Image matching and visual search Local features and geometry

Yannis Avrithis

National Technical University of Athens Image, Video and Multimedia Systems Laboratory Image and Video Analysis Group

Bordeaux, March 2011

Outline

Visual search, local features and bag-of-words

- 2 Local features based on distance maps
- Geometry indexing: feature map hashing
- 4 Relaxed spatial matching and re-ranking
- 5 Photo collections: view clustering and scene maps
- 6 Location and landmark recognition
- Implementation: ivl library

Outline

Visual search, local features and bag-of-words

- 2 Local features based on distance maps
- 3 Geometry indexing: feature map hashing
- Relaxed spatial matching and re-ranking
- 6 Photo collections: view clustering and scene maps
- 6 Location and landmark recognition
- 🕜 Implementation: ivl library

Matching local feature points

[Scott and Longuet-Higgins 1991]

- given two sets of points $a_i, i = 1, ..., m$ and $b_j, j = 1, ..., n$ on the same plane, let d_{ij} be the distance between a_i and b_j
- following earlier theories of Ullman and Marr, the problem is to associate points a_i and b_j in a one-to-one correspondence such that the sum of squared distances between corresponding points is minimized

A spectral approach

() construct the $m \times n$ proximity matrix G with elements

$$g_{ij} = \exp(-d_{ij}^2/2\sigma^2)$$

 ${\it 20}$ perform singular value decomposition of G

$$G = USV^{\mathrm{T}}$$

where U,V are orthogonal matrices of dimension m,n and S is a non-negative diagonal $m\times n$ matrix

 \bigcirc replace each diagonal element s_{ij} of S by 1 and reconstruct

$$P = UEV^{\mathrm{T}}$$

G finally, associate points a_i and b_j if element p_{ij} of P is the greatest element in its row and its column

A spectral approach

Matching discriminative local features [Lowe 1999]

◆□ > ◆□ > ◆三 > ◆三 > ・三 > シへの

Matching discriminative local features [Lowe 1999]

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - わへぐ

Matching discriminative local features [Lowe 1999]

normalized features

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Forget about geometry: bag-of-words [Sivic and Zisserman 2003]

◆□> ◆圖> ◆国> ◆国> 「国」の文化

15

◆□ > ◆□ > ◆三 > ◆三 > ・三 > シへの

◆□> ◆圖> ◆国> ◆国> 「国」のへで

images

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ / 圖 / のへで

images

◆□ > ◆□ > ◆三 > ◆三 > ○ = ○ ○ ○ ○

images

images

▲ □ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● ● ● ●

original images

イロト イ団ト イヨト イヨト 三臣

local features

<ロト < 四ト < 三ト < 三ト = 三三

tentative correspondences

RANSAC inliers

[Fischler and Bolles 1981]

problem: fit line to data

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

[Fischler and Bolles 1981]

◆□> ◆圖> ◆国> ◆国> 「国」のへで

[Fischler and Bolles 1981]

solution: choose 2 random points ...

▲□▶ ▲圖▶ ▲注▶ ▲注▶ … 注: 釣A@

[Fischler and Bolles 1981]

... fit line to them ...

[Fischler and Bolles 1981]

... classify remaining points to inliers ...

[Fischler and Bolles 1981]

... and outliers

[Fischler and Bolles 1981]

repeat ...

[Fischler and Bolles 1981]

... and repeat

[Fischler and Bolles 1981]

finally: maximum inliers

Outline

(日)、(型)、(E)、(E)、(E)、(O)()

Visual search, local features and bag-of-words

2 Local features based on distance maps

- 3 Geometry indexing: feature map hashing
- Relaxed spatial matching and re-ranking
- 6 Photo collections: view clustering and scene maps
- 6 Location and landmark recognition
- 🕜 Implementation: ivl library

Edge-based feature detection

[Rapantzikos and Avrithis 2010]

- Blob-like regions starting from single-scale edges
- local maxima of Euclidean distance transform expected to lie in region interior or close to ridges
- greedily merge maxima guided by edge strength, to reproduce the effect of smoothing in scale-space evolution

(日)、(型)、(E)、(E)、(E)、(O)()

