concept Average Precision Concept Average Precision

Aircraft 0.065 Building 0.235

M. Albright 0.136 Car 0.213

Basketball 0.209 Explosion 0.041

Beach 0.020 Flag USA 0.100

Boat 0.117 Map 0.142

B. Clinton 0.150 Mountain 0.220

People walking 0.170 People walking 0.199

Road 0.138 Prisoner 0.005

Train 0.062 Sports 0.342

Violence 0.086 Waterscape 0.201

single expert user, which is common procedure in TRECVID, e.g. [4, 10, 30]. Our
expert user had no experience with the topics nor with the test data. The user did
have experience with the MediaMill system and its concept lexicons, but only on
training data, which is conform TRECVID guidelines.

7.5 Results

7.5.1 Retrieval with a 32 Concept Lexicon

We plot the complete numbered list of search topics used in our first experiment in
figure 7.6. In addition, we plot the benchmark results for 61 users with 14 present-
day interactive multimedia retrieval systems. The results give us insight in the
contribution of the proposed paradigm for individual search topics when using a
lexicon of 32 concepts.

For most search topics, the user of the proposed paradigm for interactive multi-
media retrieval scores above average. Furthermore, the user of our approach obtains
the highest average precision for seven search topics (Topics: 3, 14, 15, 16, 18, 20,
21). We explain the success of our interactive retrieval paradigm in this experiment
in part by the lexicon used. In our lexicon, there was an (accidental) overlap with
the requested concepts from some search topics; for example ice hockey, bicycle,
and Bill Clinton (Topics: 6, 16, 20), where performance is very good. Implying
that there is much to be expected from a larger set of concepts in the lexicon. For
other topics, the user could use query-by-super concept for filtering, e.g. sporting
event for tennis player (Topic: 18) and animal for horses (Topic: 21). So in our
method, abstract concepts make sense even when they are referred to indirectly.
As an exception, for search topics related to the concept building (Topics: 2, 22),
our retrieval method performed badly compared to the best results. We explain
this behavior by the fact that building was not the distinguishing concept in these
topics, but rather concepts like flood and fire, implying that some concepts are more
important than others.

The user of the paradigm performed moderate for search topics that did not have
a clear overlap with the concepts in the lexicon. For topics related to wheelchairs
(Topic: 19), umbrellas (Topic: 17), and person X who were not in the lexicon
(Topics: 4, 9, 10, 11, 13), query-by-keyword is the only viable alternative.

When a user recognizes an answer to a search topic as a commercial or signature
tune, query-by-example is particularly useful. Search topics profiting from this
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Figure 7.6: Comparison of interactive search results for 23 topics performed by 61 users of

14 present-day video retrieval systems. Results for the user of the proposed paradigm, with a

32 concept lexicon, are indicated with special markers.

observation are those related to bicycle and tennis player (Topics: 16, 18). Since
these fragments contain similar visual content throughout the archive, they are
easily retrievable with query-by-example.

After this first experiment, we conclude that for search topics related to concepts
in the lexicon, query-by-concept is a good starting point. Query-by-keyword is
effective when the (visual) content is described in the speech signal. If a user is
interested in footage that is repeated throughout the archive, query-by-example is
the way to go. With a lexicon containing only 32 concepts we already diminish the
influence of traditional video retrieval techniques in favor of query-by-concept.

7.5.2 Retrieval with a 101 Concept Lexicon

We again plot the complete numbered list of search topics in figure 7.7 for our second
experiment, where we use a lexicon of 101 concepts. Together with the topics, we
plot the benchmark results for 49 users using 16 present-day interactive video search
engines.

The results confirm the value of a large lexicon for interactive video retrieval. For
most search topics the user of the proposed paradigm scores excellent, yielding a top
3 average precision for 17 out of 24 topics. Furthermore, our approach obtains the
highest average precision for five search topics (Topics: 26, 31, 33, 36, 43). In our
lexicon, there was an (accidental) overlap with the requested concepts from almost
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Figure 7.7: Comparison of interactive search results for 24 topics performed by 49 users of

16 present-day video retrieval systems. Results for the user of the proposed paradigm, with a

101 concept lexicon, are indicated with special markers.

all search topics; for example tennis, people marching, and road (Topics: 31, 36, 43),
where performance is very good. These results demonstrate that many video search
questions are solvable without using query-by-keyword and query-by-example.

