Semantic Image Analysis Using a Learning Approach and **Spatial Context**

G. Th. Papadopoulos^{1,2}, V. Mezaris², S. Dasiopoulou^{1,2} and I. Kompatsiaris²

¹Informatics and Telematics Institute Centre for Research and Technology Hellas

² Aristotle University Of Thessaloniki

1st International Conference on Semantic and Digital Media Technologies (SAMT 2006), December 6-8, Athens, Greece

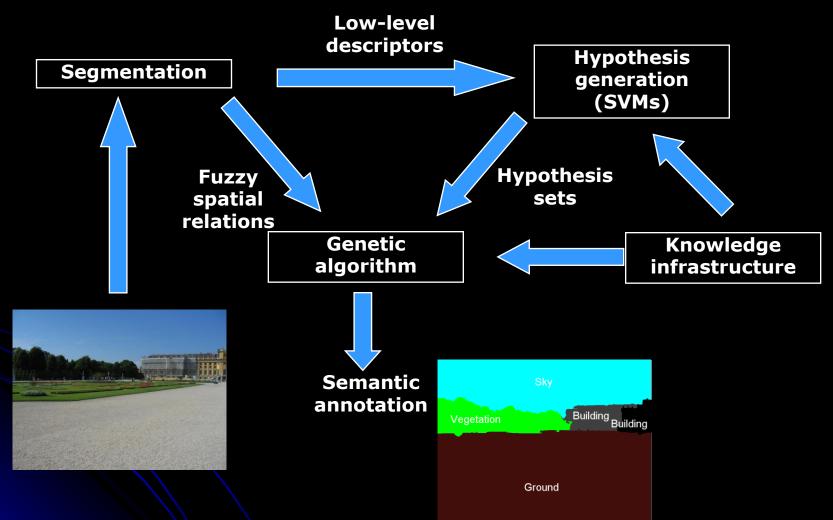
Outline

Introduction

- problem definition
- Knowledge-assisted analysis
- Proposed approach overview
- Knowledge Infrastructure
- Knowledge-assisted analysis approach
 - Segmentation and feature extraction
 - Support vector machines
 - Spatial relation extraction
 - Genetic algorithm
- Experimental Results
- Conclusions

Introduction

- Enormous amount of digital images available on the internet and professional or personal collections, more digital content created at astonishing rates
- Image manipulation (search, retrieval, etc.)
 - Has become everyday practice
 - Is not yet efficient enough
 - Largely based on keywords
 - Often requires manual effort for annotation
 - Can greatly benefit from taking into account the semantics of image content
- Problem definition: understanding the image content
 - Knowledge-assisted image analysis techniques have emerged


Introduction

- Knowledge-assisted image analysis
 - Two main categories, depending on the adopted knowledge acquisition and representation process:
 - Implicit knowledge:
 - Machine learning methods (SVMs, GAs, HMMs, etc)
 - Robust for discovering complex relationships and interdependencies
 - Can handle problems of high-dimensionality
 - Explicit knowledge:

- Model-based approaches (ontologies, rules, etc)
- Use explicitly defined facts, models, relations and rules
- Support "visual" inference in the specified context
- Proposed approach combines implicit and explicit knowledge

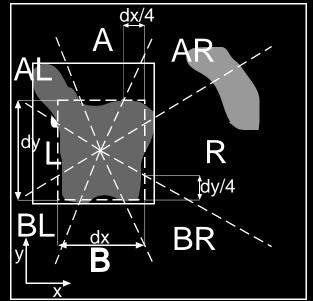
Proposed approach - overview

Aristotle University of Thessaloniki

Knowledge Infrastructure

 Explicit knowledge represented in the form of a domain ontology

Ontologies


- Tools for defining explicit and machineprocessable semantics
 - Support automated inference
- **Proposed domain ontology includes**
 - objects of interest (concepts)
 - spatial context

Knowledge Infrastructure

Objects of interest

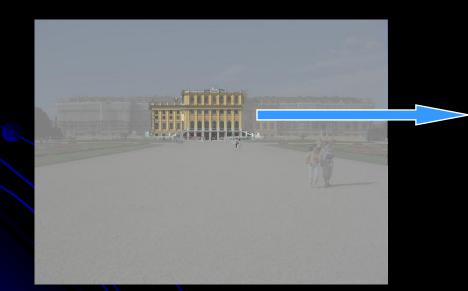
- E.g. *Sky*, Water, Ground, etc.
- Defined by expert
- Matching objects with regions based on implicit knowledge (SVMs) acquired by training
- Spatial context
 - Based on 8 fuzzy spatial relations, defined by expert
 - Computed with the help of reduced region bounding box and cone-shaped areas
 - Learnt by training

