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Anoyopebeton 1 avTiypopy), amoViixeuct xou diavour] Tng mopoloag epyaciog, €€ OhoXAHEOU 1) TUNUO-
To¢ aUTAC, Yio epnopixd oxond. Emtpéneton 1 avotdnwon, anodrfixeucy) xol Slavour yio oxoné un
%EEDOOUOTIXG, EXTAUBEVTIXAC 1} EpELVNTXAC PUOTC, UTS TNV TEoUnédeor va avapépeton 1) TNYY TEO-
€hevong xou vo dlotneelton o mopdv puivupa. Epwtipata mou agopolv T ypron tne epyosiac yio
xepdooxomind oxond meEnel vo ancudivovTon Teog Tov ouyypedpéa. Ot andelc xou o GUUTEPAOHUATY
TOU TEPLEYOVTOL OE AUTO TO EYYpaPo expedlouy Tov cuyyYpapéo ot dev mpémel va epunvevdel ot
avTinpoowrebouy tig entonueg Yéoeic tou Edvixod MetodPiou IloAuteyvelou.



Euyapiotieg

H rmapoloo Simhwyatier epyacia exnovilnxe xoatd to axadnpoixd étog 2011-2012 oto
Epyaotipio ¥nplaxrc Encéepyaoioc Ewdvoag, Bivteo xa Iohupéowy tou Edvixol MetodBiou
IToAuteyvelou. Ou Hdeka va euyoptothow tov emBAénovta Kadnynti x. Ltégavo Koo yia
TNV EUTOTOOUVY) TOL Uou €Detle avodéTovTdg Bou TNV epYasior aUTH Xat Yol T1 SuVATOTYTA TOY
Hou Edwoe v aoYornl® PE To cuyxeXPEVo evilagépoy Véua. Eniong, suyopiotd daitepa
tov Ap. Iwdvvny ABpldn v tnv xadodrynor touv xar yia v elonpeTixy| ouvepyasio mou
elyope. Téhog, Va fleha va Uy oEIoTHOW TOUG YOVEIS Hou Yo TNV xardodhynon xat Ty iy
OUUTIUPAOCTACT] TOU OV TROGEPERUY GO AUTY TAL YPOVIAL.






Iepiindm

Yy napodoa dimhwpatiny epyacia napoucidlovial Bidpopes VEES TEYVIXES XATATUNONG
PuUOIXWY EXOVWY Bactouéveg oe ula avanapdotaot oxeietol. H avanapdotacn auty nept-
Yodgel TIC TOTXES UETABOAES, TO OYNU TV TEPLOYWY TNG EMOVOC ARG XaL Wd GUVOAXT
dopr| TNS EXOVOS. ZEXVOVTAS and To u€Tpo TNe Slodidotatng xAlong Tne exévag 1 1 yxpila
EXOVOL aXU®Y TN¢, unoloyilouye €va oTAVUOUEVO UETACYNUATIONS ANOCTAGTC XAl TOV AV-
tlotoyo otaduiouévo oxehetéd péow wag diadixaotiog ypauuxol ypdvou. Egupuéloviac tov
{010 YeTUoYMUATIONS anOCTAOTE AN TOV OXEAETO AVATOON TEOE T OELA TV TEQLOY WY, Ao-
Bdvetar Suadtxd piar opy et XATATUNO TG ELXOVOC X0 EVOL YPAPO TOU OVATURLOTY T Dopng TNS.
H Srodtxacio aut] elvon 10odUvVopn e TNV eQapuoyr uetaoynpatiopol watershed oto otoan-
wopévo yetaoynuationd andéotaong. ‘Oumg, eivon To anodoTixr) UTOAOYIGTIXA aQol TEWTA
amooUVIETOUUE TO OXEAETO Xl VOTERA YENOHLOTOIOUUE T1) DIADLXACLO YRUUUIXOU YeOVoU YLo
) Biddoon TNg anochvIeanE OTNY LTOAOLTY ETPAVELN TNE EXOVOC. AVATIQIOTOVTAS TNV Ei-
x6va w¢ douy disjoint-set forest, evidvouue yettovinée neployéc Bdoer xdmowwy xprtnpiwy. H
nponyoLuevy uedodoloyia Tou TEOGOIDEL WG ATOTENEGUA WA AEYIXTY] XATATUNCT TNS ELXOVAS
€16600L €yel eQappooTel ue emtuyio ot BiMoypagio Yio TO GX0TO TNHE AVIYVEUOTS TERLOY OV
evdlagépovtog. Xty mapolod epyaotia VAomololue TNy mapandve pédodo xo avalntolue
XATAAANAGL XpLTHELOL Yiot TNV a€loToMo TS 0To TEOBANUA TNS XATATUNONG QPUOIXMY EIXOVGY.

YoV TEOTO XPITHPLO, EVOVOUUE TEPLOYES CURPVA UE TO UPOC TwV onueiny oEAUS TOU oxe-
AETOU TV EXOVWY. e Uia DeUTERT, TPOoEYYIoT TOU TEOTEIVOUUE, €0TIALOUYE OTA XEVE TOU
oLYV6POU UETAED 800 TEPLOY WY XUl EVWVOUUE YEITOVIXES TEQPLOYESC GUUPWYA UE TO TOGO CUUNA-
YY) obvopa €youv. Mia evodhoxtixy xatebduvon nou doxipdloupe eivon 1 yeRon evog uétpou
avopotopoppiag Yetadh 800 TEPLOYWY TOU IXAVOTOIEL TNV UTEQUETEIXY| LBIOTT T UE OXOT6 TNV
eniteudn lepapynhc xatdtunong exovag. Lo to pétpo avopolopoppiag petadh meploy®Y Yen-
OlwoToloUUE TN Uéor Tr) Tou p€Tpou TNng dlodidoTatng xAlong oto xovd clvopo Twv dVo
TEPLOY WY XM XAl VA TEOTOTUTO PETPO AELGTOTNTAS TOU XOvoU cuvbpou. ‘Oleg ol mo-
pamdve teyvixég allohoyolvta ue Bdor 1 Bdor dedouévmv tou navemiotnuiov Berkeley xou
ouyxpivovtal e YVooTég Teyvixéc tne PiBMoypaglac. Tletuyaivouue noAd xahd anoteAeopata
XOVT& 0Tn 610N NG TEYVIXAC XOU YE TOAD TROXTIXOUS YpOVOUC EXTENEDTC.

AéCeic KAedok

‘Opaon unohoyloT®y, enelepyaoia EiXOVAg, XATATUNOY), OXEAETOS, anocthvieot oxeletol, a-
ViYVEUaT axpdY, Ypdpol YEITVIAoNG TERLOYGY, OTAMUIOUEVOC PETATY NUATIOUOS andoTAGTC.






Abstract

In the framework of this thesis, we present a number of new image segmentation
methods based on a weighted medial axis representation. This representation expresses
local contrast, region shape as well as global image structure. Starting from any image
gradient or grayscale contour map, we first compute a weighted distance map and its
weighted medial axis by a linear-time process. Applying the same distance propagation
from the medial axis back towards region boundaries, we dually obtain an initial image
partition and a graph representing image structure. This procedure is equivalent to the
watershed transform of the weighted distance map, hence is both topological and contrast-
weighted. However, it is computationally more efficient because we first decompose the
medial axis and then use our linear-time process to propagate on the remaining image
surface. Using a disjoint-set data structure, we then merge adjacent regions according
to a number of criteria. This framework has been successfully applied to local feature
detection, and in this thesis we investigate criteria to merge adjacent regions that are
appropriate for the problem image segmentation.

The first proposed technique is to merge regions according to the saddle point height of
the medial axis. A second approach is to focus on the boundary gaps and merge according
to how fragmented regions are. An additional direction we experiment on, is the use
of ultrametric contour map representation to implement hierarchical segmentation. As
inter-region ultrametric dissimilarities, we use the mean boundary strength on the common
boundary between adjacent regions and a new inter-region fragmentation dissimilarity. All
alternatives are evaluated using different input grayscale contour maps on the Berkeley
segmentation dataset and compared to a number of state of the art algorithms. We achieve
performance near the state of the art with very practical running times.

Keywords

Computer vision, image processing, segmentation, partition, grouping, medial axis, skele-
ton, medial axis decomposition, weighted distance transform, region adjacency graphs,
contour detection, watershed.
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Chapter 1

Introduction

1.1 Defining image segmentation

The problem of image segmentation is one of the most fundamental problems in the
field of computer vision. Although it has been studied since the early years of computer
vision, segmentation still remains a great challenge. Since the time of the Gestalt move-
ment in psychology, it has been known that perceptual grouping plays a powerful role in
human visual perception. In late 1930’s Wertheiner [54] described perceptual grouping as
following: “I stand at the window and see a house, trees, sky. Theoretically, I might say
there were 327 brightnesses and nuances of colour. Do I have “327”7 No. I have sky,
house, and trees. It is impossible to achieve “327” as such. And yet even though such
droll calculation were possible and implied, say, for the house 120, the trees 90, the sky
117 — I should at least have this arrangement and division of the total, and not, say, 127
and 100 and 100; or 150 and 177.”

More specifically, image segmentation is described as the process of partitioning an
image into disjoint regions, each one being homogeneous and connected with respect to
one or multiple cues such as image intensity, texture, color, motion and others. The
goal of image segmentation is to cluster pixels into salient image regions, i.e. regions
corresponding to individual surfaces, objects or natural parts of objects. Hence, one can
easily see that there is no single definition of segmentation. In fact, it is impossible to
generally formulate the exact goals of segmentation, as Marr [33] has underlined. Thus, it
can be concluded that segmentation is application-dependent and finding a unique solution
is, in general, ambiguous.

A formal definition of segmentation is presented by Gonzalez and Woods [23]. Let X
represent the spatial domain that is occupied by an image. In this case, image segmentation
process can be considered as a procedure which separates space X into n discrete regions
Ry, Ra, .., R, in such a manner that the following properties are satisfied:

(a) R; is a connected set for all i = 1,2,3,..,n

by UR =X
i=1
(¢c) RiNR; =@ for all 4, j with ¢ # j
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Condition (a) denotes that all elements of a region R; must be connected under a predefined
manner (e.g. 4-connectivity or 8-connectivity). The next condition demands that the
process of segmentation must be complete, i.e. each image element (pixel) must belong
to some region R;. Moreover, according to the third condition all regions to which the
original image is divided into must be disjoint or mutually exclusive. In addition, two more
properties related to the termination of the segmentation procedure, must be satisfied.
Given a logical predicate Q(R;) defined for all discrete regions R;, segmentation procedure
must terminate when

(d) Q(R;) =true foralli=1,2,3,..,n
(e) Q(R; N R;) = false for any two adjacent regions R; and R;

where two regions R; and R; are adjacent if and only if their union is a connected set.
Condition (d) denotes that predicate ) must be true for each discrete region R; whereas
any two adjacent regions R; and R; must differ considering ). Note that a specific
segmentation S or partition P of an image is defined as the set containing all the discrete
subregions R, Ro, .., R, into which the image is divided.

Image segmentation is one of the most popular computer vision problems because it is
related to a wide range of applications as numerous visual tasks benefit from the existence
of some hundreds or thousands “superpixels” rather than millions of pixels. Segmentation
is closely connected to object detection and recognition and there is huge literature on
methods combing these two problems [20, 22, 28, 53]. Some other popular applications of
segmentation and grouping include topics such as occlusion boundary estimation within
motion systems [47], object-based image compression [52], content-based image retrieval
[8], medical imaging [41], face recognition [29, 57|, iris recognition [17, 21] and fingerprint
recognition [36].

1.2 Motivation

Significant psychophysical evidence suggests that when looking at a natural scene
the visual brain differentiates the scene into surface regions and boundary contours that
delineate possible meaningful object parts. More specifically, two important research
results support the explicit use of the medial axis in the human visual system, one using
psychophysics and the other through neurophysiological data. First, Kovacs and Julesz
[25] showed that the detection of closed curves in an ambiguous scene is much easier
than the detection of open curves. Furthermore, they showed that this notion of closure is
associated with an enhancement of feature detection inside the figure as opposed to outside
the figure. The non-uniformity of this enhancement showed peaks at central loci of the
figure, which they correlated very closely to the medial axis of the shape. In addition, Lee
et al. [27] confirmed Lamme’s empirical findings of an enhancement inside a figure indicated
by texture or motion boundaries [26] and explored the spatial and dynamical aspects of
such a response. They showed that the enhancement in response was not spatially uniform
but rather showed distinct peaks at the boundary of the figure, and more interestingly,
at its medial axis. Thus, the initial local edge contrast perceived by human vision system
is expected to improve with feedback from higher areas which have a more abstract and
global view of the image. In conclusion, there is strong scientific evidence that the visual
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brain uses medial axes to assist in scene segmentation and perceptual grouping.

Our motivation for a segmentation framework based on medial axis derives from this
evidence in conjunction with the fact that medial axis has not been extensively studied as
a means towards image partitioning.

The segmentation method presented in the framework of this thesis originates at the
medial feature detector. Avrithis and Rapantzikos [7] developed a framework for blob-
like feature detection. Although this work focused on a different problem, i.e. feature
detection, it produces an initial image partition (oversegmentation). They introduced
a medial axis decomposition based method to obtain this initial partition. This image
representation is more descriptive than the classic watershed transform [9] concerning
region boundaries. Using the above representation, we do not only overcome contour
discontinuities and boundary fragmentation but we can measure the fragmentation of a
boundary curve or the fragmentation of an entire region.

Apart from boundary description, the initial partition of [7] has some advantages
over the watershed transform used in mathematical morphology [9]. The latter has the
drawback that the initial produced oversegmentation is too fine to be exploited. This
problem has been partially dealt with the introduction of marker controlled watershed.
On the one hand, the marker controlled watershed seems to function pretty well for blob-
like objects subtraction from the background. On the other hand, this approach has not
proved to be general enough but is rather image-dependent. The initial partition of [7]
is not as fine as classic watershed output but it still preserves boundaries quality. In
fact, finesse of the initial partition can be controlled by a scale parameter in the weighted
distance map computation. Last but not least, it is more efficient because first the medial
axis is decomposed and then region labels are propagated on the remaining image surface
in linear-time.