The search engine performed moderate for topics that were not in the lexicon
(Topic: 24), or which yielded very poor concept detection (Topic: 25). For these
topics our user had to rely on query-by-keyword. In addition, we also performed
less than expected for topics that require specific instances of a concept, e.g. maps
with Bagdhad marked (Topic: 30). Although the concept map was part of our
lexicon, our user was unable to exert this advantage. When search topics contain
combinations of several reliable concepts, e.g. meeting, table, people (Topic: 38),
results are also not optimal. This indicates that much is to be expected from a
more intelligent combination of query results.

For some topics, the MediaMill search engine may be exploited in an unexpected
way. By the use of common sense, the lexicon is also useful for topics that do not
have a clear one-to-one relation with a concept. One of the search topics profiting
from this observation is people shaking hands (Topic: 32). For this topic, the
concept government leader is helpful. Indeed, government leaders shake hands quite
often when visiting or welcoming fellow foreign leaders, which is often broadcasted
in news items. For the topic on finding one or more palm trees (Topic: 41), query-
by-direct concept on tree was not specific enough. Here our user exploited common
sense by using the fact that by searching on military the system returns a lot of shots
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(a)

(b)

Figure 7.8: Overview of all interactive search runs submitted to TRECVID 2004 (a) and

TRECVID 2005 (b), ranked according to mean average precision.

from the war in Iraq. Indeed often containing palm trees. Lebanese former prime
minister Omar Karami (Topic: 26) was not included in our lexicon. For this topic
we combine common sense with the cross browser. Omar Karami appears often in
long interviews. Thus, when a single shot from such an interview is localized, the
cross browser offers an opportunity to select a large amount of relevant shots easily.
When users employ common sense, the lexicon-driven paradigm becomes even more
powerful.

Our second experiment shows that a large lexicon is the most valuable resource
for interactive video retrieval. With a lexicon of 101 concepts almost all search topics
are solvable directly, or indirectly, with good performance. Hence, the value of the
lexicon-driven paradigm is evident. In fact, it diminishes the value of traditional
techniques such as query-by-keyword and query-by-example to purely supportive
tools for topics that can not be addressed by concepts from the lexicon. Using a
large lexicon implies a paradigm shift for interactive video retrieval.
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7.5.3 Benchmark Comparisons

To gain insight in the overall quality of our lexicon-driven interactive retrieval
paradigm, we compare the mean average precision results of our lexicon-driven
MediaMill video search engine with other state-of-the-art systems. For TRECVID
2004 we compare against 13 other retrieval systems. For TRECVID 2005 we com-
pare against 15 present-day video search engines. Our approach is unique with
respect to lexicon size, most others emphasize traditional retrieval paradigms. We
visualize the results for all submitted interactive search runs of TRECVID 2004 in
figure 7.8a, and TRECVID 2005 in figure 7.8b.

The results show that the proposed search engine obtains a mean average pre-
cision of 0.352 in TRECVID 2004, and 0.414 in TRECVID 2005. In both cases the
highest overall score. In [66] the authors showed that the top 2 TRECVID 2004
systems significantly outperform all other submissions. What is striking about these
results, is that we obtain them by using a lexicon of only 32 concepts. When we
increase the concept lexicon to 101 concepts in TRECVID 2005, only 3 users stay
within a difference of 0.05 mean average precision. These users employed a video
retrieval system based on rapid serial visual presentation of search results [64]. In
such a scenario a user is bombarded with as much key frames as possible. While
effective in terms of TRECVID performance, this demanding approach is suited
for limited domains only. The benchmark results demonstrate that lexicon-driven
interactive retrieval yields superior performance relative to state-of-the-art video
search engines.

7.6 Conclusion

In this paper, we combine automatic learning of a large lexicon of semantic concepts
with video retrieval methods into an effective video search system. The aim of
the combined system is to narrow the semantic gap for the user. The foundation
of the proposed approach is to learn a lexicon of semantic concepts. Where it
should be noted that we have used a generic machine learning system and no per-
concept optimizations. Based on this learned lexicon, query-by-concept offers users
a semantic entrance to video repositories. In addition, users are provided with
an entry in the form of textual query-by-keyword and visual query-by-example.
Interaction with the various query interfaces is handled by an advanced display of
results, which provides feedback in the form of a grid browser or a cross browser.
The resulting MediaMill semantic video search engine limits the influence of the
semantic gap.