• regions of arbitrary shape and scale, unaffected by spurious or disconnected edges
Original image

Binary edge map

Binary distance map

Distance map + local maxima

Delaunay triangulation

Convex hulls of selected regions

◆□> ◆圖> ◆国> ◆国> 「国」のへで

Original image + features

A weighted approach

[Avrithis and Rapantzikos 2011, unpublished]

- Weighted distance map directly from image gradient
- Weighted medial capturing region structure and topology
- Very simple selection criterion: is a region well-enclosed by boundaries?
- Again, arbitrary shape and scale, without explicit scale-space construction

• Affordable speed—1s for an 1Mpixel image, on average

Original image

Weighted distance map and medial

◆□ → ◆□ → ◆ 三 → ◆ 三 → の へ ()

Region/boundary duality

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …の��

Original image + features

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 → ④�?

The challenge of shape

The challenge of shape

◆□> <圖> < E> < E> E のQ@

The challenge of scale

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三回 のへぐ

The challenge of scale

The challenge of scale

Viewpoint: graffiti scene

Viewpoint: graffiti scene

Viewpoint: graffiti scene

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣��

Scale + rotation: boat scene

Scale + rotation: boat scene

Scale + rotation: boat scene

Blur: bikes scene

◆□> <圖> < E> < E> E のQ@

Blur: bikes scene

Blur: bikes scene

Texture + blur: trees scene

Texture + blur: trees scene

Texture + blur: trees scene

◆□ > ◆□ > ◆目 > ◆目 > ○ ● ○ ○ ●

Viewpoint: wall scene

Viewpoint: wall scene

Viewpoint: wall scene

◆□ > ◆□ > ◆目 > ◆目 > ○ ● ○ ○ ●

Outline

(日)、(型)、(E)、(E)、(E)、(O)()

Visual search, local features and bag-of-words

- 2 Local features based on distance maps
- **3** Geometry indexing: feature map hashing
- 4 Relaxed spatial matching and re-ranking
- 6 Photo collections: view clustering and scene maps
- 6 Location and landmark recognition
- 🕜 Implementation: ivl library

Weak geometric consistency (WGC) [Jegou et al. 2008]

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�@

Weak geometric consistency

- when an image undergoes rotation or scaling, the orientation and scale of local features is consistently modified
- quantize orientation and scale differences between feature pairs
- maintain several scores for each image, one for each difference bin
- this is not enough to recover a full transformation, but does improve ranking

(日)、(型)、(E)、(E)、(E)、(O)()

Feature map hashing [Avrithis et al. 2010]

- estimate image alignment via single correspondence
- for each feature construct a feature map encoding normalized positions and appearance of all remaining features
- represent an image by a collection of such feature maps
- RANSAC-like matching is reduced to a number of set intersections

(日)、(型)、(E)、(E)、(E)、(O)()
Local patches

- each local feature is associated with an image patch L, which also represents an affine transform
- the rectified patch \mathcal{R}_0 is transformed to the patch via L
- the patch is rectified back to \mathcal{R}_0 via L^{-1}

◆□> ◆□> ◆三> ◆三> ● 三 のへの

Fast spatial matching (FSM) [Philbin et al. 2007]

- single patch correspondence $L \leftrightarrow R$
- the transformation from one patch to the other is RL^{-1}
- each correspondence provides a transformation hypothesis
- transformation hypotheses are now O(n); we can compute them all

Feature set rectification

- rectify both feature sets by transformations L^{-1} and $R^{-1},$ then compare
- rectify the entire set of features in advance

イロト 不得 トイヨト イヨト ヨー うへつ

Feature set rectification

- rectify both feature sets by transformations L^{-1} and $R^{-1},$ then compare
- rectify the entire set of features in advance

Spatial quantization

- encode positions in polar coordinates (ρ, θ)
- quantize positions in the rectified frames
- define spatial codebook $\mathcal{U} \subseteq \mathbb{R}^2$ with $|\mathcal{U}| = k_{
 ho} imes k_{ heta} = k_u$ bins

Spatial quantization

- encode positions in polar coordinates (
 ho, heta)
- quantize positions in the rectified frames
- define spatial codebook $\mathcal{U} \subseteq \mathbb{R}^2$ with $|\mathcal{U}| = k_{
 ho} imes k_{ heta} = k_u$ bins