Our contribution is the implementation, examination and evaluation of several merging
criteria and techniques to process the initial partition at hand, i.e. to turn the oversegmen-
tation into a “proper” partition. As the term “proper partition” is ambiguous we define
that, in the framework of this thesis, the “proper” partition we seek is the closest possi-
ble partition to human ground-truth segmentations. Human segmentations are provided
along with a set of images in the Berkeley Segmentation Dataset [4, 34].

Felzenszwalb and Huttenlocher [18] presented an efficient graph based merging tech-
nique. It is of special interest that they define as inter-region dissimilarity as the minimum
edge weight connecting the two regions. In such a way, the total merging process reduces to
a single sorting process and a single pass from each graph edge to evaluate whether the two
corresponding regions should be merged or not. We adopt an analogous efficient merging
process in the implemented framework. Furthermore, to include semi-global information
from the total area of any two adjacent regions, we propose a second similar efficient
merging technique in which adjacent region merging is controlled by an area fragmenta-
tion factor. In addition, we propose a method with two variants which exploits information
related to region boundaries and uses the notion of ultrametric contour maps [2]. Using
dissimilarities that satisfy the ultrametric property we manage to implement hierarchical
segmentation. The ultrametric dissimilarities we use are based on mean boundary strength
between adjacent regions and inter-region fragmentation.

Overall, the segmentation method presented in the framework of this thesis can be
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summarized in the following six steps :

Contour Detection

Weighted Distance Transform

Weighted Medial Axis

Medial Axis Decomposition

Domain Partition

Adjacent Region Merging

1.3 Thesis outline

This diploma thesis structure is generally based on the discrete steps of the imple-
mented segmentation framework. Chapter 2 includes a literature survey on generic image
segmentation methods. Several methods are briefly described, from simplest methods to
more sophisticated state-of-art algorithms. Greatest attention has been given to methods
related to the proposed technique. In Chapter 3, the two contour detectors whose out-
puts are used in order to compute the weighted distance transform. The baseline Canny
contour detector is first presented and then the state-of-art global probability of bound-
ary detector. In Chapter 4, theory and definitions of distance transforms are presented.
Then, general algorithms for computing distance transforms such as the fast marching
methods are discussed along with the algorithm implemented for the computation of the
weighted distance transform, i.e. the linear-time exact group marching algorithm. In
Chapter 5, the concept of medial axis is briefly discussed and then the algorithm of the
computation of the weighted medial axis is presented. In Chapter 6, the algorithm for the
weighted medial axis decomposition is described along with the way of obtaining an initial
image partition by a dual distance propagation. In Chapter 7, the merging techniques
are presented along with their properties and implementation issues. Chapter 8 includes
evaluation and comparison of our segmentation techniques using the Berkeley segmenta-
tion dataset with some well-know state of the art segmentation algorithms. In addition,
we illustrate representative results for the several implemented techniques. In Chapter 9,
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Figure 1.1: Top row, from left to right: input image, grayscale contour map and
normalized weighted distance transforms. Bottom row, from left to right: medial
axis(in red), initial partition and final partition after the merging process.

several conclusions derived from this thesis are presented along with directions for future
work. In Appendix A, several basic proofs of the majority of lemmas and algorithms are
included.
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Chapter 2

Literature survey on image
segmentation methods

2.1 Generic image segmentation methods

Image segmentation methods can be classified into two broad categories: boundary-
based approaches, which generate an edge image which delineates the segments of the
image, and region-based approaches, which group image pixels based on the homogeneity
of spatially localized features.

The simplest form of segmentation is thresholding. A threshold is defined and then
every pixel in an image is compared with this threshold. If the pixel lies above the
threshold it will be marked as foreground. Otherwise, it will be marked as background.
The threshold will most often be an intensity or colour value. Other forms of thresholding
exist where the threshold is allowed to vary across the image, but thresholding is a primitive
technique, and will only work for very simple segmentation tasks. The key of this method
is to select the threshold value. Several popular methods can be used for this purpose
including the maximum entropy method and Otsu’s method [40] (maximum variance).

Compression based methods postulate that the optimal segmentation is the one that
minimizes, over all possible segmentations, the coding length of the data. Mobahi et al.
[37] describe each segment by its texture and boundary shape. Each of these components
is represented by a probability distribution function and its coding length is computed as
follows: the boundary encoding leverages the fact that regions in natural images tend to
have a smooth contour. This prior is used by Huffman coding to encode the difference
chain code of the contours in an image. Thus, the smoother a boundary is, the shorter
coding length it attains. Texture is encoded by lossy compression in a way similar to
minimum description length (MDL) principle, but here the length of the data given the
model is approximated by the number of samples times the entropy of the model. The
texture in each region is represented by a multivariate normal distribution whose entropy
has closed form expression. For any given segmentation of an image, this scheme yields
the number of bits required to encode that image based on the given segmentation. Thus,
among all possible segmentations of an image, the goal is to find the segmentation which
produces the shortest coding length. This can be achieved by a simple agglomerative
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clustering method. The distortion in the lossy compression determines the coarseness of
the segmentation. It has the drawback that distortion optimal value may differ for each
image.

Another broad family of segmentation techniques includes clustering methods. One
basic representative of this category is the k-means algorithm, an iterative technique that
is used to partition an image into K clusters. The basic algorithm proceeds as follow-
ing:

1. Initialize the K cluster centers.

2. Assign each pixel in the image to the cluster that minimizes the distance between the
pixel and the cluster center.

3. Recompute cluster centers by averaging all of the pixels in the cluster.

4. Repeat steps 2 and 3 until convergence.

In this case, distance is the squared or absolute difference between a pixel and a cluster
center. The difference is typically based on pixel color, intensity, texture, location or
a weighted combination of these. k-means is guaranteed to converge, but it may not
return the optimal solution. The quality of the solution depends on initializations and on
the value of K. It is similar to the expectation-maximization algorithm for mixtures of
Gaussians in that they both attempt to find the centers of natural clusters in the data.
The objective it tries to achieve is to minimize total intra-cluster variance, or, the squared
error function. In terms of performance the algorithm is not guaranteed to return a global
optimum. The quality of the final solution depends largely on the initial set of clusters,
and may, in practice, be much poorer than the global optimum. A drawback of the k-
means algorithm is that the number of clusters K is an input parameter. An inappropriate
choice of K may yield poor results. The algorithm also assumes that the variance is an
appropriate measure of cluster scatter.

The mean shift algorithm [15] offers an alternative clustering framework. Pixels are
represented in the joint spatial-range domain by concatenating their spatial coordinates
and color values into a single vector. Applying mean shift filtering in this domain yields
a convergence point for each pixel. Regions are formed by grouping together all pixels
whose convergence points are closer than hs in the spatial domain and h, in the range
domain, where hg and h, are respective bandwidth parameters. Additional merging can
also be performed to enforce a constraint on minimum region area.

Histogram-based methods are very efficient when compared to other image segmen-
tation methods because they typically require only one pass through the pixels. In this
technique, a histogram is computed from all of the pixels in the image, and the peaks and
valleys in the histogram are used to locate the clusters in the image [46]. Color or intensity
can be used as the measure. One disadvantage of the histogram-seeking method is that it
may be difficult to identify significant peaks and valleys in the image. In this technique of
image classification distance metric and integrated region matching are familiar.

Graph partitioning methods can effectively be used for image segmentation. In these
methods, the image is viewed as a weighted, undirected graph. Usually a pixel or a group
of pixels are associated with nodes and edge weights define the similarity or dissimilarity
between adjacent regions or pixels. The graph (image) is then partitioned according to a
specific criterion. Each partition of the nodes (pixels) output from these algorithms are
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considered an object segment in the image. Some popular algorithms of this category
are the normalized cuts [44], the minimum cut algorithm [55] and minimum spanning
tree-based segmentation [18].

Spectral graph theory [14] and in particular the normalized cuts criterion [44] pro-
vide a method of integrating image global information into the grouping process. In the
normalized cuts framework the feature space the image is represented as an undirected
weigthed graph. Vertices represent (pixels) and edges exist between all pairs of vertices.
Edge weights measure the similarity between the two corresponding vertices. A graph can
be partitioned in two disjoint sets A, B by simply removing edges connecting these two
parts. The degree of dissimilarity between these two sets can be computed as the sum
of weights of all the edges that have been removed. This quantity is called the cut. The
optimal bipartitioning of a graph is the one that minimizes this cut value. However, using
the minimum cut criterion results in cutting small sets of isolated nodes in the graph. Wu
and Leahy [55] proposed a clustering method based on this minimum cut criterion and
noticed the above mentioned problem in their work. To overcome this problem, Shi and
Malik [44] introduced a normalized measure of disassociation between two groups taking
into account the total edge connections to all nodes in the graphs. This measure, called
the normalized cut (Ncut), is defined as:

cut(A, B) cut(A, B)
assoc(A,V) = assoc(B,V)

where assoc(A, V) is the total connection from nodes in A to all nodes in the graph.
Shi and Malik proved that finding the optimal graph bipartition that minimizes the Ncut
value reduces to a generalized eigenvalue problem. The image is bipartitioned using the
eigenvector solution with the second smallest eigenvalue. Then, the segmented parts are
recursively bipartitioned if Ncut is below a prespecified value. Alternatively, k-means
clustering is applied to obtain the desired image partition. However, this approach often
breaks uniform regions where the eigenvectors have smooth gradients. Recently, a multi-
scale approach of normalized cuts for image segmentation was introduced by Cour et al.
[16]. The fact that the affinity matrix must be sparse, in order to avoid a prohibitively
expensive computation, limits the naive implementation to using only local pixel affini-
ties. Cour et al. [16] solve this limitation by computing sparse affinity matrices at multiple
scales, setting up cross-scale constraints and deriving a new eigenvector problem for this
constrained multiscale cut.

Ncut(A,B) = (2.1)

Many approaches to image segmentation fall into a different category than those cov-
ered so far, relying on the formulation of the problem in a variational framework. An
example is the model proposed by Mumford and Shah [38], where the segmentation of an
observed image ug is given by the minimization of the functional:

Fu,C) = /(u — ug)?dx + ,u/ |Vu|?dz + y]{ds (2.2)
Q o\C J

where C' denotes the smooth and closed segmenting curve, u denotes the piecewise smooth
approximation to ug with discontinuities only along C', €2 denotes the image domain and
1, v are weighting parameters where. Several algorithms have been developed to minimize
the energy (2.2) or its simplified version, where u is piecewise constant in Q\C'

The watershed transform considers the gradient magnitude of an image as a topo-
graphic surface. Pixels having the highest gradient magnitude correspond to watershed
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Watershed ridge line

Catchment basins

Figure 2.1: left: input image, right: its topographic surface with corresponding catchment
basins and a watershed ridge line between them.

lines, which represent the region boundaries. Water placed on any pixel enclosed by a com-
mon watershed line flows downhill to a common local intensity minimum. Pixels draining
to a common minimum form a catchment basin, which represents a segment. One of the
principal applications of watershed segmentation is in the extraction of nearly uniform
(bloblike) objects from the background. As the method implemented in the framework
of this thesis is related to the watershed transform, a more detailed description of this
method is discussed in section 2.2.1.

2.2 Related Work

2.2.1 Watershed Transform

A brief presentation of the watershed transform as described by [9, 23] follows. The
basic concept of watersheds is based on visualizing an image in three dimensions: two
spatial coordinates versus gray levels. In such a “topographic” interpretation, three types
of points are considered: (a) points belonging to regional minima; (b) points at which a
drop of water, if placed at the location of any of those points, would fall with certainty to a
single minimum and (c¢) points at which water would be equally likely to fall to more than
on such minimum. The points satisfying condition (c) form crest lines on the topographic
surface and are termed divide lines or watershed lines or watershed arcs.

The principal objective of segmentation algorithms based on these concepts is to find
the watersheds lines. The basic idea is simple: suppose that a hole is punched in each
regional minimum and that the entire topography is flooded from below by letting water
rise through the holes at a uniform rate. When the rising water in distinct catchment basins
is about to merge, a dam is built to prevent the merging. The flooding will eventually
reach a stage when only the tops of the dams are visible above the water line. These
dam boundaries correspond to the divide lines of the watersheds. Therefore, they are the
continuous boundaries extracted by a watershed segmentation algorithm.

Regions characterized by small variations in gray levels have small gradient values.
Thus, in practise, watershed segmentation is most often applied to the gradient of an
image, rather to the image itself. In this formulation, the regional minima of catchment
basins correlate nicely with the small value of the gradient corresponding to the objects
of interest.
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The dam construction is based on binary morphological dilation. Initially, the set of
regional minima corresponds to value 1 while all other pixels have zero value. In each
subsequent step, the 3D topography is flooded from below and the pixels covered by the
rising water are 1s and others Os. At each step of the algorithm, the binary image in
obtained by a binary morphological dilation. The dam is constructed by the points on
which the dilation would cause the sets being dilated to merge, resulting one-pixel thick
connected path.

Let My, My, ..., Mg denote the regional minima of an (gradient) image g(x,y), C(M;)
the sets of the points in the catchment basin associated with regional minimum M; and the
minimum and maximum gray levels of g(x,y) as minlevel and mazxlevel. T[n] is defined
as:

T [n] ={(s,t) : g(s,t) <n} (2.3)

The topography will be flooded in integer flood increments, from n = minlevel + 1
to n = maxlevel + 1. If C,(M;) denote the sets of the points in the catchment basin
associated with regional minimum M, and flooded at step n one can write:

CH(MZ) = C(MZ) N T[n] (2.4)

Let C[n| denote as the union of the flooded catchment basin portions at stage n.
R R

Then C[n] = | C,(M;) and obviously C[mazxlevel + 1] = |J C(M;). The algorithm is
i=1 =

i=1
initialized with C[minlevel + 1] = T[minlevel + 1]. The algorithm at each step constructs
C[n] given C[n — 1]. Denote Q[n] the set of connected components in T'[n]. For each
connected component g € Q[n], there are three possibilities:

1. ¢NC[n—1] is empty. Then, a new minimum is encountered and ¢ is incorporated into
Cln — 1] to form Cfn].