We investigate the impact of the proposed lexicon-driven paradigm for inter-
active video retrieval by performing 2 experiments with the MediaMill semantic
video search engine. In our first experiment, with a lexicon of only 32 concepts,
we already outperform state-of-the-art systems in 7 out of 23 random queries on 64
hours of US broadcast news. When we increase the lexicon to 101 concepts, in our
second experiment, we obtain a top 3 average precision for 17 out of 24 topics and
top performance for 5 topics on a 85 hours international news video archive. The
key insight resulting from these experiments is that from all factors that play a role
in interactive retrieval, a large lexicon of semantic concepts matters most. This is
best demonstrated when we compare our lexicon-driven approach against the 2004
and 2005 NIST TRECVID benchmark. In both cases our MediaMill system obtains
superior performance relative to a dozen other state-of-the-art video search engines,
which still adhere to traditional video retrieval paradigms.

Retrieval results with the proposed paradigm range from ‘poor’ for topics like
“find street scenes with pedestrians and vehicles in motion” to excellent for non-
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trivial topics like “find two visible tennis players on the court”. However, under
all topics the performance is good relative to other systems and best overall. Fluc-
tuating performance of multimedia retrieval technology is unacceptable for highly
demanding applications, such as military intelligence. However, when used in a less
demanding commercial search scenario, the proposed paradigm provides already
valuable semantic information.

Keyterms in this chapter

Query-by-super-concept, query-by-direct-concept, query-by-sub-concept, query-by-visual-
example, query-by-textual-keyword, query result combination, mean average preci-
sion
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Salminen, Suvi Kettula, and Miikka Junnila. A cultural community portal for pub-
lishing museum collections on the semantic web. In ECAI Workshop on Application
of Semantic Web Technologies to Web Communities, Valencia, Spain, 2004.

[75] I. Ide, K. Yamamoto, and H. Tanaka. Automatic video indexing based on shot
classification. In First Int’l Conf. Advanced Multimedia Content Processing, volume
1554 of LNCS, pages 87–102, Osaka, Japan, 1999. Springer-Verlag.

[76] A.K. Jain, R.P.W. Duin, and J. Mao. Statistical pattern recognition: A review.
IEEE Trans. Pattern Anal. Machine Intell., 22(1):4–37, 2000.

[77] R. Jain and A. Hampapur. Metadata in video databases. ACM SIGMOD, 23(4):27–
33, 1994.

[78] P.J. Jang and A.G. Hauptmann. Learning to recognize speech by watching television.
IEEE Intelligent Systems, 14(5):51–58, 1999.

[79] R.S. Jasinschi, N. Dimitrova, T. McGee, L. Agnihotri, J. Zimmerman, and D. Li.
Integrated multimedia processing for topic segmentation and classification. In IEEE
Int’l Conf. Image Processing, pages 366–369, Thessaloniki, Greece, 2001.

[80] O. Javed, Z. Rasheed, and M. Shah. A framework for segmentation of talk & game
shows. In IEEE Int’l Conf. Computer Vision, Vancouver, Canada, 2001.

[81] T. Kato, T. Kurita, N. Otsu, and K. Hirata. A sketch retrieval method for full color
image database – query by visual example. In Proc. Int’l Conf. Pattern Recognition,
volume 1, pages 530–533, The Hague, The Netherlands, 1992.

[82] J.R. Kender and B.L. Yeo. Video scene segmentation via continuous video coherence.
In CVPR’98, Santa Barbara, CA. IEEE, IEEE, June 1998.

[83] K. Knight and D. Marcu. Machine translation in the year 2004. In IEEE Int’l Conf.
Acoust., Speech, Signal Processing, volume 5, pages 965–968, Philadelphia, USA,
2005.

[84] V. Kobla, D. DeMenthon, and D. Doermann. Identification of sports videos us-
ing replay, text, and camera motion features. In SPIE Conference on Storage and
Retrieval for Media Databases, volume 3972, pages 332–343, 2000.