- represent an image by a local feature set P
- define the joint (visual-spatial) codebook $\mathcal{W} = \mathcal{V} \times \mathcal{U}$ with $|\mathcal{W}| = k_v k_u = k$ bins
- to construct a feature map we rectify a feature set and assign rectified features to spatial bins and visual words

$$f_P(\hat{x}) = h_{\mathcal{W}} (P^{(\hat{x})})$$

- there is a different map for each origin; represent each image with a feature map collection ${\cal F}_{\cal P}$

- represent an image by a local feature set P
- define the joint (visual-spatial) codebook $\mathcal{W} = \mathcal{V} \times \mathcal{U}$ with $|\mathcal{W}| = k_v k_u = k$ bins
- to construct a feature map we rectify a feature set and assign rectified features to spatial bins and visual words

$$\longrightarrow f_P(\hat{x}) = h_{\mathcal{W}} \ (P^{(\hat{x})})$$

feature map of P wrt origin \hat{x}

- there is a different map for each origin; represent each image with a feature map collection ${\cal F}_{\cal P}$

- represent an image by a local feature set P
- define the joint (visual-spatial) codebook $\mathcal{W} = \mathcal{V} \times \mathcal{U}$ with $|\mathcal{W}| = k_v k_u = k$ bins
- to construct a feature map we rectify a feature set and assign rectified features to spatial bins and visual words

$$f_P(\hat{x}) = h_{\mathcal{W}} (P^{(\hat{x})})$$
feature map of P wrt origin \hat{x}
rectified feature set P wrt origin \hat{x}

- there is a different map for each origin; represent each image with a feature map collection ${\cal F}_{\cal P}$

- represent an image by a local feature set P
- define the joint (visual-spatial) codebook $\mathcal{W} = \mathcal{V} \times \mathcal{U}$ with $|\mathcal{W}| = k_v k_u = k$ bins
- to construct a feature map we rectify a feature set and assign rectified features to spatial bins and visual words

- there is a different map for each origin; represent each image with a feature map collection ${\cal F}_{\cal P}$

Feature maps—example

 well aligned feature sets are likely to have maps with a high degree of overlap

◆□▶ ◆□▶ ◆目▶ ◆目▶ ○目 ○のへで

Feature maps—example

 well aligned feature sets are likely to have maps with a high degree of overlap

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

 $\mathcal{O} \mathcal{O} \mathcal{O}$

 $\mathcal{O} \mathcal{O} \mathcal{O}$

for all visual words that P, Q have in common

୬ଏ୯

Feature map similarity—example

fast spatial matching [Philbin et al. 2007] (35 inliers)

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

Feature map similarity—example

feature map similarity (32 inliers)

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Towards indexing

- FMS is a fast way of matching 2 images, but still not enough for indexing
- a feature map is an extremely sparse histogram; bin count typically takes values in $\{0,1\}$
- each feature map f is represented by set $\bar{f} \subset \mathcal{W}$ of non-empty bins

(日)、(型)、(E)、(E)、(E)、(O)()

Min-wise independent permutations

a.k.a. min-hashing [Broder 2000]

- feature space $\mathbb{F} = \mathcal{P}(\mathcal{W})$, the powerset of \mathcal{W}
- $h: \mathbb{F} \to \mathcal{W}$, hash function mapping objects back to \mathcal{W}
- $\pi: \mathbb{F} \to \mathbb{F}$, a random permutation
- given a feature map $\bar{f}\subset\mathcal{W},$ compute a hash value $h(\bar{f})=\min\{\pi(\bar{f})\}$
- two features maps are hashed to the same value with probability equal to their resemblance or Jaccard similarity coefficient

$$\Pr[h(\bar{f}) = h(\bar{g})] = \frac{|\bar{f} \cap \bar{g}|}{|\bar{f} \cup \bar{g}|} = J(\bar{f}, \bar{g})$$