2. ¢ N C[n — 1] contains one connected component of C[n — 1]. Then, ¢ is incorporated
into Cln — 1] to form C[n|.

3. ¢N Cln — 1] contains more than one connected components of C[n —1]. Then, a ridge

separating two or more catchment basins has been encountered and a dam has to be
built within ¢ to prevent overflow between the catchment basins .

The above procedure is repeated until n = mazlevel + 1

The direct application of the watershed transformation to a gradient image usually
leads to oversegmentation similar to the result shown in Fig. 2.3.

To prevent this phenomenon, a marker-controlled watershed transform is introduced.
A major enhancement of the watershed transformation consists in flooding the topographic
surface from a previously defined set of markers. An example of marker extraction is the
generalized mazima/minima extraction or dome/basin extraction [50]. For the domes, the
principle is to subtract an arbitrary constant h from the original image I and to perform
a grayscale reconstruction opening of I from I — h. The reconstructed image is then
subtracted from the original one, thus yielding a grayscale image J of all the domes and
crest lines of I. From J it easy to extract a binary picture of the most important domes
by a simple thresholding operation. The dual process can be used to extract the basins
and valleys of I.
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[ First dilation
[ Seeond dilation
[<] Dam points

Figure 2.2: Left: two partially flooded catchment basins at stage n — 1 of flooding,
Middle: flooding at stage n, showing that water has spilled between basins, Right:
result of dilation and dam construction (from [23])

.

Figure 2.3: Left: input image. Right: oversegmentation produced by applying watershed
transform directly to image gradient.

Grayscale reconstruction
A

Subtraction

Mo 2N, N

Figure 2.4: Determination of the h-domes of grayscale image I (from [50]).
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Figure 2.5: From left to right: input image, morphological gradient, markers of domes
(in black), final segmentation.

2.2.2 Oriented watershed transform and ultrametric contour map

A recent version of the classical watershed transform which includes information about
boundaries strength and orientation is the oriented watershed transform. Arbelaez et al. [4]
introduces the oriented watershed transform(OWT). As input to this algorithm can be used
any contour detector output E(x,y,#) which predicts the probability of an image boundary
at location (z,y) with orientation 6. Regional minima of E(z,y) = maxy E(z,y,0) are
considered as seed locations for homogeneous segments and then the classical watershed
transform described in section 2.2.1 is applied on the topographic surface of E(x,y). The
catchment basins of the minima (Py) provide the regions of the finest partition and the
corresponding watershed arcs (Ky) the possible locations of the boundaries.

Next a adjacent region dissimilarity based on boundary strength is defined. Simply
weighting each arc by the mean value of E(z,y) can introduce artifacts. To correct this
problem, consistency is enforced between the strength of the boundaries of Ky and the
underlying F signal. The watershed arcs are approximated with line segments. Then, each
pixel (z,y) is assigned the orientation o(x,y) € [0,7) of the corresponding line segment.
Boundary strength at pixel (z,y) is now E(z,y,o(x,y)) instead of E(z,y, ). In addition,
this dissimilarity satisfies the ultrametric property as discussed in [2]. A more detailed
description of ultrametric contour maps notion is included in section 7.3.

Because of the existence of closed, weighted and non-self-intersecting contours the
method used in the next step is the wltrametric contour map (UCM) . UCM produces
an hierarchy on regions based on contours with the latter properties. The hierarchy of
region is constructed by a greedy graph-based region merging algorithm. An initial graph
G = (Po,Kp) is defined where the nodes are the regions Py, the links are the arcs Ky
separating adjacent regions, and the weights W : Ky — R are a measure of dissimilarity
between regions. The algorithm proceeds by sorting the links by similarity and iteratively
merging the most similar regions.

1) Select minimum weight contour: C* = arg mingeyc, W(C')

2) Let Ry, Ry € Py be the regions separated by C*

3) Set R = Ry U Ry and update: Py < Po\{R1, R2} U R and Ky < Ko\{C*}
4) Stop if Ky is empty. Otherwise, update weights W (Ky) and repeat.
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2.2.3 Efficient graph-based image segmentation

The graph based region merging algorithm advocated by Felzenszwalb and Hutten-
locher [18] attempts to partition image pixels into components such that the resulting
segmentation is neither too coarse nor too fine. In this work, definitions of the terms “too
fine”, “proper refinement of a segmentation” and “too coarse” are given as following:

Definition 2.2.1 A segmentation S is too fine if there is some pair of regions Ry, Ry € S
for which there is no evidence for a boundary between them.

Definition 2.2.2 Given two segmentations S and T of the same base set, T is a refine-
ment of S when each component of T is contained in (or equal to) some component of S.
T is a proper refinement of S if and only T # S.

Definition 2.2.3 A segmentation S is too coarse if there exists a proper refinement of S
that is not too fine.

In this approach, an image is represented as an undirected graph G = (V, E'). Vertices
v; € V are the set of elements to be segmented, i.e. pixels, and edges (v;,v;) € E
correspond to pairs of neighboring vertices. Each edge (v;,v;) € E has a corresponding
weight w(v;,v;), which is a non-negative measure of dissimilarity between neighboring
vertices (e.g. intensity or color differences).

The internal difference of a region (component) R C V is defined as the largest weight
in the minimum spanning tree of the component M ST (R, E). That is:

Int(R) = 2.5
MU= R ) (23)

The difference between two regions Ry, Ry C V is defined as the minimum edge con-
necting the two regions. That is:

Dif(Ry, Ry) = min {w(v;,vj) : v; € R1,vj € Ry, (v5,v;) € E} (2.6)
If there is no edge connecting R; and Ry then let Dif(R;, Ry) = co

A region comparison predicate is introduced to evaluate evidence for a boundary be-
tween a pair of regions by checking if the difference between the regions, Dif( Ry, R2), is
large compared to the internal difference within at least one of the regions, Int(R;) and
Int(R2). For small components, Int(R) is not a good estimate. Therefore, a threshold
function 7(R), based on region size, is used to control the degree to which the differ-
ence between the regions must be larger than the minimum internal difference. That is,
for small regions a stronger evidence of boundary is required. The pairwise comparison
predicate is defined as:

true , if Dif(R;, Ry) > MInt(R;, R
D(Ry, Ry) = { 1€+ 1 DU o) = Mt (. o) (27)
false , otherwise
where the minimum internal difference, MlInt, is defined as
MInt(R;, R2) = min (Int(R;1) + 7(R1), Int(R2) + 7(R2)) (2.8)
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According to the main merging algorithm each node is initially placed in its own component
(region). Considering edges in non-decreasing order by weight, each step of the algorithm
merges regions R; and Ry connected by the current edge if D(R;, R2) is false. The running
time of the above segmentation algorithm is O(nlogn), where n is the total number of image
pixels. For grayscale images, the edge weight function is based on the absolute intensity
difference between the pixels connected by an edge. For color images, the above algorithm
is performed three times, one for each color channel, and then the three sets of components
are intersected. An important characteristic of the method is its ability to preserve detail
in low-variability image regions while ignoring detail in high-variability regions.
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Chapter 3

Contour detection

3.1 Baseline Canny contour detection

As a baseline to the contour detection step of the segmentation framework, a grayscale
version of the Canny edge detector [13] is implemented. In this section, the basic steps
of the Canny edge detector are briefly presented and then it is explained how the basic
algorithm is modified to produce grayscale and not binary contour maps.

The first step of the Canny edge detection is a convolution of the grayscaled input image
with a Gaussian filter to achieve noise reduction. Then, first order gaussian derivatives are
used to compute the blurred image gradient. This derivative procedure returns a value for
the first derivative in the horizontal direction (G;) and the vertical direction (G). From
this, the gradient magnitude G and direction © can be determined:

G=,/G2+G2 (3.1)

© = arctan (g;;) (3.2)

T

The gradient direction angle is rounded to one of four angles representing vertical,
horizontal and the two diagonals (0, 45, 90 and 135 degrees for example). Given estimates
of the image gradients, a search is then carried out to determine if the gradient magnitude
assumes a local maximum in the gradient direction. This is called the non-mazrimum
suppression step and produces thin lines in the output contour image.

The last step is the hysteresis thresholding operation. Large intensity gradients are
more likely to correspond to edges than small intensity gradients. In most cases, it is
impossible to specify a threshold at which a given intensity gradient switches from corre-
sponding to an edge into not doing so. Therefore Canny uses thresholding with hysteresis.
Thresholding with hysteresis requires two thresholds — high and low. Making the as-
sumption that important edges should be along continuous curves in the image allows
to follow a faint section of a given line and to discard a few noisy pixels that do not
constitute a line but have produced large gradients. Therefore, a high threshold is first
applied. This marks out the edges that are probably genuine. Starting from these, using
the directional information derived earlier, edges can be traced through the image. While
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Figure 3.1: left: input images, right: grayscale contour images produced by the modified
Canny contour detection algorithm.

tracing an edge, the lower threshold (which is usually a fraction of the high threshold)
is applied, allowing to trace faint sections of edges as long as we find a starting point.
Once this process is complete, a binary image where each pixel is marked as either an
edge pixel or a non-edge pixel is obtained. Using multiple values for the high thresh-
old and weighting accordingly results in the desired grayscale contour image. Examples
are illustrated in Fig. 3.1. The implementation used in the framework of this thesis
is based on the implementation of D. R. Martin, which is publicly available at http:
//www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/code/Detectors/.

3.2 Globalized probability of boundary

At this point there will be a brief description of the second contour detection input to
the implemented segmentation framework. That is the globalized probability of boundary
(gPb) detector [3]. This detector combines multiple local cues such as brightness, color,
texture in multiple scales and combines these cues with global information. It is the state-
of-art algorithm in the field of contour detection and produces results closest to human
results than any other algorithm.

To begin with, Martin et al. [35] define a function Pb(x,y,#) to describe the posterior
probability of a boundary with orientation 6 at each image pixel (z,y) by measuring
the difference in local image brightness, color, and texture channels. Arbelaez et al.
[3] introduce the globalized probability of boundary (gPb). The globalized probability of
boundary includes a multiscale version of the previous Pb detector plus an additional
globalization step based on spectral clustering.

The basic building block of the Pb contour detector is the computation of an oriented
gradient signal G(x,y, 6) from an intensity image I. Its computation proceeds as following:
a circular disc is placed at location (z,y) and split into two half-discs by a diameter at
angle . The gradient magnitude G at location (z,y) is defined by the x? distance between
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Upper Half-Disc Histogram

Lower Half-Disc Histogram

Figure 3.2: Left: input image with a circular disc with orientation § = /4 centered at
an arbitrary pixel. The disc is bigger for illustrative purposes. Middle: the blue and
red distributions are the histograms of the pixel brightness values in the blue and red
regions, respectively, in the input image. Right: result after a second order Savitzky-
Golay smoothing filter is applied to the raw histogram difference output.

Figure 3.3: The filterbank for creating textons consists of 8 oriented even- and odd-
symmetric Gaussian derivative filters and a center-surround (difference of Gaussians) filter.

the two half-disc histograms g and h:
1 g(i) — h(i))?
XZZ*Z—((? () (3.3)

Then, a second-order Savitzky-Golay filtering is applied to enhance local maxima and
smooth out multiple detection peaks in the direction orthogonal to #. An example of the
above procedure is illustrated in Fig. 3.2. In total, four channels are used to combine cues.
The first three are the channels of the CIELab colorspace (L, a,b) and the fourth is the
texture channel. This first step of gPb detector is illustrated in Fig. 3.2.

The process of computing the texture gradient is of special interest. First, the grayscale
version of the input image is convolved with the 17 filters of Fig. 3.3. Then, each pixel is
associated with a 17-dimensional vector of responses and these vectors are clustered using
k-means. The cluster centers define a set of image-specific textons. Finally, each pixel is
assigned the integer id in [1, K] of the closest center and the texture gradient is computed
with the histograms same as before.

All the above cues consist the Pb detector. To detect coarse as well as fine structures,
gradients are computed at three scales (radii of disks): [§,0,20]. The multiscale oriented
gradient signal is computed as:

me((L‘, Y, 0) = Z Z ai,sGi,U(i,s) (117, Y, 9) (34)
5 4
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Channel

Figure 3.4: Left, from top to bottom: the brightness, color a, color b channels of Lab
color space and the texton channel. Rows, from left to right: next to each channel,
oriented gradient of histograms for § = 0 and # = 7/2 (horizontal and vertical) and
maximum response over eight orientations in [0, 7).

Orientation 6 is sampled at 8 equally spaced orientations in the interval [0, ). The weights
a; s are learned by gradient ascent on the F-measure using the Berkeley Segmentation
Dataset [3].

On top of the multiscale implementation of the Pb detector there is a globalization
procedure. As input to this stage, a sparse affinity matrix W is constructed using the
maximal value of mPb along the line segment ij connecting two pixels i,j. All pixels i and
j within a fix radius r are connected with affinity:

W; = exp(— max{mPb(p)}/p) (35)

pEL)

where p is a constant. In order to introduce global information, a similar globalization
procedure as in the Normalized Cuts framework [44] is adopted. A diagonal matrix D;; =
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R

Figure 3.5: Left: Image and maximum response of spectral Pb over orientations,
sPb(z,y) = maxg{sPb(x,y,0)}. Right top: first four generalized eigenvectors,
Vi,...,V4 used in creating sPb. Right bottom: maximum gradient response over
orientations,maxy{Vyvy (z,y)}, for each eigenvector.