98 Bibliography

[85] R. Kohavi, D. Sommerfield, and J. Dougherty. Data mining using MLC++:
A machine learning library in C++. In Proceedings of the 8th Interna-
tional Conference on Tools with Artificial Intelligence., pages 234–245, 1996.
http://www.sgi.com/Technology/mlc.

[86] Y.-M. Kwon, C.-J. Song, and I.-J. Kim. A new approach for high level video struc-
turing. In IEEE International Conference on Multimedia and Expo, volume 2, pages
773–776, 2000.

[87] H. Lee and A.F. Smeaton. Designing the user-interface for the F́ıschlár digital video
library. J. Digital Inform., 2(4), 2002.

[88] J.H. Lee. Analysis of multiple evidence combination. In Proc. ACM SIGIR, pages
267–276, 1997.

[89] S.-Y. Lee, S.-T. Lee, and D.-Y. Chen. Automatic Video Summary and Description,
volume 1929 of Lecture Notes in Computer Science, pages 37–48. Springer-Verlag,
Berlin, 2000.

[90] D. Li, I.K. Sethi, N. Dimitrova, and T. McGee. Classification of general audio data
for content-based retrieval. Pattern Recognition Letters, 22(5):533–544, 2001.

[91] H. Li, D. Doermann, and O. Kia. Automatic text detection and tracking in digital
video. IEEE Trans. Image Processing, 9(1):147–156, 2000.

[92] R. Lienhart, C. Kuhmünch, and W. Effelsberg. On the detection and recognition of
television commercials. In IEEE Conference on Multimedia Computing and Systems,
pages 509–516, Ottawa, Canada, 1997.

[93] R. Lienhart, S. Pfeiffer, and W. Effelsberg. Scene determination based on video
and audio features. In Proc. of the 6th IEEE Int. Conf. on Multimedia Systems,
volume 1, pages 685–690, 1999.

[94] C.-Y. Lin, B.L. Tseng, and J.R. Smith. Video collaborative annotation forum: Es-
tablishing ground-truth labels on large multimedia datasets. In Proc. TRECVID
Workshop, NIST Special Publication, Gaithersburg, USA, 2003.

[95] T. Lin and H.-J. Zhang. Automatic video scene extraction by shot grouping. In
Proceedings of ICPR ’00, Barcelona, Spain, 2000.

[96] G. Lu. Indexing and retrieval of audio: a survey. Multimedia Tools and Applications,
15:269–290, 2001.

[97] W.Y. Ma and B.S. Manjunath. NeTra: a toolbox for navigating large image
databases. Multimedia Syst., 7(3):184–198, 1999.

[98] C.D. Manning and H. Schütze. Foundations of Statistical Natural Language Process-
ing. The MIT Press, Cambridge, USA, 1999.

[99] J.M. Martinez, R. Koenen, and F. Pereira. MPEG-7 the generic multimedia content
description standard, part 1. IEEE Multimedia, april-june 2002.

[100] K. Minami, A. Akutsu, H. Hamada, and Y. Tomomura. Video handling with music
and speech detection. IEEE Multimedia, 5(3):17–25, 1998.

[101] H. Miyamori and S. Iisaku. Video annotation for content-based retrieval using human
behavior analysis and domain knowledge. In IEEE Int’l Conf. Automatic Face and
Gesture Recognition, pages 26–30, Grenoble, France, 2000.

[102] A. Mohan, C. Papageorgiou, and T. Poggio. Example-based object detection in
images by components. IEEE Trans. Pattern Anal. Machine Intell., 23(4):349–361,
2001.



Bibliography 99

[103] S. Moncrieff, C. Dorai, and S. Venkatesh. Detecting indexical signs in film audio for
scene interpretation. In IEEE Int’l Conf. Multimedia Expo, pages 1192–1195, Tokyo,
Japan, 2001.

[104] F. Nack and A.T. Lindsay. Everything you always wanted to know about MPEG-7:
Part 1. IEEE Multimedia, 6(3):65–77, 1999.

[105] F. Nack and A.T. Lindsay. Everything you always wanted to know about MPEG-7:
Part 2. IEEE Multimedia, 6(4):64–73, 1999.

[106] J. Nam, M. Alghoniemy, and A.H. Tewfik. Audio-visual content-based violent scene
characterization. In IEEE Int’l Conf. Image Processing, volume 1, pages 353–357,
Chicago, USA, 1998.