a	b	c	d	e	f	$\{a, b, c\}$	$\{b, c, d\}$	$\{a, e, f\}$
	ре	rmu	tatio	ons		hash values		
3	6	2	5	4	1	2	2	1
1	2	6	3	5	4	1	2	1
3	2	1	6	4	5	1	1	3
4	3	5	6	1	2	3	3	1

a	b	c	d	e	f	$\{a, b, c\}$	$\{b, c, d\}$	$\{a, e, f\}$
	ре	rmu	tatio	ons		hash values		
3	6	2	5	4	1	2	2	1
1	2	6	3	5	4	1	2	1
3	2	1	6	4	5	1	1	3
4	3	5	6	1	2	3	3	1

a	b	c	d	e	f	$\{a, b, c\}$	$\{b, c, d\}$	$\{a, e, f\}$
	ре	rmu	tatio	ons		hash values		
3	6	2	5	4	1	2	2	1
1	2	6	3	5	4	1	2	1
3	2	1	6	4	5	1	1	3
4	3	5	6	1	2	3	3	1

a	b	c	d	e	f	$\{a, b, c\}$	$\{b, c, d\}$	$\{a, e, f\}$
	ре	rmu	tatio	ons		hash values		
3	6	2	5	4	1	2	2	1
1	2	6	3	5	4	1	2	1
3	2	1	6	4	5	1	1	3
4	3	5	6	1	2	3	3	1

a	b	c	d	e	f	$\{a, b, c\}$	$\{b, c, d\}$	$\{a, e, f\}$
	ре	rmu	tatio	ons		hash values		
3	6	2	5	4	1	2	2	1
1	2	6	3	5	4	1	2	1
3	2	1	6	4	5	1	1	3
4	3	5	6	1	2	3	3	1

Map sketch

- construct a set $\Pi = \{\pi_i : i = 1, \dots, m\}$ of m independent random permutations
- represent each feature map $ar{f}$ by map sketch $\mathbf{f} \in \mathcal{W}^m$,

$$\mathbf{f} = \mathbf{f}(\bar{f}) = [\min\{\pi_1(\bar{f})\}, \dots, \min\{\pi_m(\bar{f})\}]^{\mathrm{T}}$$

- sketch similarity: count number of elements that sketches $\mathbf{f},\,\mathbf{g}$ have in common

$$s_K(\mathbf{f}, \mathbf{g}) = m - \|\mathbf{f} - \mathbf{g}\|_0$$

Feature map hashing (FMH)

- map sketch collection \mathbf{F} : set of all map sketches \mathbf{f} of an image
- image similarity reduces to sketch similarity

$$S_M(\mathbf{F}, \mathbf{G}) = \max_{\mathbf{f} \in \mathbf{F}} \max_{\mathbf{g} \in \mathbf{G}} s_K(\mathbf{f}, \mathbf{g})$$

 collisions may appear for several pairs of maps; sum all sketch similarities instead of keeping the best one

$$S_K(\mathbf{F}, \mathbf{G}) = \sum_{\mathbf{f} \in \mathbf{F}} \sum_{\mathbf{g} \in \mathbf{G}} s_K(\mathbf{f}, \mathbf{g})$$

constrain sketch origins to those mapping uniquely to the same visual words

Multiple matching pairs of feature maps

Multiple matching pairs of feature maps

<ロト < 四ト < 三ト < 三ト = 三三

Multiple matching pairs of feature maps

メロト メポト メヨト メヨト 二百

Multiple matching pairs of feature maps

メロト メポト メヨト メヨト 二百

Multiple matching pairs of feature maps

メロト メポト メヨト メヨト 二百

Multiple matching pairs of feature maps

<ロト < 四ト < 三ト < 三ト = 三三

Indexing

index construction

- construct inverted file of triplets (\hat{v}, w, π) (origin, hash value, permutation)
- memory requirements $5\times$ a typical baseline system

query

- retrieve images by triplets (\hat{v}, w, π) of query image
- re-estimate transformation parameters using LO-RANSAC
- re-ranking is an order of magnitude faster than FastSM, because an initial estimate is already available

European Cities dataset 50K (EC50K)

- 778 Annotated images
- 20 groups of photos
- 5 queries from each group

Publicly available: http://image.ntua.gr/iva/datasets/ec50k
European Cities dataset 50K (EC50K)