> ; Wij is defined and the corresponding generalized eigenvalues problem is solved:

(D—-W)v=\Dv (3.6)

Eigenvectors carry themselves contour information as one can easily see in Fig. 3.5.
Based on this observation, each eigenvector vy is treated as a image and convolved
with Gaussian directional filters at multiple orientations 6. In this way, oriented sig-
nals {Vyvi(z,y)} are obtained and the spectral component of the boundary detector is
formed:

"1
sPb(x,y,6 Z oy (3.7)
k=1 k

Finally, the globalized probability of boundary is a linear combination of the multiscale
Pb and the above mentioned spectral component sPb:

gPb(x,y, 0 ZZ&S io(is) (@,Y,0) +7 - sPb(z,y,0) (3.8)

The weights (3; s and 7 are learned by gradient ascent on the F-measure using the Berkeley
Segmentation Dataset [3]. An example of the gPb detector output is illustrated in Fig. 3.6.
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Figure 3.6: From left to right: input image, maximum response of gPb over all eight
orientations, gPb for § = /2, = 0 and 6 = 7 /4 respectively.
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Chapter 4

Distance transforms

4.1 Distance transform

4.1.1 Definitions

Before proceeding to definitions concerning distance transforms, there is a short de-
scription of the representations that will be used from this point and on. These represen-
tations are the same as in [7]| in order to retain consistency with the work we are based
on. To begin with, 2D images are represented by functions f : X — V. As range V will be
used the extended real line R = R U {—o00, 00} and as domain X the continuous (discrete)
space R? (Z?).The space of all such functions is denoted by F. In practice, only a bounded
subset X C X is used. In the discrete domain, X is identified with the set of vertices V' of
a grid (graph) G = {V, E'} and its edges E C V x V are defined as the set of vertex pairs
e = (u,v) such that u,v € V are connected. We use 4- or 8-connectivity, and write u o v
(u*v) iff u,v are 4- (8-) connected.

A function g from V x V — R, is called:

(a) Positive definite: if g(u,v) =0 u=v,Vu,v eV
(b) Symmetric: if g(u,v) = g(v,u) , Yu,v € V

(¢) Triangular: if g(u,w) < g(u,v) + g(v,w) , Vu,v,w € V

If g satisfies (a)-(c), it is called a distance function or a metric [42].

A distance transform is a special distance function that will be shortly introduced. Con-
sider first of all a binary image consisting of feature and non-feature points, respectively
foreground and background pixels, which can be single points, edges or entire objects.
A distance transform is an operation that converts a binary image to a grayscale image
where all points have a value corresponding to the distance to the nearest feature value.
The image foreground set is denoted as S C X and its background set S¢ C X, where S°¢
denotes the complement X\ S of set S. Given a metric d in X, the distance transform of
S is defined as the nonnegative function D;(S) whose value at each point z € X is the

39



Figure 4.1: From left to right: binary source set, outer distance transform, inner distance
transform.

(infimum) distance between x and the foreground S:

Dy(S)(z) £ /\ d(z —y) (4.1)

yes

where A stands for infimum (or minimum in the discrete case). Obviously, Dg(S)(z) is
zero for all x € S. Thus, the foreground set S can be seen as a set of sources emanating
a distance wave propagating away from the foreground and into the background. The
distance transform as a wave propagation will be analyzed in section 4.1.2. From this
point of view, definition (4.1) consists an outer distance transform and is useful when we
are concerned about the geometrical structure and the morphology of the background set
S¢. In case we are interested in the shape of the foreground set S, for instance when
S represents an object, it is preferable to consider the inner distance transform Dg(S€)
which uses the foreground set S to measure distances from the background set S¢. Two
examples of euclidean distance transforms are illustrated in Fig. 4.1 and Fig. 4.2.

The distance transform has a wide range of applications in image processing, computer
vision and robotics problems like smoothing, skeletonization, segmentation, size distribu-
tions, shape description, object detection and recognition, motion planning, shortest paths
and even pathfinding.

4.1.2 Distance transform as wave propagation

Maragos [31] describes how a distance transform can be viewed as wave propagation.
This formulation has been adopted in this section. Using Huygen’s construction [12], the
boundaries of multiscale dilations (erosions) by some convex structuring elements can also
be viewed as the wavefronts of a wave initiating from the original image boundary and
propagating outwards. In case of euclidean distance, the structuring elements are disks
and the wave propagates with constant normal speed, i.e. in a homogeneous medium.

To quantify this, assume the boundary C'(0) = 95 of the set S is a smooth simple
closed curve and let C'o(s) be a parametrization of the initial curve. Further, let 8(5, t)
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Figure 4.2: From left to right: binary source set, normalized (outer) distance transform.

represent the evolving boundary curve, i.e. wavefront, 8(1&) of the multiscale dilation or

erosion of S by some structuring element B(\) of size \. After dilation (erosion) of 8(5, t)
with the above structuring element, the boundary curve will be evolved to a new curve
C(s,t+ A). This evolution can be represented as [48]

Clst+A) — Cs,) = Als, 6, )N (s,8) (4.2)

where N is the outward normal vector at each point of the curve and A(s,t,\) is the

distance along N) that a point on the boundary moves in a dilation operation with a
structuring element of size A. Since A(s,t,0) =0 :

oC At ) A0y AL F 5§
0

) =1
gr (0 = limy ) N |\

(4.3)

According to [5], the amount of differential deformation, 3, of shape S at a point x € X
due to dilation (erosion) with a convex structuring element B, is the maximal (minimal)
projection of B onto the normal ﬁ of the boundary at x, so that 8 can only depend
on the orientation of the target to the shape ?(s, t), leading to the following differential
evolution law:

aﬁ;:,t) _ ﬁ(?(s,t))ﬁ(s,t)

(4.4)
C(5,0) = Cals)
If ﬂ(?(s, t)) = 1, we obtain the dilations and the outer distance transform:
Dy(S)(z) =inf{t >0:2 € C(t)} (4.5)

Thus, by equating scale (distance) with time, the distance function has a minimum-of-
arrival interpretation and its isolevel contours coincide with those of the wave phase func-
tion. By using a negative normal velocity (?(s, t)) = —1in (4.4) the distance wavefront
propagates inwards and creates the boundaries of multiscale erosions. According to Blum’s
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grassfire propagation principle [11], points where these wavefronts intersect and extinguish
themselves are the points of the Euclidean medial azis of S [10, 11]. Overall, the eu-
clidean distance function of D2 (.S) is the weak solution of the following nonlinear partial

differential equation:
|IVu(z)[| =1 z=e€S5°
u(z) =0 x€0S
This is a special case of the eikonal PDE which corresponds to wave propagation in
heterogeneous media and whose solution u is a weighted distance function, where the
weights F'(x) are inversely proportional to the varying propagation speed:

IVu(@)ls = F(@) in @, F(a) >0
u(x) = g(x) on T

(4.6)

(4.7)

where  is a domain in R? or R® and F(z) is typically supplied as known input to the
equation, as is the boundary condition that u equal a known function g(x) given along a
prescribed curve or surface I' in X.

4.1.3 Distance transform as infimal convolution

The infimal convolution f x g of the two-dimensional signals f, g is defined as:

(fxg)@) 2 N\ glz—y)+fy), zeX (4.8)

yeX

The distance transform of a function is closely related to the infimum convolution
operation. One can easily observe that when g(x —y) = ||z — y||4 for a given metric d in
X, the distance transform of f is exactly the infimum convolution of f and g. Analytically,
recalling the definition of distance transform of the foreground set S we have:

Dy(S)(z) = /\ dlz—vy), z€X=
yeSs

Dy(S)(z) = N\ dlz—y)+1s(y), z€X=
yeX

Da(5)(x) = (15 x d)(z)
where 1g(z) is the 0/oc0 indicator function for membership in the set S:

15(@:{0, x€eS

400, otherwise

4.2 Solving the eikonal equation

4.2.1 Fast marching methods

Fast marching methods are computational techniques introduced by Sethian [43] that
approximate the solution to nonlinear eikonal equations of the form:

IVu(z)|| = F(z) in Q, F(x) >0

u=g(x)onT (4.9)
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where Q is a domain in R? or R3. Here, the right-hand side, F'(z) > 0, is typically
supplied as known input to the equation, as is the boundary condition that u equal a
known function g(x) given along a prescribed curve or surface I' in .

Equation (4.9) is part of a broader class of Hamilton-Jacobi equations of the form:
H(ug, uy,uz, z,y,2) =0 (4.10)
In the case of the eikonal equation, the function H reduces to H = |Vu(x)| — F(z).

First of all, the finite difference approximation that Sethian [43] uses in its formulation
should be mentioned:

u? ~ (max (D *u, 0)2 + min (D; "u, 0)2> (4.11)

T

where the standard finite difference notation has been used:

D; %y = M’ D"y = Uil — W (4.12)
h h
Here, u; is the value of u on a grid at the point ¢h with grid spacing h.

Extending the previous approximations for the gradient to multiple dimensions, results
in the following scheme:

2 2 q1/2
max (Di;:”u, 0) + min (D;;xu, 0)
V| ~ ) | =F; (4.13)
+ max (Di;yu, 0) + min (D;yu, 0)
or equivalently:
2 4 1/2
max (D%”’ﬂ, —D;;xu, 0)
= Fy (4.14)

+ max (Dijyu, —Dz-jyu, 0)

One way to solve (4.14) is through iteration as it is a piecewise quadratic equation for
w5, assuming that the neighboring grid values for u are given. Assuming N x N grid and N
iterations until convergence, the computational complexity of the above method is O(N?),
which is computationally expensive. Fast marching methods reduce this complexity to

O(N?logN).

The central idea behind fast marching methods is to systematically construct the solu-
tion in a “downwind” fashion to produce the solution u. The upwind difference structure
of (4.14) means that information propagates “one way”, that is, from smaller values of u
to larger values. Hence, the fast marching algorithm rests on “solving” (4.14) by building
the solution outwards from the smallest u value. The algorithm is made fast by confining
the “building zone” to a narrow band around the front. The idea is to sweep the front
ahead in a downwind fashion by considering a set of points in a narrow band around
the existing front, and to march this narrow band forward, freezing the values of existing
points and bringing new ones into the narrow band structure (see Fig. 4.2.1). The key is
in the selection of which grid point in the narrow band to update.

Another way to look at this scheme is that each minimum trial value begins an ap-
plication of the Huygens principle, and the expanding wavefront touches and updates all
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Figure 4.3: Upwind construction of accepted values (from [43])

others. The speed of the algorithm comes from a heapsort technique to efficiently locate
the smallest element in the set Trial. Thus, the fast marching method is as follows: First,
tag points in the initial conditions as Alive. Then tag as Close all points one grid point
away. Finally, tag as Far all other grid points. Then the loop is as follows:

1. Begin Loop: let Trial be the point in Close with the smallest value of .

2. Tag as Close all neighbors of Trial that are not Alive. If the neighbor is in Far, remove
it from that list and add it to the set Close.

3. Recompute the values of u at all Close neighbors of Trial by solving the piecewise
quadratic equation according to 4.14.

4. Add the point Trial to Alive; remove it from Close.
5. Return to top of Loop.

The key to an efficient version of the above technique lies in a fast way of locating the
grid point in the narrow band with the smallest value for w. This is accomplished by the
use of a min-heap data structure. In an abstract sense, a min-heap is a “complete binary
tree” with a property that the value at any given node is less than or equal to the values
at its children. Since the total work in changing the value of one element of the heap and
bubbling its value upwards is O(logM), where M is the size of the heap, this produces
a total operation cost of O(MlogM) for the fast marching method on a grid of M total
points. Thus, for a two-dimensional grid of N x N points, the fast marching method
reduces the computational complexity from O(N?) to O(N?logNN); essentially, each grid
point is visited once to compute its value.

4.3 Weighted distance transform and the exact group march-
ing algorithm

In this section, the additively weighted distance transform will be presented along with
an efficient linear time algorithm for its computation. To help readers understanding,
definitions and main algorithm are analytically presented as in [7]. To begin with, given a
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metric d in X the additively weighted distance transform Dgy(f) of image f is defined as:

Dy(f)(z) = N d(z,y) + f(y), z€X, (4.15)
yeX
Most often, one can use a metric induced by a norm || - ||, that is, d(x,y) = ||z — y|| for

x,y € X. Also, d can be omitted and one can simply write D(f) instead. Although (4.15)
applies to arbitrary functions f, if the problem at hand is for instance image segmentation

or contour detection, a function that is related to boundaries, like gradient or contour map,
should be used.

The weighted distance transform has been studied primarily as a solution to the eikonal
equation, in problems like shading from shape [49]. A given function specifies the refractive
index on the plane, while a set of source points specifies boundary conditions. A given
source map is not required here. The weighting mechanism is more similar to [19] where
the distance map is obtained by an infimal convolution operation, equivalent to weighted
erosion [32].

The ezact group marching algorithm is a variant of group marching (GMM) [24], a
linear-time fast marching method that selects a number of points on the propagating front
to move as a group, thus avoiding the cost of sorting. all points are moved of the front as
a group using a constant-time priority queue on quantized distance. This is more similar
to [56], and in the binary case it would reduce to the two-queue scheme of [32]. However,
due to the Euclidean assumption and a bidirectional update, the entire computation is
exact.

With a careful look at equations (4.15) and (4.8), it can be immediately concluded that
the weighted distance transform is equivalent to the infimal convolution of a norm-induced
metric d with the image f. Thus, the algorithm described here for distance transforms of
sampled functions can be seen as a minimum convolution algorithm.

Now, given an image function f, the minimal set S (z) is defined for each point x € X
as the set of points y € X for which quantity d(z,y) + f(y) is minimized:

S(@) ={y € X : d(z,y) + f(y) = D(f)(x)} (4.16)

forx € X. Ify € g(m), one can equivalently write y = x. The source set S(x) of x is
defined as the subset of its minimal set such that no two points y, z € S(x) are related by
Y=z

Sz)={yeS) : Pz(y = 2= 2)) (4.17)

A point y is a source of x, or equivalently y > x, iff y € S(z). More generally, y € X is a
source iff y > x for some x € X, even itself. In this work, it is assumed that each x € X
has at least one source: y > x for some y € X. This is always true in the discrete domain.