A above B below L left R right AR above-right AL above-left BR below-right BL below-left

Segmentation and feature extraction

Segmentation

 Using extension of the Recursive Shortest Spanning Tree (RSST) algorithm


Fast

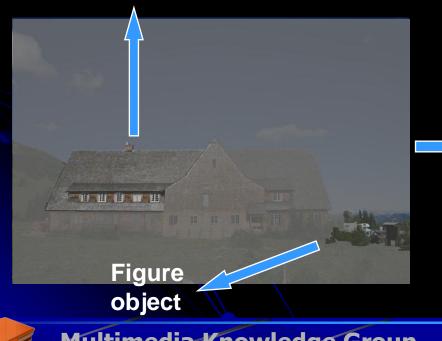
- Produces accurate region boundaries
- Forms regions, does not associate them with objects
- Descriptor extraction
 - MPEG-7 descriptors
 - Scalable Color
 - Edge Histogram
 - Region Shape
 - Homogeneous Texture
 - More descriptors could be employed to improve performance

Support vector machines

- Learning algorithm suitable for high-dimensional data
- Proposed approach
 - One SVM trained for every object, using low level descriptors
 - Each SVM estimates degree of confidence for region-object matching
 - Each region evaluated by all trained SVMs hypothesis set created

Segment's hypothesis set

Sky: 0.11 Water: 0.09 Building: 0.89 Rock: 0.51 Ground: 0.31 Vegetation: 0.35


Multimedia Knowledge Group Informatics and Telematics Institute

Spatial relation extraction

- Using 8 fuzzy spatial relations defined in the ontology
- Proposed approach
 - All relations are evaluated for each pair of regions

Ground object

Relative position of Figure object with respect to Ground object

Right: 0.39 Above-right: 0 Above: 0 Above-left: 0 Left: 0 Below-left: 0 Below: 0 Below-right: 0.61

Multimedia Knowledge Group Informatics and Telematics Institute

Genetic Algorithm

- Appropriate for solving global optimization problems
- Proposed approach
 - Region-object association with respect to spatial context is defined as an optimization problem
 - Each chromosome represents a possible image interpretation
 - Each gene of a chromosome represents association of a region with a object
 - Fitness function takes into account
 - Hypothesis sets generated by SVMs, i.e. region-object matching based on visual descriptors
 - Spatial context, i.e consistency of spatial relations between regions in the image with relations stored in the ontology for the objects

Genetic Algorithm

• Fitness function

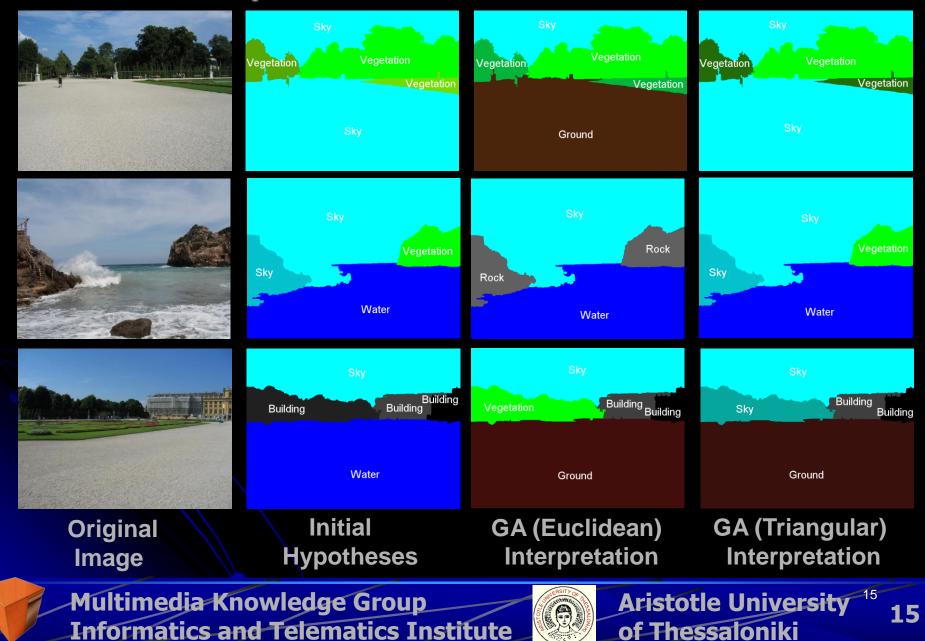
- Parameter λ adjusts weight of spatial relations consistency
- Visual similarity based term calculated as normalized sum of degrees of confidence in hypothesis sets
- Two approaches for evaluating the consistency of spatial relations
 - Using a Euclidean distance-based function
 - Using a set of Triangular fuzzy membership functions