- 778 Annotated images
- 20 groups of photos
- 5 gueries from each group
- 50,000 distractor images

Publicly available: http://image.ntua.gr/iva/datasets/ec50k

Results EC50K

<□> <圖> < E> < E> E のQ@

Outline

Visual search, local features and bag-of-words

- 2 Local features based on distance maps
- 3 Geometry indexing: feature map hashing
- Relaxed spatial matching and re-ranking
- 6 Photo collections: view clustering and scene maps
- 6 Location and landmark recognition
- 🕜 Implementation: ivl library

Relaxed spatial matching

[Tolias and Avrithis 2011, unpublished]

- invariant to similarity transformations
- flexible, allowing non-rigid motion and multiple matching surfaces or objects
- imposes one-to-one mapping
- non-iterative, and linear in the number of correspondences
- in a given query time, can re-rank one order of magnitude more images than the state of the art
- needs less than one millisecond to match a pair of images, on average

fast spatial matching

relaxed matching

fast spatial matching

relaxed matching

fast spatial matching

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - わへで

relaxed matching

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

fast spatial matching

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

relaxed matching

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへで

fast spatial matching

<□> <0>

relaxed matching

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへで

Relaxed matching—statistics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

mAP

Relaxed matching—timing

average time to filter and rerank (s)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 | のへで

mAP

Outline

Visual search, local features and bag-of-words

- 2 Local features based on distance maps
- 3 Geometry indexing: feature map hashing
- 4 Relaxed spatial matching and re-ranking
- **5** Photo collections: view clustering and scene maps
- 6 Location and landmark recognition
- 🕜 Implementation: ivl library

Community photo collections

clustering / landmark recognition

- focus on popular subsets
- applications: browsing, 3D reconstruction

[Crandall et al. 2009]

Community photo collections

retrieval / location recognition

- include all images, has not yet scaled enough
- applications: automatic geo-tagging, camera pose estimation

PEstimated Location Similar Image, Incorrectly geo-tagged Unavailable

Suggested tags: Sint Antoniesbreestraat, Zwanenburgwal, Amsterdam Frequent user tags: Anthoniesluis, sluijswacht, krom, stare, Skirt

View clustering [Avrithis et al. 2010]

- identify images that potentially depict views of the same scene
- geo clustering: according to location
- visual clustering: according to visual similarity

use sub-linear indexing in the clustering process

Kernel vector quantization (KVQ) [Tipping and Schölkopf 2001]

- input dataset: $D \subseteq X$, where (X, d) is a metric space
- codebook: a small subset Q(D) such that distortion is minimized
- for codebook vector $x \in Q(D)$, cluster C(x) contains all points $y \in D$ within distance r:

$$C(x) = \{y \in D: d(x,y) < r\}$$

- sparse solution by solving a linear programming problem
- pairwise distance matrix: quadratic in the dataset size |D|

Kernel vector quantization

properties

- codebook vectors are points of the original dataset: Q(D) ⊆ D
- distortion upper bounded by r: for all $x \in Q(D)$

$$\max_{y \in C(x)} d(x, y) < r$$

the cluster collection

 $\mathcal{C}(D) = \{C(x): x \in Q(D)\}$

is a cover for D

clusters are overlapping

イロト 不得 トイヨト イヨト ヨー うへつ

Geo clustering

- given set of photos $P \subseteq \mathcal{P}$ in metric space (\mathcal{P}, d_g)
- each photo $p \in P$ is represented by tuple (ℓ_p, F_p) (location, features)
- metric d_g : the great circle distance
- construct codebook $Q_g(P)$ by KVQ of P with scale parameter r_g
- maximum distortion: photos taken *e.g.* further than 2km apart are not likely to depict the same scene

Visual clustering

visual similarity measure

• $I(F_p, F_q)$: number of inliers between visual feature sets F_p, F_q of photos p, q respectively

Visual clustering

• for each geo-cluster G, construct codebook $Q_v(G)$ by KVQ in space (\mathcal{P},d_v) with scale parameter r_v

- metric $d_v(p,q)$ and scale parameter r_v are expressed in terms of number of inliers
- maximum distortion: equivalent to minimum number of inliers
- overlapping: support gradual transitions of views