Lemma 4.3.1 Given y € X, the following are equivalent:

(a) y is a source,
(b) y>=y.
(¢) D(N)y) = f(y),
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(d) S(y) ={y},

(e) y =y.

The source set S(f) of f is defined as the set of all sources y € X. It follows that
S(f) ={xr € X : = > x}. This makes it easy to detect sources. By s(x),x € X is denote
the source of x if it is unique, otherwise any representative of S(z). Function s : X — X
is called a source map.

Lemma 4.3.2 The distance map Dy(f) is uniquely determined by the restriction flg(y)
of f on its source set.

This is a generalization of an analogous observation on the binary distance map, which,
for a binary input B C X is uniquely determined by its boundary 0B. Source sets are
then closely related to region boundaries. Accordingly, the interior set of f is defined as

I(f) = X\ S(f).

Given an image f, we use the exact group marching (EGM) algorithm to compute the
distance map h = D(f) according to (4.15) and the source map s in the discrete domain,
using the Euclidean metric. EGM is outlined in algorithm 1. Propagation is initialized at
the source seed set Si(f), defined as

S4(f) = o € X f(a) < min f(y) + 1) (4.18)

Because d(z,y) = 1 for yox, it can be shown that Sy (f) is a superset of the source set

S(f)-

At the heart of propagation lies a priority queue with discrete priority levels, imple-
mented as an array of internal FIFO queues. Points are labelled as far, near, or done.
The queue holds points that are near, that is, points on the propagation front. Points
are processed in groups: each point x is processed according to its level |h(z)] and points
with the same level at random order. Neighbors y that are far PROPagate the front; near
ones participate in an UPDATE process twice, first in an incoming and then in an outgoing
direction . The computation is exact, despite the random processing order.

Proposition 4.3.3 (a) EGM computes the exact distance D(f)(x) as defined in 4.15 and
the correct source point s(x) for each x € X. (b) The while loop processes each x exactly
once. (c¢) Its time complexity is O(n), where n = |X|.

What remains undefined so far is the function height function f one should use for
distance computation. Here, we start from a contour detector output g and then f(x) =
o/g(x) for x € X, where o is a scale parameter. This is a generalization of the 0/c0
indicator function used in binary distance transform. The contour detectors we used are
the Canny detector and the gPb detector as described in the previous chapter.

In Fig. 5.4 some examples of the weighted distance transform using euclidean metric
are illustrated. Computation is done by our implementation of the exact group marching
algorithm. One can easily see that sources lie close to true image edges where images
contour maps have high values.
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Algorithm 1 Exact Group Marching

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

1
2
3
4:
5:
6
7
8
9

procedure EGM (image f)

initialize g, h, s; construct seed Sy as in (4.18)

for all z € S; do {s(z) + z; PROP(x,z); }

for all z € X\ S; do { label x as far;}

while -~ ¢.EMPTY( ) do
x < q.POP( ); label = as done
for yox, y near do UPDATE(y, x) > incoming
for yox, y near do UPDATE(x, ) > outgoing
for yox, y far do PROP(z,y)

end while

return distance map h, source map s
end procedure

procedure PROP(point x, point y)
h(y) « d(y, s(z)) + f(s(z));
s(y) < s(z);
q-PUSH(y, [ 1(y)]);
label y as near;

end procedure

procedure UPDATE(point x, point y)
ho <= d(y,s(z)) + f(s(z));
if ho > h(y) return
h(y) < ho;
s(y) < s(@);
end procedure

Figure 4.4: From left to right: input images, corresponding contour maps, binary source
sets (in black) and normalized weighted distance transforms computed by the exact group
marching algorithm.
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Chapter 5

Medial axis

5.1 Introduction

The medial azxis transformation is a technique first proposed by Blum [10] as a means
to describe a figure and has been extensively used for shape representation and description
[11]. Tt is formally defined as follows: given an object represented, say by a simple polygon
G, the medial axis A(G) is the set of points ¢ internal to G such that there are at least two
points on the object’s boundary that are equidistant from ¢ and are closest to q. Because
of its shape, the medial axis of a figure is also called the skeleton or the symmetric axis
of the figure. Associated with the medial axis is a radius function R, which defines for
each point on the axis its distance to the boundary of the object (see Fig. 5.1). With
the axis and the radius function one can reconstruct the figure by taking the union of all
circles centered on the points comprising the axis, each with a radius given by the radius
function.

5.2 Weighted medial axis

Recently, Avrithis and Rapantzikos [7] studied the medial axis on a distance map
weighted by infimal convolution. Rather than working on PDE’s like [45], they use a
residue criterion based on proximity of source points along boundaries. This is naturally

Figure 5.1: Illustration of a binary shape and its medial axis. Radii of drawn circles
correspond to the distance of each medial axis point to the boundary.
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N

Figure 5.2: Binary shapes (in white) and corresponding medial axes (in red).

connected to the definition of the medial axis and guarantees connectedness. They extend
it from binary shapes to arbitrary functions in the plane and compute it with a similar
constant-time operation. This approach is adopted here and will be analytically described.

Given the definitions of sources in a weighted distance map in section 4.3, x € X is
a medial point of f if it has at least two distinct sources. The weighted medial azis or
simply medial axis A(f) is the set of all such points:

A(f) ={z e X : |S¢(x)| > 1} (5.1)

Lemma 5.2.1 The source set and the medial axis of an image f are mutually exclusive:
S(f)NA(f) =0. Hence the medial azis is contained in the interior set, A(f) C I(f).

The medial axis transform or medial azis function A(f) is defined as the restriction
of the distance map D(f) on the medial axis: A(f) = D(f)|a(). It is a subset of the
(3D) product space E = X x V. The definitions above make sense only in the continuous
domain. In the discrete domain, the following properties are applicable:

Lemma 5.2.2 Let A be the medial axis of f in a FEuclidean space, and let x € A and
y € S(x).

(a) Construct a parametrized, open line segment from x to y. Then each point z on the
segment has a unique source s(z) = y.

(b) A has zero thickness, i.e. A C 0A.

Given two neighboring points xoy with s(z) # s(y), lemma 5.2.2(b) suggests there is
a medial point m with S(m) = {s(z), s(y)} on the line segment between x,y. Therefore,
pair (x,y) is labeled as medial. To deal with singularities in the distance map in the
discrete domain, an extension of the chord residue criterion [39] is used.

The weighted medial axis (WMA) algorithm computes the medial axis A(f) of image
f given its weighted distance map h = D(f) and its source map s. Propagation starts
with the medial seed set defined as:

A (f)={r € X : h(x) > maxh(y)}, (5.2)

Yo

and continue propagating downwards along A(f) using a FIFO queue ¢g. For each point x
being processed, we SCAN 4-connected neighbors yox to decide if (z,y) is a medial pair.
We only PROPagate to z’s 8-connected neighbors if x is found medial after SCANning.
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“Medialness” is recorded by means of residue r(x) = maxye, res(z,y) for x € X and the
medial axis is given by (?77?). Residue function res is discussed below.

A(f)={z e X : r(z) >0} (5.3)

Ogniewicz and Kiibler [39] define chord residue for binary shapes only, as the difference
between the length of a boundary curve segment and corresponding chord length of a circle
that is contained in the shape and bitangent to the boundary curve at the two endpoints
of the segment. The generalized distance map (4.15) is used and the distance value is
seen as a third dimension, or height. Recalling lemma 4.3.2, Avrithis and Rapantzikos
[7] define source function S(f) of f as the restriction of D(f) on the source set: S(f) =
D(f)lsp) = fls(p)- Dually to the medial axis function, S(f) C E is associated to local
manima and valleys of the distance map. Circles are generalized to cones lying below and
bitangent to S(f), and 2D curve segments in X to 3D paths along S(f) in E. Distances
are measured with the product metric 6 formed by the Euclidean metric d of 2D space X
and the absolute difference of 1D space V:

d(u,v) = d(u,v) + |h(u) — h(v)], u,veX. (5.4)

Now, given two points x,y € X with sources u = s(x),v = s(y), the chord residue is
generalized as:
res(z,y) = L(u,v) — 0(u,v) (5.5)

The length function ¢ generalizes the potential function of [39] as the length of the
shortest path (geodesic) connecting points (u, f(u)) and (v, f(v)) along the surface of the
source function S(f) in space E. Its computation is facilitated by the following.

Lemma 5.2.3 The medial azis A(f) is uniquely determined by the restriction f|as(s) of
function f on the boundary of its source set.

In the discrete domain, the source set S(f) = {z € X : = > z} is first computed and
follows the discrete boundary of the source set S(f) w.r.t. 4-connectivity as

05(f) ={z € S(f) : Iylyox Ay € I(f))}- (5.6)

A weighted graph H is constructed as a subgraph of grid G with vertex set V(H) =
0S(f), and weight function w(e) = §(u,v) for edge e = (u,v) € E(H). Its components
and the faces of each component are computed. Then, seeing each face ¢ as a cycle with
start vertex vg, we compute for each vertex v of ¢ the weight w.(v) of path (vg,...,v).
Each vertex v € V(H) may belong to up to four faces. If C'(v) denotes the set of faces
containing v, intersection C(u,v) = C(u) N C(v) is either empty (if u, v belong to distinct
components, in which case we define ¢(u,v) = 4+00) or contain exactly one common face
¢, associated to the component of I(f) containing x,y. In the latter case:

l(u,v) = min(.(u,v), w(c) — le(u,v)) (5.7)

where £.(u,v) = |w.(u) — w.(v)| and w(c) is the total weight of face ¢. This is a constant-
time operation.
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Figure 5.3: From left to right: medial axis
for scale =0,1,2,5.

Figure 5.4: From left to right: input images, corresponding binary source sets (in black),
normalized weighted distance transforms and medial axes(in red).

Lemma 5.2.4 (a) Given point pairs (z,y), (2',y') in the same component of interior
set I(f) with source pairs (u,v), (uv',v"), respectively, define paths = = (u,...,v), ™ =
(uy...,0"). If 7 C 7', then res(x,y) < res(z’,y’). (b) WMA generates exactly one com-
ponent of A(f) for each component of I(f). (c) Its complexity excluding initialization is

O(k), where k = |A(f)|.

Hence the residue function is increasing w.r.t. inward moves along the medial axis, and
pruning is as simple as thresholding with parameter scale. Typically scale = 2 (pixels).
In Fig. 5.3 the medial axis is illustrated for multiple values of scale. One can observe that
minor changes occur for values above the default value of scale = 2.

In addition, we define for each point = € X its medial pair set P (z) as the set of points
that maximize the residue r (x), or equivalently:

P (z) = {yox : r(x) = res(z,y)} (5.8)

and its computation is done in SCAN procedure of the WMA algorithm.
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Algorithm 2 Weighted Medial Axis
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procedure MEDIAL(distance map h, source map s)

initialize q, r;
construct A4 as in (5.2);
for z € X do r(x) < 0; label z as far;

for x € X do if z > x then label x as done;

for x € Ay do PROP(x)
while ~¢.EMPTY( ) do
x < q.POP( );
label = as done;
for yox, -y done do SCAN(z,y)

if r(x) # 0 then for y*z,y far do PROP(y);

end while
return residue r
end procedure

procedure PROP(point x)
q.PUSH(z);
label x as near;

end procedure

procedure SCAN(point x, point y)
p < res(z,y);
if s(z) = s(y) V p < scale then return
if p > r(y) Ay far then PROP(y);
r(z) < max(r(z), p);
r(y) < max(r(y), p);
end procedure
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Chapter 6

Image partition

6.1 Medial Axis Decomposition

Medial azis decomposition methods are most often found in problems of computational
geometry like domain decomposition [30] in binary images. The approach adopted in the
framework of this thesis in order to decompose the weighted medial axis is the decom-
position methodology developed by Avrithis and Rapantzikos [7] and it will be shortly
presented in this section. It is closest to watershed segmentation applied to the distance
map of binary regions [51], but using the weighted distance map of the gray-level input
instead. The partitioning is fundamentally different from gray-level watershed, in that the
latter is guided by image gradient.

While most work in the literature uses the medial axis to represent the shape of single
object or image region, its usage, here, is to represent the structure of an entire image
in terms of regions. Medial axis is decomposed into components and a corresponding
weighted graph G = {V, £} is constructed:

(a) Vertices V correspond to local maxima (peaks) of the distance map.

(b) Edges & correspond to local minima along the medial axis (i.e., along ridges), therefore
to saddle points of the distance map.

(c) Edge weights w(G) : £ — R are given by a function of the height at saddle points.

As function f is related to image gradient or to grayscale contour map, peaks of the
distance map correspond to the interior of image regions, and saddle points to adjacent
region pairs, like mountain passes. Referring to Fig. 6.1, red components correspond to
regions, each contains a peak, and each is represented in G as a vertex. Similarly, black
points correspond to saddle points, and are each represented as an edge of graph G. The
medial axis decomposition (MAD) algorithm [6] constructs graph G given a distance map
h = D(f) and the associated medial axis A(f). Start points are the distance peaks on the
medial axis:

AL(f) = AL(f)NA(S) (6.1)

and propagation continues downwards as outlined in algorithm 3. A priority queue q is
used again and propagation is performed to 8-connected neighbors according to height,
as in EGM algorithm. However, the priority level is now negated in PROP, because of the

55



Figure 6.1: Left: input image. Right: each red component contains a peak and is
represented in G as a vertex. Black points correspond to saddle points and are each
represented as an edge of graph G.

downward direction. A component label k(x) is assigned to each z € X, represented by
a vertex of graph G. Then, G is build by gradually inserting a VERTEX whenever a peak
with unlabelled neighbors is visited for the first time and an EDGE whenever two fronts
with distinct labels meet.

Propagation and component labelling in MAD is equivalent to applying watershed
segmentation to the negated distance map restricted to the medial axis (i.e. on A(f)) with
peaks as markers. However: (a) due to group marching, complexity is linear in k, where
k= |A(f)|- (b) A single point per marker is ensured, even in flat areas (plateaus), in which
case this point is chosen at random; effectively, the connected components of the markers
are build in parallel to propagation. (c¢) The graph G is constructed again in parallel.
(d) What is not shown in outline algorithm 3, is that an edge e = (u,v) is contracted or
equivalently w is identified with v whenever |h(u) — h(z(e))| < 1 or |h(v) — h(z(e))] < 1in
order to remove discretization effects along ridges while retaining true peaks, where z(e)
is the corresponding saddle point.