[107] J. Nam, A. Enis Cetin, and A.H. Tewfik. Speaker identification and video analysis
for hierarchical video shot classification. In IEEE Int’l Conf. Image Processing,
volume 2, pages 550–553, Washington DC, USA, 1997.

[108] M.R. Naphade. On supervision and statistical learning for semantic multimedia
analysis. J. Visual Commun. Image Representation, 15(3):348–369, 2004.

[109] M.R. Naphade and T.S. Huang. A probabilistic framework for semantic video in-
dexing, filtering, and retrieval. IEEE Trans. Multimedia, 3(1):141–151, 2001.

[110] M.R. Naphade and T.S. Huang. Extracting semantics from audiovisual content: The
final frontier in multimedia retrieval. IEEE Trans. Neural Networks, 13(4):793–810,
2002.

[111] M.R. Naphade, I.V. Kozintsev, and T.S. Huang. A factor graph framework for
semantic video indexing. IEEE Trans. Circuits and Systems for Video Technology,
12(1):40–52, 2002.

[112] M.R. Naphade, J.R. Smith, J. Tesic, S.-F. Chang, W. Hsu, L. Kennedy, A. Haupt-
mann, and J. Curtis. Large-scale concept ontology for multimedia. IEEE Multimedia,
13(3):86–91, 2006.

[113] H.T. Nguyen, M. Worring, and A. Dev. Detection of moving objects in video using
a robust motion similarity measure. IEEE Trans. Image Processing, 9(1):137–141,
2000.

[114] L. Nigay and J. Coutaz. A design space for multimodal systems: concurrent pro-
cessing and data fusion. In INTERCHI’93 Proceedings, pages 172–178, Amsterdam,
The Netherlands, 1993.

[115] D.W. Oard. The state of the art in text filtering. User Modeling and User-Adapted
Interaction, 7(3):141–178, 1997.

[116] H. Pan, P. Van Beek, and M.I. Sezan. Detection of slow-motion replay segments in
sports video for highlights generation. In IEEE Int’l Conf. Acoust., Speech, Signal
Processing, 2001.

[117] N.V. Patel and I.K. Sethi. Audio characterization for video indexing. In Proceedings
SPIE on Storage and Retrieval for Still Image and Video Databases, volume 2670,
pages 373–384, San Jose, USA, 1996.

[118] N.V. Patel and I.K. Sethi. Video classification using speaker identification. In IS&T
SPIE, Proceedings: Storage and Retrieval for Image and Video Databases IV, San
Jose, USA, 1997.

[119] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference. Morgan Kaufmann, San Mateo, USA, 1988.



100 Bibliography

[120] A.K. Peker, A.A. Alatan, and A.N. Akansu. Low-level motion activity features for
semantic characterization of video. In IEEE Int’l Conf. Multimedia Expo, New York
City, USA, 2000.

[121] A. Pentland, B. Moghaddam, and T. Starner. View-based and modular eigenspaces
for face recognition. In IEEE Int’l Conf. Computer Vision and Pattern Recognition,
Seattle, USA, 1994.

[122] A. Pentland, R.W. Picard, and S. Sclaroff. Photobook: Content-based manipulation
of image databases. Int’l J. Comput. Vision, 18(3):233–254, 1996.

[123] C. Petersohn. Fraunhofer HHI at TRECVID 2004: Shot boundary detection system.
In Proc. TRECVID Workshop, Gaithersburg, USA, 2004.

[124] S. Pfeiffer, S. Fischer, and W. Effelsberg. Automatic audio content analysis. In ACM
Multimedia, pages 21–30, Boston, USA, 1996.

[125] S. Pfeiffer, R. Lienhart, and W. Effelsberg. Scene determination based on video and
audio features. Multimedia Tools and Applications, 15(1):59–81, 2001.

[126] T.V. Pham and M. Worring. Face detection methods: A critical evaluation. Tech-
nical Report 2000-11, Intelligent Sensory Information Systems, University of Ams-
terdam, 2000.

[127] J.C. Platt. Probabilities for SV machines. In A.J. Smola, P.L. Bartlett, B. Schölkopf,
and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 61–74. MIT
Press, 2000.

[128] Praja, December 2001. http://www.praja.com.
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