Visual clustering

- geo-cluster specific sub-linear indexing
- bottleneck: computation of pairwise distances, quadratic in $|G| \to$ inverted file indexed by both visual word and geo-cluster
- given a query image $q \in G$, find all matching images $p \in G$ with $I(F_p, F_q) > \tau$ in constant time, typically less than one second

- the entire computation is now linear in $\left|G\right|$

Visual clustering—example

$1,146\ {\rm geo-tagged}$ Flickr images of Pantheon, Rome

- 258 resulting visual clusters
- 30 images at each visual cluster on average
- an image belongs to 4 visual clusters on average

Visual clustering—example

Scene maps [Avrithis et al. 2010]

- the image associated to the center of a view cluster shares at least one rigid object with all other images in the cluster
- treat this image as a reference for the cluster and align all other images to it
- initial estimates available from the view clustering stage—only local optimization needed

- construct a 2D scene map by grouping similar local features
- extend index, retrieval, and spatial matching for scene maps

View cluster alignment—example

Palau Nacional, Montjuic, Barcelona—input images

View cluster alignment—example Palau Nacional, Montjuic, Barcelona—input images

View cluster alignment—example Palau Nacional, Montjuic, Barcelona—input images

Palau Nacional, Montjuic, Barcelona—input images

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - わへで

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

▲ロ → ▲周 → ▲目 → ▲目 → ● ● ● ● ●

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Palau Nacional, Montjuic, Barcelona—input images

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

▲ロ → ▲周 → ▲目 → ▲目 → ● ● ● ● ●

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Palau Nacional, Montjuic, Barcelona—aligned images

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Palau Nacional, Montjuic, Barcelona—aligned images

イロト 不得 トイヨト イヨト ヨー うへつ

Palau Nacional, Montjuic, Barcelona—aligned images

イロト 不得下 イヨト イヨト

Palau Nacional, Montjuic, Barcelona—aligned images

Palau Nacional, Montjuic, Barcelona—aligned images

・ロト・(型)・(目)・(目)・(ロ)・(ロ)・

Palau Nacional, Montjuic, Barcelona—aligned images

Э

イロン イロン イヨン イヨン

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のへで

• F(p): the union of features over all images in visual cluster $C_v(p)$ after alignment

$$F(p) = \bigcup_{q \in C_v(p)} \{ (H_{qp}x, w) : (x, w) \in F_q \}$$

- apply spatial KVQ separately to features mapped to each visual word
- join the resulting codebooks into a single scene map S(p)

• F(p): the union of features over all images in visual cluster $C_v(p)$ after alignment

- apply spatial KVQ separately to features mapped to each visual word
- join the resulting codebooks into a single scene map S(p)

• F(p): the union of features over all images in visual cluster $C_v(p)$ after alignment

- apply spatial KVQ separately to features mapped to each visual word
- join the resulting codebooks into a single scene map S(p)

• F(p): the union of features over all images in visual cluster $C_v(p)$ after alignment

- apply spatial KVQ separately to features mapped to each visual word
- join the resulting codebooks into a single scene map ${\cal S}(p)$

• F(p): the union of features over all images in visual cluster $C_v(p)$ after alignment

- apply spatial KVQ separately to features mapped to each visual word
- join the resulting codebooks into a single scene map S(p)

Scene map construction—example

visual cluster containing 30 images of Palau Nacional, Montjuic

Scene map construction—example

before vector quantization

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

Scene map construction—example

after vector quantization

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

Scene map indexing

index construction

- scene maps and images have the same representation—sets of features
- index all scene maps by visual word in an inverted file

query

- re-rank using the single correspondence assumption [Philbin et al. 2007]
- whenever a scene map S(p) is found relevant, all images $q \in C_v(p)$ are retrieved as well

European Cities 1M dataset (EC1M)

- 1,081 images from Barcelona annotated into 35 groups
- all geo-tagged Flickr images

$17\ {\rm landmark}\ {\rm groups}$

 $18 \,\, {\rm non-landmark} \,\, {\rm groups}$

Publicly available: http://image.ntua.gr/iva/datasets/ec1m/

European Cities 1M dataset (EC1M)