6.2 Image partition

Next, the entire image is partitioned via a reconstruction operation. A duality property,
which reduces this operation to EGM algorithm, is exploited. Recall that the distance
map D(f) applies to functions f defined on domain X whereas the medial axis function
A(f) is restricted to subset A(f) C X. Given any function f : U — V, the extension
operator is defined as f|X = f U ((X \ U) x {—o0}), which extends its domain to X with
value —oo wherever f is not defined. The extended medial operator is defined as M by
M(f) = A(f)|X for f € F. Since M(f) is defined on domain X, distance or medial axis
operators can be applied sequentially:

Proposition 6.2.1 Given function f, let ¢ = M(f) in a Fuclidean space, define f' =
—M(—g), ¢ = M(f"). Then source function S and medial axis function A are dual:

(a) =8(—9) = A(f)
(b) S(f") = —A(=g) € 5(f)
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Algorithm 3 Medial Axis Decomposition

1: procedure MAD(distance map h, medial axis A)
2 initialize ¢, G;

3 construct fLr

4: for © € A do k(x) « 0; label x as far

5: for z € A, do PrOP(z)

6 while —¢.EMPTY( ) do

7 x + q.POP( );

8 label x as done;

9: for yxz, y € A do SCAN(z,y)

10: if k(z) = 0 then k(z) < G.VERTEX(z)
11: end while

12: return graph G

13: end procedure

14:

15: procedure PROP(point z)

16: q.PUSH(z, |—h(y)]);

17: label z as near;
18: end procedure
19:

20: procedure SCAN(point z, point y)

21: if y far then PROP(y)

22: if x(y) = 0 return

23: if k(z) = 0 then k(z) + £(y); return

24: if k(z) # k(y) then G.EDGE(k(z), k(y), w(x))
25: end procedure

(c) 9 =g.

This result is quite condensed, but an one-dimensional example in Fig. 6.2 illustrates
the idea. Proposition 6.2.1 suggests that the extended boundary operator B can be defined
as B(f) = —M(—f) for f € F. Then, similarly to morphological erosion and dilation, the
two operators are dual. Also, similarly to opening (closing), composition Bo M (M o B)
is idempotent and has fixed point f iff f = B(g) (f = M(g)) for some g.

In practice, given the distance map h = D(f) and medial axis A(f), EGM is invoked
with input function g:

o(&) = {—h<x>, z € A(f) 6.2)

400, otherwise

Label map x from MAD is used to construct component or equivalently region labels
k(zx) for all x € X. Initial Partition Py is produced by a label propagation operation:

k() = k(8(x)), forallze X (6.3)

where §(z) denotes the dual source of x € X. The label map ~ that corresponds to the
initial partition Py will be denoted as kg. Image is represented as a disjoint-set forest
data structure where each pixel corresponds to a node. Initially, all nodes are in disjoint
sets or equivalently each node has as parent the node itself. After the label propagation
according to (6.3), each node in the disjoint-set forest has as parent its source point of
the dual distance transform.
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Figure 6.2: Illustrating duality of proposition 6.2.1 in one dimension. Functions in (b),(d)
are negated versions of (a), (c); horizontal axis is X. (a) Black: f, blue: D(f), green dots:
A(f). f is low at image boundaries, high inside regions. (b) Blue: red dots: A(—g). (c)
Red dots: S(f’) = —A(—g). This is where fronts meet during partitioning.

¥

In Fig. 6.2 an example of the initial partition produced by the medial axis decompo-
sition and the dual distance map. In addition, Fig. 6.4 an illustrates the EGM algorithm
scale parameter o effect to the finesse of the initial partition.
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Figure 6.3: From top to bottom: input images, medial axis (in red) and corresponding
saddle points (in black), dual source set which is identified with the medial axis as can be
easily observed, dual distance map, (initial) partition.
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Figure 6.4: Initial partition for scale parameter of the exact group marching algorithm for
o = 0.25, 0.5, 1.0 and 2.0 respectively.
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Chapter 7

Adjacent region merging

7.1 Efficient Merging based on similarity

The first merging technique we propose is an efficient merging technique based on
a similarity measure between adjacent regions. Returning to line 24 of algorithm 3, we
define the weight of each edge e € £ for this merging technique as:

w(e) = h(z(e)) (7.1)

where z(e) is the saddle point where e is generated. The choice of the above weight
function as a measure of similarity will be shortly justified.

First of all, recall the definition of the weighted distance transform at point x:

W) = d(z,s(x)) + f(s(x)) (7.2)

where s(x) is the source point of z. Large value of a saddle point height potentially means
that there is a large boundary discontinuity or equivalently a large gap in the binary
source set. This discontinuity is associated with the term d(x, s(x)) . In addition, it could
demonstrate the existence of a weak boundary in case of a small value of f(s(x)). In any
of the above cases, the saddle point height can be viewed as a non-negative measure of
similarity between adjacent regions.

We define as similarity between two regions (components) R, R’ C X is defined as the
mazximum edge connecting the two regions. That is:

Sim(R, R') = max {w(u,v) :u € R,v € R, (u,v) € £} (7.3)
If there is no edge connecting R and R’ then let Sim(R, R') = 0.

A region comparison predicate Q(R, R’) is introduced to evaluate whether a boundary
exists between a pair of regions R, R’. If this predicate is true then the two regions should
not be merged. The predicate checks if the similarity between the components, Sim(R, R'),
is less or equal than a threshold function 7(R, R’). The pairwise comparison predicate for
the existence of a boundary is defined as:

true , if Sim(R, R') < 7(R, R')

false , otherwise

QR,R) = { (7.4)
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The implemented algorithm , which we name Efficient Similarity Merging (ESM), has
analogous basic steps as [18]. We first sort edge weights by non increasing edge weight.
Then we process each weight in the latter order. Regions pairs are merged if the predicate
Q is false for the two adjacent regions that each edge connects. A disjoint set forest
representation ,as described in the previous section, is used along with union by rank and
path compression techniques to improve running time. The main merging algorithm is
outlined below.

Algorithm 4 ESM

1: procedure SEGMENTATION(graph G, initial label map &)
2: Sort £ = (ey, ..., en) by non increasing edge weight.
forq=1,...,mdo

Let eq = (u,v),u € Randv € R/

Ky 4 FIND(u)

Ky ¢ FIND(v)

if “Q(R, R') then UNION(ky, k)
end for
return label map &
10: end procedure

What remains undefined so far is the threshold function. The threshold function of
two regions R; and R; is defined as the minimum between the threshold function of each
region separately:

(R, R') = min (7(R), 7(R')) (7.5)

For the threshold function of one region, two choices have been used and tested. The
first one is a simple constant, that is:

T(R)=T (7.6)

where 7 is a constant. On the other hand, the second choice of the threshold function
is proportional to the region area, denoted as |R|. That is for a small region, a smaller
evidence for similarity is required.

T(R) = [R| /k (7.7)

where k is a constant and plays the role of a scale factor.

Lemma 7.1.1 If an edge e, and the two corresponding distinct region are considered and
not merged then at least one of the two components will be in the final segmentation.

Lemma 7.1.2 The segmentation S produced by 5 is not too fine according to 2.2.1, using
the predicate Q.

Lemma 7.1.3 The segmentation S produced by 5 is not too coarse according to 2.2.1,
using the predicate Q.

Detailed proofs of the above lemmas are presented in Appendix A.
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7.2 Merging controlled by region fragmentation

In this section we present an alternative merging technique based on the fact that
resulting regions from any segmentation procedure are closed. In addition, image repre-
sentation we adopted in this framework is able to measure a region’s boundary closure or
inversely a region boundary fragmentation. Thus, we see image segmentation as a search
for most closed region boundaries. We introduce a new logical predicate for adjacent
region merging based on region boundaries fragmentation.

The source set may frequently become disconnected or fragmented. Gaps appear either
due to variation of f along edges, or to region shape. Medial axis decomposition helps
overcome fragmentation because for every gap there is associated a local minimum of
the distance map along the medial axis, that is, a saddle point. The surrounding saddle
points give rise to edges of graph G. Returning ,again, to line 24 of algorithm 3 we define
a different edge weight function which we consider as more appropriate for this method.
We now define the weight w(e) for each edge e € £ as the width of the associated gap of
the source set. If x = x(e) denotes the saddle point where e is generated and y € P(x)
one point of the medial pair set of x, then the edge weight w(e) or equivalently the width
of the associated gap can be written as:

w(e) = d(z, s(x)) +d(y, 5(y)) < (7.8)
w(e) = h(z) — his(x)) +hly) — h(s(y)) (7.9)
d(@,s(x)) d(y,s())

Medial pair set may contain more than one points and four at most. In case there are
more than one medial pairs of x, its choice does not significantly affect the associated
width measurement. Thus, in practice we randomly choose one out of these medial pairs
to measure the gap width.

Given a region R with area a(R) and corresponding edge set E(R), its shape fragmen-
tation factor is defined as [7]:

o(R) = > we) (7.10)

e€E(R)

whereas ¢(R) = 0 if E(R) = (). This factor is a dimensionless, scale invariant quantity. It
is an increasing function of both the width of the gaps and their cardinality (for constant
sum of widths), and is identically zero for closed shapes.

With a single iteration through each edge e € £, we compute the sum of squared gap
widths appearing in (7.10) for each component, prior to region merging.

Now, we define the predicate for merging two adjacent regions R, and R’ :
Q(R,R) = max (gb(R'), gb(R)) > 7T (7.11)

where threshold 7 is a constant. At this point it should be underlined that when a
merging between a pair of adjacent regions (R, R') occurs, then the new region’s R U R’
fragmentation factor is computed as following;:

Yeenr) W (€) + Yeenm) W (€) =2+ eenmpnpur) @ ()
a(R) + a(R)

H(RUR) = (7.12)
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The merging process is similar to the one described in the previous section. Again,
we first sort edge weights by non increasing edge weight and then we process each weight
in the latter order. Regions pairs are merged if the predicate @ is true for the two
adjacent regions that each edge connects. The predicate is true if at least one of them has
fragmented boundaries, i.e. it has a fragmentation factor greater than a constant 7. Our
Shape Fragmentation based Merging (SFM) algorithm is presented below.

Algorithm 5 SFM

1: procedure MERGING(graph G, initial label map k)

2 Sort £ = (ey,...,em) by non increasing edge weight.
3 forg=1,...,m do

4: Let eg = (u,v), u € R and v € R’

5: Ky <— FIND(u)

6 Ky $— FIND(v)

7 if Q(R,R’) then

8 UNION (K, Ky )

9: UPDATE(¢(R U R’)) according to (7.12)
10: end if

11: end for

12: return label map &
13: end procedure

14:

7.3 Hierarchical segmentation and ultrametric contour maps

Arbelaez [2] defines the notion of ultrametric contour maps that are used to produce
hierarchical image partitions. The main idea is to represent the whole process of partition
from the finest level (the initial oversegmentation) to the coarser level (entire image is
one segment) in a single grayscale image. From this grayscale image named ultrametric
contour map one can obtain segmentation at any desired scale by a simple thresholding
operation. The definitions and description that follows can be found at [2] and are included
in this section to improve readers comprehension.

Let Py denote an initial partition of image domain X and A € R a scale parameter. A
Hierarchical Segmentation Operator (HSO) is a mapping between a partition Py to (Po, \)
in such a way that the three following properties are satisfied:

Pr="Po, VALO0 (7.13)
I eRY Py ={X}, VA>N (7.14)
A<N =Py CPy (7.15)

where symbol C denotes the partial order of partitions, such that P C P iff:

VR, € P,3R; € P': R; C R, (7.16)

According to (7.16), sets of partitions at different scales are nested and impose a
hierarchical structure to the family:

H={RCX|IN:ReP)} (7.17)
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The stratification index is defined as the scale A at which a region appears in H:

I(R) = inf {)\ S [0, Al] 'R e 73)\} (7.18)

Pair (H, I) is called an indexed hierarchy of subsets of X.This indexed hierarchy can be
represented by a dendogram, where the height of each region is given by the stratification
index I(R). The construction of the above hierarchy is equivalent to the definition of a
distance or a metric between two elements z,y € X:

V(z,y) =inf{I(R) |lr € RANy€ RAR e H} (7.19)

Metric ) belongs to a special type of distances, called ultrametrics, which in addition
to the triangle inequality they satisfy the following property:

V(z,y) < max{YV(z,2),Y(y,2)}, =z,y,2€ X (7.20)

Alternatively, segmentation can be expressed in terms of contours. A segmentation
K of domain X can be defined as a finite set of Jordan curves, the contours of K. The
regions R; of K are the connected components of X \ K. The contour separating adjacent
regions R; and R; is denoted as 0;;.

Hierarchical segmentation operation can be dually expressed in terms of contours.
Thus, equations (7.13) to (7.14) can be rewritten as following:

Ky =Ko, VA0 (7.21)
N eRT Ky =0X, VA> )\ (7.22)
A< =Ky DKy (7.23)

Property (7.21) determines the set of initial contours Ky which are related to the initial
partition Py. Property (7.22) demonstrates that all inner contours of domain X vanish
at a scale A;. According to the third property (7.23), localization of contour is preserved
through different scales.

Let Y be the ultrametric distance defined by a Hierarchical Segmentation Operator
(HSO). The ultrametric contour map (UCM) associated to ) is defined as:

C(y)(é?) = inf{)\ S [0, )\1} | 0 g K)\}, Yo € Ky (7.24)

The number C(Y)(9) is called the saliency of contour 0. Note the duality with the
regions, the saliency of 0 being its scale of disappearance from the hierarchy of contours.
The ultrametric contour map is a representation of a HSO in a single real valued im-
age. Figure 7.3 presents a simple example of UCM. By definition, thresholding this soft
boundary image at scale A provides a set of closed curves, the segmentation K.