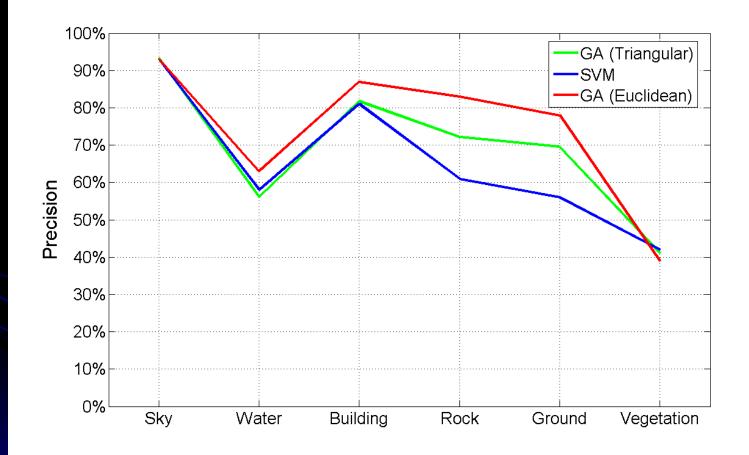
Multimedia Knowledge Group Informatics and Telematics Institute

Genetic Algorithm

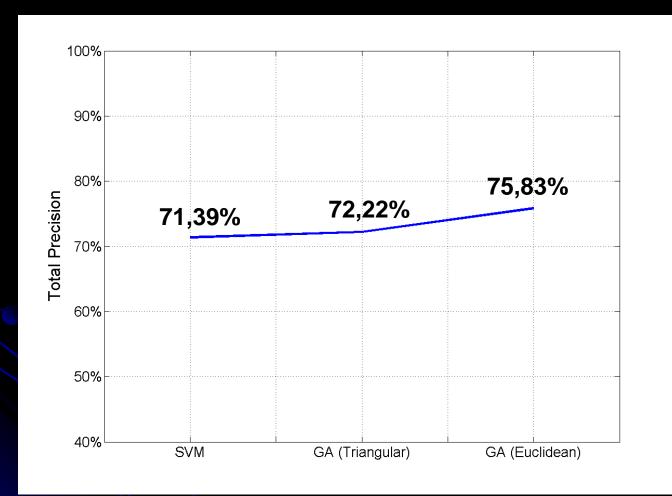
Implementation

- A population of 200 individual chromosomes is initialized with respect to the initial hypotheses
- Selection, crossover, mutation used for evolution of population
- GA termination condition
 - the diversity of the population becomes equal to/less than 0.001, or
 - the number of generations exceeds 50





- Domain of experimentation: Outdoor Images
- 6 Supported concepts:
 - Sky
 - Water
 - Ground
 - Building
 - Vegetation
 - Rock
- 400 testing images



Multimedia Knowledge Group Informatics and Telematics Institute

Aristotle University ¹⁶ of Thessaloniki

Multimedia Knowledge Group Informatics and Telematics Institute

Aristotle University ¹⁷ of Thessaloniki

Conclusions & Future Work

Conclusions

- Combination of explicit and implicit knowledge efficient and effective
- Formulation of semantic image analysis as an optimization problem produces promising results
- Exploitation of domain-specific spatial-related contextual information improves object detection
- Euclidean distance based evaluation of spatial constraints produces better results than using a set of triangular fuzzy membership functions

• Future work

- Examine new approaches for evaluating spatial constraints
- Extend the proposed framework to support more concepts and multiple domains, contextual information

Multimedia Knowledge Group Informatics and Telematics Institute