- 908,859 distractor images from 21 European cities, excluding Barcelona
- most depict urban scenery like the ground-truth

Publicly available: http://image.ntua.gr/iva/datasets/ec1m/

▲ロ → ▲周 → ▲目 → ▲目 → ● ● ● ● ●

Mining statistics—scene maps

• 1M images, 58 hours, single machine (8GB RAM), landmarks and non-landmarks

ション 人口 マイビン トレート シックション

Mining statistics—related work

- [Chum et al. 2009] web-scale clustering: 5M images, 28 hours, single machine (64GB RAM), popular subsets only
- [Agarwal et al. 2009] Rome in a day: 150K images, 24 hours, 500 cores
- [Frahm et al. 2010] Rome in a cloudless day: 3M images, 24 hours, GPU
- [Heath et al. 2010] image webs: 200K images, 4,5 hours, 500 cores

Retrieval comparisons

- baseline: bag-of-words with fast spatial matching [Philbin et al. 2007]
- QE1: iterative query expansion, re-query using the retrieved images and merge results, 3 times iteratively
- QE2: create a scene map using the initial query's result and re-query once
- both QE schemes similar to total recall [Chum et al. 2007]

query timing

Method	time	mAP
Baseline BoW	1.03s	0.642
QE1	20.30s	0.813
QE2	2.51s	0.686
Scene maps	1.29s	0.824

Retrieval statistics

▲□▶ ▲圖▶ ▲目▶ ▲目▶ - 目 - のへで
Outline

Visual search, local features and bag-of-words

- 2 Local features based on distance maps
- 3 Geometry indexing: feature map hashing
- Relaxed spatial matching and re-ranking
- 6 Photo collections: view clustering and scene maps
- **6** Location and landmark recognition
- Implementation: ivl library

Location and landmark recognition [Y. Kalantidis et al. 2011]

- assume that a subset of similar photos are correctly geo-tagged, and not too far apart
- recognize the location where the query photo is taken, as the centroid of the most populated spatial (geo) cluster
- cross-validate locations and text (title, tags) of similar images with Geonames entries and geo-referenced Wikipedia articles

link to known landmarks or points of interest

Location recognition—examples

Landmark recognition—examples

Suggested tags: Park Güell, Barcelona Frequent user tags: Best of, me, Palau Güell

Suggested tags: La Barceloneta, Barcelona Frequent user tags: honeymoon, wedding, straße

Suggested tags: Triumphal arch, Arc de Triomf, Barcelona Frequent user tags: Sant Pere, Santa Caterina i La Ribera, macba, Passeig de Lluís Companys, Iluís companys, Sant Beltra

Suggested tags: FC Barcelona Museum, Camp Nou, Barcelona Frequent user tags: champions league, vfb, vfb stuttgart, Zoo de Barcelona, Camp Nou

Suggested tags: Montjuïc circuit, Museu Nacional d'Art de Catalunya, Barcelona Frequent user tags: Montjuic, castellers, Travelling Pooh, architecture, mnac

Suggested tags: Sagrada Familia, Sagrada Família, Barcelona Frequent user tags: gaudi, Sagrada Familia, sagrada, familia, expiatorio http://viral.image.ntua.gr

Query

Results

Suggested tags: Bludon Memorial Fountain, Victoria Tower Gardens, London Frequent user tags: Victoria Tower Gardens, Bludon Memorial Fountain, Winchester Palace, Architecture, Victorian gothic

Similar Images

Similarity: 0.619 Details Original ••

Similarity: 0.491 Details Original ••

Similarity: 0.397 Details Original ••

Similarity: 0.385 Details Original ••

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国▶ ▲□▶

Similar of similar

Original 🐽

Original 🐽

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ / 圖 / のへで

Original 🐽

Similar of similar

Original 🐽

Similar of similar

Original 🐽

Original ••

Original 🐽

◆□> <圖> < E> < E> E のQ@

Suggested tags

Suggested tags: Buxton Memorial Fountain, Victoria Tower Gardens, London Frequent user tags: Victoria Tower Gardens, Buxton Memorial Fountain, Winchester Palace, Architecture, Victorian gothic