Starting from a family of nested partitions constructed by a region merging process,
one can always define an ultrametric distance by considering as stratification index an
increasing function of the merging order. However, in order to define a meaningful notion
of scale, the distance between any two points in adjacent regions should coincide with the
inter-region dissimilarity J:

y($,y) = 5(Ri,Rj),VFL‘ S RZ-,Vy € Rj (7.25)

65



w n

W

Figure 7.1: From left to right: Family of segmentations defined by a HSO, UCM and
3D view of UCM.

This property is satisfied by setting the value of the dissimilarity at the creation of a region
as its stratification index. However, for an arbitrary dissimilarity, this choice can lead to

the existence of two regions (R, Rl> € H? such that R ¢ R’ but f(R) > f(R'). In terms

of contours, this case implies the violation of property (7.23))

Hence, we call 6 an ultrametric dissimilarity if the pair (#, ) is an indexed hierarchy,
where [ is defined by:
I(RZ‘ U Rj) = (5(Rz, Rj) (7.26)

for all pairs of connected regions (R;, R;) € H?.

One can then prove that a dissimilarity ¢ is ultrametric if and only if:
5(Ri, Rj) <4 (Ri U Rj, Rk) (7.27)

where (R;, R;) is the region pair minimizing § and Ry, is a region connected to R; U R;
and appearing in the partition obtained after the merging of (R;, R;)).

Working with ultrametric dissimilarities, as those defined in the next section, is im-
portant for our application because it guarantees that the saliency of each contour in the
UCM is ezxactly the value of the dissimilarity between the two regions it separates.

The algorithm we implemented for region merging using ultrametric contour maps
proceeds as following. The hierarchy of regions is constructed by a greedy graph-based
region merging algorithm. A graph G = (P, K) is defined where the nodes are the regions
P, the edges correspond to contours K separating adjacent regions and the weights W
are a measure of ultrametric dissimilarity between regions. The above graph is initialized
by the initial partition produced by MAD algorithm. In addition, it produces as output
the corresponding Ultrametric Contour Map (UCM) which is initially set to zero for all
elements in image domain. The algorithm proceeds by sorting the links by similarity and
iteratively merging the most similar regions. The merging process can be summarized in
the following main steps:

1) Select minimum weight contour: C*

2) Let R;, Rj € P be the regions separated by C*

2) UCM(z) =W (C*), Vxe€ 0y

4) Set R = R; U R; and update: P <— P\{R;,R;} UR and K + K\{C*}
)

5) Stop if K is empty. Otherwise, update weights W and repeat.

As we have computed the ultrametric Contour Map, one can obtain the final segmentation
by simply thresholding UCM at a desired scale.
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7.3.1 Inter-region fragmentation ultrametric dissimilarity

In this section, we exploit the rich image representation provided by the medial axis
decomposition method we are based on. Specifically, we define the inter-region fragmenta-
tion factor between two adjacent regions R; and I?; as the sum of the gap widths associated
with their common boundary divided by the length of their common boundary. That is:

w(e)
e€E(R;)NE(Ry)
B(R,, ) = SETEE (7.25)

A large value of the inter-region fragmentation demonstrates the absence of a strong
and continuous boundary between two regions. Thus, it expresses similarity between
corresponding regions. Now, we define the ultrametric dissimilarity d which is based on
the inter-region fragmentation:

5¢(R1,Rj) = exp (—(I)(RZ',R]'» (7.29)
Lemma 7.3.1 The dissimilarity dp is ultrametric.

Lemma 7.3.1 is analytically proved in the Appendix A.

7.3.2 Mean Boundary Gradient Ultrametric Dissimilarity

In addition to the previous ultrametric dissimilarity, we experimented on and im-
plemented an ultrametric dissimilarity based on the mean boundary strength between
adjacent regions. Using mean boundary strength is a common approach [2, 4] to express
adjacent region dissimilarity. The boundary strength ultrametric dissimilarity is defined

5, (0)

59(R17Rj) = m

(7.30)

where » (0ij) = . o g(x(s))ds, that is the sum of image gradient or the sum of a grayscale
contour output g along the common boundary.

Lemma 7.3.2 The dissimilarity 64 as defined in equation (7.30) is ultrametric.

Lemma 7.3.2 is analytically proved in the Appendix A.
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Chapter 8

Evaluation

8.1 Introduction

When developing a scientific method in any field, it is more than essential to test
how well the particular method works according to some objective criteria. This point
is eloquently underlined by Lord Kelvin words: “When you can measure what you are
speaking about and express it in numbers, you know something about it; but when you
cannot measure it, when you cannot express it in numbers, your knowledge is of the meager
and unsatisfactory kind”. Thus, in this chapter we evaluate our method, compare it to
other methods and discuss the pros and the cons of each merging technique.

8.2 Dataset

To evaluate our method we used the Berkeley Segmentation Dataset which is the most
popular and wide known dataset for the purpose of image segmentation. The original
Berkeley Segmentation Dataset (BSDS300) consists of 300 natural images, manually seg-
mented by a number of different subjects. The ground-truth data for this large collection
shows the diversity, yet high consistency, of human segmentation. The images are divided
into a training set of 200 images, and a test set of 100 images. A new dataset (BSDS500)
is an extension of the BSDS300, where the original 300 images are used for training /
validation and 200 fresh images, together with human annotations, are added for testing.
Each image was segmented by five different subjects on average.

8.3 Evaluation metrics

In the following sections, several metrics for evaluating both boundaries and regions
against human ground-truth are presented as described in the documentation of the
BSDS500 [4].
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Figure 8.1: Human ground-truth of Berkeley segmentation dataset

70



8.3.1 Precision-recall framework

In the field of information retrieval, precision is the fraction of retrieved items that are
relevant to the search:

|[{Relevant items} N {Retrieved items}|

Precision =
|[{Retrieved items}|

(8.1)

Recall in information retrieval is the fraction of relevant items that are successfully
retrieved:
|[{Relevant items} N {Retrieved items}|
|{Relevant items}|

Recall = (8.2)

The precision-recall framework has been used to evaluate the output of a contour de-
tector or a segmentation algorithm as both outputs are image regions boundaries. This
framework considers two aspects of boundary detection performance. Precision (P) mea-
sures the fraction of true positives in the boundaries produced by a detector or a segmen-
tation method. Recall (R) measures the fraction of ground-truth boundaries detected.
Thus, precision quantifies the amount of noise in the output of a contour detection or a
segmentation method, while recall quantifies the amount of ground-truth detected. Com-
putation of precision and recall is performed as following: the machine boundary map
is separately corresponded with each human map in turn. Only those machine boundary
pixels that match no human boundary are counted as false positives. The hit rate is simply
averaged over the different humans, so that to achieve perfect recall the machine boundary
map must explain all of the human data. For detectors that provide real-valued outputs,
one obtains a curve parametrized by detection threshold, quantifying performance across
operating regimes. The global F-measure, defined as the harmonic mean of precision and
recall, provides a useful summary score for the algorithm. The F-measure is defined as:

2PR

F=
P+ R

(8.3)

8.3.2 Variation of information

The Variation of Information metric was introduced for the purpose of clustering
comparison. It measures the distance between two clusterings C and C’ in terms of their
average conditional entropy given by:

VI(C,C) = H(C)+ H(C) - 21(C,C) (8.4)

where H and I represent respectively the entropies and mutual information between two
clusterings of data C’ and C’. In the case of image segmentation, these clusterings are
test and ground truth segmentations. Although VI possesses some interesting theoretical
properties, its perceptual meaning and applicability in the presence of several ground-truth
segmentations remains unclear.
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Figure 8.2: The Precision-recall curve is presented in blue. The light green curves represent
the isolevel lines of the function F/(P, R). They can be used to situate the Precision-Recall
curves, since the quality of a detector is judged by considering the image of its curve by
the function F. Thus, the point with mazrimal F-measure, in red, can be interpreted as
the highest point of the curve on the surface z = F(P, R), the objective being the point
F(1,1) = 1. The isolevel line F(P,R) = 0.79, in dark green, corresponds to the human
consistency on the test data set of the BSDS300, obtained by comparing the human
segmentations among them. This line represents the reference with respect to which the
performance of machines for the task of boundary detection is measured. (From [1]).

8.3.3 Rand index

Originally, the Rand Index was introduced for general clustering evaluation. It operates
by comparing the compatibility of assignments between pairs of elements in the clusters.
The Rand Index between test and ground truth segmentations S and G is given by the
sum of the number of pairs of pixels that have the same label in S and G and those
that have different labels in both segmentations, divided by the total number of pairs
of pixels. Variants of the Rand Index have been proposed for dealing with the case of
multiple ground-truth segmentations. Given a set of ground-truth segmentations {Gy} ,
the Probabilistic Rand Indez is defined as:

PRI(S,{Gx}) = 7 S leimis + (1 = )1 = 1) (55

1<j

where c;; is the event that pixels ¢ and j have the same label and p;; its probability. T is the
total number of pixel pairs. Using the sample mean to estimate p;;, amounts to averaging
the Rand Index among different ground-truth segmentations. The PRI has been reported
to suffer from a small dynamic range and its values across images and algorithms are often
similar. In, this drawback is addressed by normalization with an empirical estimation of
its expected value.
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8.3.4 Segmentation covering

The overlap between two regions Ry and Ry is defined as:

|R1 N Ry
O(Ry, Rp) = M (8.6)

The covering of a segmentation S7 by a segmentation Ss is defined as:

1
C(S1 = 82) = > IR - max O(R1, Ry) (8.7)
ReS

where N denotes the total number of pixels in the image.

Similarly, the covering of a machine segmentation S by a family of ground-truth seg-
mentations is defined by first covering S separately with each human segmentation {Gy},
and then averaging over the different humans. To achieve perfect covering the machine
segmentation must explain all of the human data.

8.4 Results

In the following figures we show some representative results of the segmentation tech-
niques we implemented. Results that follow are produced using the gPb contour detec-
tor as input to our framework. All implemented merging techniques depend on a single
threshold value. The threshold value that maximizes the F-measure for the entire test set
is called the optimal dataset scale (ODS) whereas the threshold value that maximizes the
F-measure for each image of the test set is called the optimal image scale (OIS). Thus, we
expect segmentations produced at OIS to be closest to human ground-truth segmentations.
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Figure 8.3: Segmentation results on the BSDS500 produced by the gPb-mad-
esm algorithm using a constant value threshold. From left to right: input
image, and segmentations obtained by thresholding at the optimal dataset scale (ODS)
and optimal image scale (OIS). All images are from the test set.
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Figure 8.4: Additional segmentation results on the BSDS500 produced by the
gPb-mad-esm algorithm using a constant value threshold. From top to bottom:
input image, and segmentations corresponding to the optimal dataset scale (ODS) and
optimal image scale (OIS). All images are from the test set.
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Figure 8.5: Segmentation results on the BSDS500 produced by the gPb-mad-
esm algorithm using a threshold based on region size. From left to right: input
image, segmentations corresponding to the optimal dataset scale (ODS) and optimal image
scale (OIS). All images are from the test set.
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Figure 8.6: Segmentation results on the BSDS500 produced by the gPb-mad-
sfm algorithm using a threshold based on region size. From top to bottom:
input image, and segmentations segmentations corresponding to the optimal dataset scale
(ODS) and optimal image scale (OIS). All images are from the test set.
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Figure 8.7: Hierarchical segmentation results on the BSDS500 by using the
inter-region fragmentation ultrametric dissimilarity. From left to right: input
image, segmentations obtained by thresholding at the optimal dataset scale (ODS) and
optimal image scale (OIS).
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Figure 8.8: Hierarchical segmentation results on the BSDS500 by using the
boundary strength ultrametric dissimilarity . From left to right: input im-
age, ultrametric contour map and segmentations obtained by thresholding at the optimal
dataset scale (ODS) and optimal image scale (OIS).
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Figure 8.9: Hierarchical segmentation results on the BSDS500 produced by
using the boundary strength ultrametric dissimilarity. From left to right:
input image, ultrametric contour map and segmentations obtained by thresholding at the
optimal dataset scale (ODS) and optimal image scale (OIS).

8.5 Evaluation

To provide a basis of comparison for the the merging techniques of our segmentation
framework, we make use of the state-of-art gPb-owt-ucm [3] algorithm along with its
baseline, the Canny-owt-ucm algorithm. In addition, we provide results as presented in
[3] for the region merging by Felzenszwalb and Huttenlocher [18] (Felz-Hutt), Mean Shift
[15], Multiscale Normalized Cuts [16] and for a fixed hierarchy of regions such as the
Quad-Tree with 8 levels.

For our implemented techniques, let ucm, denote our merging technique based on
boundary strength ultrametric dissimilarity, ucmg denote our merging technique based on

80



inter-region fragmentation ultrametric dissimilarity, esm. denote the ESM algorithm with
a constant threshold value and esm, denote the ESM algorithm with using a threshold
based on region size. In addition, we denote our grayscale canny contour detector as
gCanny.

We evaluate each method using the boundary based precision-recall framework as well
as the Variation of Information, Probabilistic Rand Index, and Covering criteria described
in the previous sections. The BSDS serves as ground-truth for both the boundary and
region quality measures, since the human-drawn boundaries are closed and hence are also
segmentations.

8.5.1 Boundary benchmarks

The overall results for boundary evaluation criteria are presented in Table 8.5.1. Re-
sults for several different segmentation methods (upper table) and contour detectors (lower
table) are given. Shown are the F-measures when choosing an optimal scale for the entire
dataset (ODS) or per image (OIS). The boundary benchmark is considered to have the
largest discriminative power among the evaluation criteria, clearly separating the Quad-
Tree from all the data-driven methods.