・ロト ・個ト ・モト ・モト 三日

Related wikipedia articles

Wilherforce, advocated the abolition of the British slave-trade, achieved in 1807; and of those members of Parliament who with Sir T

イロト 不得 トイヨト イヨト ヨー うへつ

Related wikipedia articles

イロト 不得 トイヨト イヨト ヨー うへつ

Visual similarity

Visual similarity

▲□> <圖> < E> < E> E のQQ

Outline

Visual search, local features and bag-of-words

- 2 Local features based on distance maps
- 3 Geometry indexing: feature map hashing
- Relaxed spatial matching and re-ranking
- 6 Photo collections: view clustering and scene maps
- 6 Location and landmark recognition

Implementation: ivl library

Recall feature point matching

() construct the $m \times n$ proximity matrix G with elements

$$g_{ij} = \exp(-d_{ij}^2/2\sigma^2)$$

 ${\it 20}$ perform singular value decomposition of G

$$G = USV^{\mathrm{T}}$$

where U,V are orthogonal matrices of dimension m,n and S is a non-negative diagonal $m\times n$ matrix

 \bigcirc replace each diagonal element s_{ij} of S by 1 and reconstruct

$$P = UEV^{\mathrm{T}}$$

G finally, associate points a_i and b_j if element p_{ij} of P is the greatest element in its row and its column

Matlab code

```
function [m1, m2] =
match(
                     x1,
                                        y1,
                                       y2, F s)
                     x2,
    [Ax1, Ax2] = meshgrid (x1, x2);
    [Ay1, Ay2] = meshgrid (y1, y2);
              D = sqrt((Ax1 - Ax2) .^{2} + (Ay1 - Ay2) .^{2});
              G = \exp(-D \cdot 2 \cdot (2 * s \cdot 2));
    [U, S, V] = svd (G);
             E = S > 0:
              P = U * E * V';
    [tmp, c] = max (P, [], 2);
    [tmp, r] = max (P, [], 1);
              match = r(c) == (1 : length(c));
      m1 = find(match):
      m2 = c(match)':
```

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

ivl C++ code

```
template < class F > ret < array < F >, array < F > >
match(const array<F>& x1, const array<F>& y1,
      const array<F>& x2, const array<F>& y2, F s)
ł
   array_2d <F> Ax1, Ax2, Ay1, Ay2, U, S, V, tmp;
   (Ax1, Ax2) = meshgrid + + (x1, x2);
   (Ay1, Ay2) = meshgrid + + (y1, y2);
   array_2d < F > D = sqrt((Ax1 - Ax2) - >* 2 + (Ay1 - Ay2) - >* 2);
   array_2d < F > G = exp(-D ->* 2 / (2 * [s] ->* 2));
   (U, S, V) = svd + + (G);
   array_2d \langle F \rangle E = S \rangle 0;
   array_2d <F> P = U ()* E ()* V(!_);
   array<int> c, r;
   (tmp, c) = max + (P, _, 2);
   (tmp, r) = max + (P, _, 1);
   array<bool> match = r[c] == rng(0, c.length() - 1);
   return _(find(match),
             c[match]):
}
```

イロト (目) (ヨ) (ヨ) (ヨ) (の)

ivl library

(Kontosis and Avrithis, expected 2011)

- C++ template library, compatible to STL
- supports most types, syntax and built-in operations of Matlab language
- fully optimized: minimal overhead/temporaries/copying; all array expressions boil down to a single for loop

- uses multiple CPU cores
- integrated with basic image functionalities of OpenCV
- integrated with most common LAPACK routines

plans

- integration with QT to support visualization
- CUDA massively parallel implementation on GPU

Credits

Yannis Kalantidis

Giorgos Tolias

Christos Varitimidis

Kimon Kontosis

Marios Phinikettos

Phivos Mylonas

Kostas Rapantzikos

Yannis Avrithis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

project pages http://image.ntua.gr/iva/research

VIRaL

http://viral.image.ntua.gr

datasets

http://image.ntua.gr/iva/datasets

thank you!

(日)、(型)、(E)、(E)、(E)、(O)()