BSDS500

ODS | OIS
Human 0.80 | 0.80
gPb-owt-ucm [3] 0.73 | 0.76
gPb-mad-ucm, 0.72 | 0.75
gPb-mad-esm, 0.69 | 0.72
gPb-mad-ucmy 0.69 | 0.71
gPb-mad-sfm 0.67 | 0.70
gPb-mad-esm, 0.64 | 0.68
Mean Shift [15] 0.64 | 0.68
NCuts [16] 0.64 | 0.68
gCanny-mad-ucm, | 0.61 | 0.65
Felz-Hutt [18] 0.61 | 0.64

Canny-owt-ucm [3] | 0.60 | 0.64
gCanny-mad-esm, | 0.58 | 0.61
gCanny-mad-esm, | 0.58 | 0.61
gCanny-mad-sfm 0.56 | 0.59
gCanny-mad-ucmg | 0.55 | 0.58

Quad-Tree 0.38 | 0.39
gPb [3] 0.71 | 0.74
gCanny 0.61 | 0.64
Canny [3] 0.60 | 0.63

Table 8.1: Boundary benchmarks on the BSDS500.
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8.5.2 Region benchmarks

The overall results for region evaluation criteria are presented in Table 8.5.1. For
each segmentation method, the leftmost three columns report the score of the covering
of ground-truth segments according to optimal dataset scale (ODS), optimal image scale
(OIS), or Best covering criteria. The rightmost four columns compare the segmentation
methods against ground-truth using the Probabilistic Rand Index (PRI) and Variation of
Information (VI) benchmarks, respectively. Among the region benchmarks, the covering
criterion has the largest dynamic range, followed by PRI and VI.

BSDS500
Covering PRI VI

ODS | OIS | Best || ODS | OIS || ODS | OIS
Human 0.72 | 0.72 - 0.88 | 0.88 || 1.17 | 1.17
gPb-owt-ucm|[3] 0.59 | 0.65 | 0.74 || 0.83 | 0.86 || 1.69 | 1.48
gPb-mad-ucm, 0.58 | 0.64 | 0.74 || 0.83 | 0.86 || 1.62 | 1.39
gPb-mad-esm, 0.55 | 0.62 | 0.71 || 0.82 | 0.86 || 1.83 | 1.51
Mean Shift [15] 0.54 | 0.58 | 0.66 || 0.79 | 0.81 || 1.85 | 1.64
Felz-Hutt [18] 0.52 | 0.57 | 0.69 || 0.80 | 0.82 || 2.21 | 1.87
gPb-mad-sfm 0.52 | 0.56 | 0.62 || 0.79 | 0.82 || 1.83 | 1.70
gPb-mad-esm, 0.51 | 0.54 | 0.60 || 0.79 | 0.80 || 1.86 | 1.82

Canny-owt-ucm [3] 0.49 | 0.55 | 0.66 || 0.79 | 0.83 || 2.19 | 1.89
myCanny-mad-ucm, | 0.48 | 0.55 | 0.65 || 0.79 | 0.83 || 2.10 | 1.77

gPb-mad-ucm, 0.46 | 0.54 | 0.63 || 0.77 | 0.80 || 2.07 | 1.81
NCuts [16] 0.45 | 0.53 | 0.67 || 0.78 | 0.80 || 2.23 | 1.89
gCanny-mad-esm, 0.45 | 0.53 | 0.63 || 0.78 | 0.83 || 2.31 | 1.91
gCanny-mad-sfm 0.42 | 0.49 | 0.58 || 0.77 | 0.80 || 2.18 | 1.95

gCanny-mad-esm, 0.40 | 047 | 0.53 || 0.76 | 0.77 | 2.41 | 2.27
gCanny-mad-ucmg 0.35 | 0.42 | 0.50 || 0.74 | 0.77 || 2.43 | 2.29
Quad-Tree 0.32 | 0.37 | 0.46 || 0.73 | 0.74 || 2.46 | 2.32

Table 8.2: Region benchmarks on the BSDS500.

8.6 Discussion

From all merging techniques we implemented, the gPb-mad-ucm, has the best perfor-
mance in both boundary and region benchmarks. It is almost as good as the state-of-art
gPb-owt-ucm algorithm in the boundary benchmark and in Covering metric, exactly as
good in Probabilistic Rand Index metric and significantly outperforms the gPb-owt-ucm
algorithm in the Variation of Information metric. The gPb-mad-ucmg technique that
merges according to the inter-region ultrametric dissimilarity performs quite well in the
boundary benchmark but it has the worst performance in the region benchmark. This is
quite expected as the inter-region fragmentation dissimilarity is actually a binary approz-
imation of the boundary strength between two regions. Consider the following case: two
regions are separated by a relatively small boundary segment which has a medium contour
strength. If the are stronger gradients in the neigborhood of this segment, then probably
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there will not be formed any sources on the this boundary segment. As a result, this
segment will be considered as one of very weak dissimilarity and the two corresponding
regions will be merged despite the fact that there is underlying boundary strength.

The efficient similarity merging technique using a constant threshold seems to be the
second best technique out the five we proposed and tested. It has the advantage that it is
efficient, easy to implement and produces good results. Its main drawback is that it does
not take into account the region size. Thus, it will not merge two small adjacent regions
even if there is relatively strong evidence for similarit. In addition, using a threshold func-
tion based on region area, instead of a constant threshold, does not actually produce the
desired results. It creates a preference for regions size rather than a proper normalization
of regions similarity. Moreover, the merging technique controlled by shape fragmentation
factor has the advantage that it takes into account more global information than the other
methods. One the one hand, it can merge small regions if their boundaries are fragmented
enough. On the other hand, it can break up uniform regions.

Finally, we see that the use of a contour detector that does not take into account texture
information such as the implemented Canny detector, yields in quite poor result not only
for the techniques of our framework but for algorithms such the owt-ucm. So, the choice
of a contour detector is of high importance for the problem at hand. Natural images are
very complicated and usually textured and thus, a sophisticated contour detector as the
gPb is necessary. If the problem was to segment another type of images, e.g. textureless
biomedical images, then probably our baseline contour detector would be sufficient to
produce good results and preferable than the computationally costly gPb detector.
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Chapter 9

Conclusions

9.1 Conclusions

In the framework of this thesis, we presented new image segmentation techniques based
on a recently developed medial axis decomposition procedure. We investigated various
merging techniques and explored several possible applications of a medial decomposition
procedure for the purposes of segmenting natural images. We evaluated the implemented
merging techniques using the Berkeley Segmentation Dataset and compared with some
state of the art algorithms. The performance of developed techniques, with a proper con-
tour detection as input, proved to be comparable with the state of the art. Although
medial axis is considered, in general, unstable, we demonstrated that medial axis can be
applied for image segmentation purposes with success, producing meaningful segmenta-
tions which are close to human visual perception.

9.2 Future work

Medial axis decomposition technique for the purpose of image segmentation has not
been fully investigated in the narrow limits of a diploma thesis. We plan to further
investigate several different directions in the future. Some of them are:

e A modified distance transform including contour orientation information.

e Integration of local characteristics and features provided by the medial axis decom-
position method into a more globalized procedure.

e Usage of the segmentation along with a medial axis shape description for the purpose
of object recognition.

e A faster algorithm to compute the weighted distance transform as it consumes sig-
nificant part of the method total running time.

e A more robust ultrametric dissimilarity based on boundary strength. Again, orienta-
tion can be exploited to take more accurate measurements of the boundary strength
between adjacent regions.
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e A combination of some merging techniques we have implemented.
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Appendix A

Proofs

Proof of Lemma 4.3.1 (From [6])
(a) — (b). Using definitions (4.17), (4.16) and (4.15), it follows that if y is a source,

d(z,y) + fly) <d(z,2) + f(z) VzeX (A1)

for some x € X, or
fly) <d(z,2) —d(z,y) + f(z) VzeX. (A.2)

Now, using the triangle inequality and the fact that d(y,y) = 0, we derive that

d(y,y) + f(y) < d(y,2) + f(z) VzeX, (A.3)
which, similarly to (A.1), implies that y = y.
(b) — (c). If y =y, then by definition (4.16), D(f)(y) = f(y)-

(c) = (d). I D(f)(y) = f(y), then by definition (4.16) y € S(y), or y & y. Suppose there
is some other point z € S(y), then z € S(y) or z > y > y. By definition (4.17) = ¢ S(y),
a contradiction. Therefore S(y) = {y} implying that S(y) = {y}.

(d) — (e) and (d) — (a) are straightforward. O

Proof of Lemma 4.3.2 (From [6])

Let
g($):{ f(x), z€S(f) (A.4)

400, otherwise.

By definition (4.15), for all x € X,

Dy(g)(x) = N\ dz,y)+g(y) (A5)
yeX

= N\ dz.y)+ fy) (A.6)
y€eS(f)

On the other hand, assuming source existence, it follows from definition (4.17) that
Dy(f)(z) = d(z,s(z)) + f(s(z)), =eX. (A7)
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But since s(x) € S(f), definition (4.15) for f gives

Dy(f)(x) = J\ dz,y)+fly), z€X. (A.8)

yeS(f)

The above imply that Dy(f) = Dy(g), where (by construction) g is uniquely determined
by fls(s), as claimed.

Proof of Lemma 5.2.1 (From [6])
Let y € S(f). By lemma 4.3.1, S(y) = {y} hence |S(y)| = 1. Then y cannot be a medial

point: y ¢ A(f). O

Proof of Lemma 7.1.1 (An analogous proof can be found at [18])

Let eq = (vi,vj), w(eq) the corresponding edge weight. Let Rff_l and R;I-_l the regions
(components) of vertices v; and v; at step ¢. If R?_l and R?_l are not merged, then there
are two cases. Either w(e,) < T(Rgfl) or w(eq) < T(R?il). Consider the first case. Since

edges are considered in non-increasing weight order then w(er) < w(e,) < T(Rg_l), for all
k > g+ 1. Thus, no additional merging will happen to this component and it will then
appear to the final segmentation, i.e. R; = Rg_l. The second case is exactly analogous.

Proof of Lemma 7.1.2 (An analogous proof can be found at [18])
By definition, in order for a partition S to be too fine there is some pair of components
for which @ does not hold. Thus, we have:
-1 pg-1
QR R]"") = false =
, -1 pg-1 -1 pg-1
Sim(R! ,R? ) > 7(R] 7R;1' ) =

max w((vs, v5)) > T(R;]—l?R?_l) =
vieRgil,’l)jER?il,('Ui,'Uj)eE

3 e=(vi,v5) s wle) > T(Rg_l,R?_l)
So there exists an edge e = (v;,v;) between components C’Z-q_l, C']‘-J_1 that will not cause
their merging. By lemma 7.1.1, one of them at least will be in the final segmentation.
Without loss of generality, suppose that C; = C’Zq_l. Then:
w(e) > T(R;Fl?R?*l) =
w(e) > 7(Ri, RTY) > 7(Ri, B;) =
Q(R;i, Rj) = true

So the predicate Q(R;, R;j) is true, which is a contradiction. Thus, there is no pair of
components for which ¢ does not hold and subsequently the segmentation produced in
not too fine.

Proof of Lemma 7.1.2 (An analogous proof can be found at [18])
In order for a partition S to be too coarse there must be some proper refinement, 7', that
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is not too fine. Consider the maximum weight edge e that is internal to a region R € S but
connects distinct components A, B € T. Note that by the definition of refinement A C R
and B C R. Since T is not too fine, either w(e) < 7(A) or w(e) < 7(B). Without loss
of generality, say the former is true. By construction any edge connecting A to another
sub-region of R has weight smaller or equal to w(e). So the algorithm must have formed
A before forming R, and in forming R it must have merged A with some other sub-region
of R. The weight of the edge that caused this merge must be small or equal to w(e).
However, the algorithm would not have merged A in this case because w(e) < 7(A), which
is a contradiction.

Proof of Lemma 7.3.1 Proving that dissimilarity d¢ defined in equation 7.29 is ultra-
metric, is equivalent to proving that dq satisfies property (7.27). Let (R;, R;) denote
the pair of regions that minimize dp and Rj denote any region connected to R; U R;
and belonging to the partition obtained after the merging of (R;, R;)). In addition, let

Aij =2 ceB(r)nER,) W(E) -

da(Ri, Rj) < da(Ry, Ry,) =
(I)(RZ',RJ') > @(Ri,Rk) =

> =
L(0;) — L(0)
L(Oi) - Aij = L(8yj) - A (A.9)
Similarly,
L(0j) - Aij = L(0ij) - A; (A.10)

Combining equations (A.9) and (A.10) we have:

L(0j) - Aij + L(0r,) - Aij > L(0y5) - Aji + L(93j) - Aire =
(L(9jk) + L(Oix)) - Aij = L(0i) - (Aji + Aix) =
Ajj < Aji + Aig
L(0ij) — L(9jk) + L(0ik)

ZCGE(Ri)ﬁE(Rj) w(e) S ZeEE(Rj)ﬁE(Rk) w(e) + ZeeE(Ri)ﬂE(Rk) w(e)

L(9sj) - L(0;k) + L(O) -
ZeEE(Ri)ﬂE(Rj)w(e) ZBGE(RiURj)ﬁE(Rk) w(e) N
L(0y5) B L(0iuj k)
®(R;i, Rj) > ®(R; U R;, Ry) =

>
exp(—®(R;, Rj)) < exp(—®(R; U R}, Ry)) =

(S
da(Ri, Rj) < da(R; U R;, Ry)
(A.11)

Proof of Lemma 7.3.2 Proving that dissimilarity ¢, is ultrametric is analogous to proof
of lemma 7.3.1. Let (R;, R;) denote the pair of regions that minimize d¢ and Ry denote
any region connected to R; U R; and belonging to the partition obtained after the merging
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of (Ri, Rj))

Ey0) _ Xy0u)
L(0i) - > (9i5) = L(35) - > (O

Similarly,

L(9) - > _(05) < L(9y) - >_ ()

g

Combining equations (A.12) and (A.14) we have:

(L(Oik) + L(0jk)) - > _(935) < L(Diz) - O _(0) + > _(0x)) =

g g g
>-4(0i) - (224(0ik) + 32, (0k))
L(0;;) —  L(Ow) + L(9jk))

dg(Ri; Rj) < 64(Ri U Ry, Ry)
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