Approximate nearest neighbor search: binary codes and vector quantization

Yannis Avrithis

University of Athens

Athens, March 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

Problem

- Given query point **q**, find its nearest neighbor with respect to Euclidean distance within data set \mathcal{X} in a *d*-dimensional space
- Focus on large scale: encode (compress) vectors, speed up distance computations

・ロト・日本・モート モー うへぐ

• Fit underlying distribution with little space & time overhead

Retrieval (image as point) [Jégou et al. '10][Perronnin et al. '10]

Retrieval (patch as point) [Tolias et al. '13][Qin et al. '13]

イロト 不得 とくき とくき とうき

Localization, pose estimation [Sattler et al. '12][Li et al. '12]

Classification [Boiman et al. '08] [McCann & Lowe '12]

 $KL(p_Q | p_1) = 17.54$ $KL(p_Q | p_2) = 18.20$ $KL(p_Q | p_3) = 14.56$

Quantization [Sivic et al. '03][Philbin et al. '07]

Clustering [Philbin et al. '07][Avrithis '13]

◆□> ◆圖> ◆臣> ◆臣> 「臣」 のへで

Overview

- Binary codes
 - Locality sensitive hashing [Charikar '02]
 - Spectral hashing [Weiss et al. '08]
 - Iterative quantization [Gong and Lazebnik '11]
- Quantization
 - Vector quantization (VQ)
 - Product quantization (PQ) [Jégou et al. '11]
 - Optimized product quantization (OPQ) [Ge *et al.* '13] Cartesian *k*-means [Norouzi & Fleet '13]
 - Locally optimized product quantization (LOPQ) [Kalantidis and Avrithis '14]

- Non-exhaustive search
 - Non-exhaustive PQ [Jégou et al. '11]
 - Inverted multi-index [Babenko & Lempitsky '12]
 - Multi-LOPQ [Kalantidis and Avrithis '14

Overview

- Binary codes
 - Locality sensitive hashing [Charikar '02]
 - Spectral hashing [Weiss et al. '08]
 - Iterative quantization [Gong and Lazebnik '11]
- Quantization
 - Vector quantization (VQ)
 - Product quantization (PQ) [Jégou et al. '11]
 - Optimized product quantization (OPQ) [Ge *et al.* '13] Cartesian *k*-means [Norouzi & Fleet '13]
 - Locally optimized product quantization (LOPQ) [Kalantidis and Avrithis '14]

- Non-exhaustive search
 - Non-exhaustive PQ [Jégou et al. '11]
 - Inverted multi-index [Babenko & Lempitsky '12]
 - Multi-LOPQ [Kalantidis and Avrithis '14

Overview

- Binary codes
 - Locality sensitive hashing [Charikar '02]
 - Spectral hashing [Weiss et al. '08]
 - Iterative quantization [Gong and Lazebnik '11]
- Quantization
 - Vector quantization (VQ)
 - Product quantization (PQ) [Jégou et al. '11]
 - Optimized product quantization (OPQ) [Ge *et al.* '13] Cartesian *k*-means [Norouzi & Fleet '13]
 - Locally optimized product quantization (LOPQ) [Kalantidis and Avrithis '14]

- Non-exhaustive search
 - Non-exhaustive PQ [Jégou et al. '11]
 - Inverted multi-index [Babenko & Lempitsky '12]
 - Multi-LOPQ [Kalantidis and Avrithis '14]

I. Binary codes

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国▶ ▲□▶

Locality sensitive hashing: random projections [Charikar '02]

- Choose a random vector **a** from the *d*-dimensional Gaussian distribution.
- Define hash function $h_{\mathbf{a}}: \mathbb{R}^d \rightarrow \{-1,1\}$ with

$$h_{\mathbf{a}}(\mathbf{x}) = \operatorname{sgn}(\mathbf{a} \cdot \mathbf{x}) = \begin{cases} 1, & \text{if } \mathbf{a} \cdot \mathbf{x} \ge 0\\ -1, & \text{if } \mathbf{a} \cdot \mathbf{x} < 0. \end{cases}$$

• Then, given $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$,

$$\mathbb{P}[h_{\mathbf{a}}(\mathbf{x}) = h_{\mathbf{a}}(\mathbf{y})] = 1 - \frac{\theta(\mathbf{x}, \mathbf{y})}{\pi}$$

where $heta(\mathbf{x},\mathbf{y})$ is the angle between $\mathbf{x},\mathbf{y}.$

Locality sensitive hashing: random projections [Charikar '02]

- Choose a random vector **a** from the *d*-dimensional Gaussian distribution.
- Define hash function $h_{\mathbf{a}}: \mathbb{R}^d \rightarrow \{-1,1\}$ with

$$h_{\mathbf{a}}(\mathbf{x}) = \operatorname{sgn}(\mathbf{a} \cdot \mathbf{x}) = \begin{cases} 1, & \text{if } \mathbf{a} \cdot \mathbf{x} \ge 0\\ -1, & \text{if } \mathbf{a} \cdot \mathbf{x} < 0. \end{cases}$$

• Then, given $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$,

$$\mathbb{P}[h_{\mathbf{a}}(\mathbf{x}) = h_{\mathbf{a}}(\mathbf{y})] = 1 - \frac{\theta(\mathbf{x}, \mathbf{y})}{\pi}$$

where $\theta(\mathbf{x},\mathbf{y})$ is the angle between $\mathbf{x},\mathbf{y}.$

Binary codes and Hamming distance

- Given a set of n data points $\mathbf{x}_i \in \mathbb{R}^d$, represented by matrix $X \in \mathbb{R}^{d \times n}$.
- Define k hash functions $h_j : \mathbb{R}^d \to \{-1, 1\}$, and let $h(\mathbf{x}) = (h_1(\mathbf{x}), \dots, h_k(\mathbf{x})).$
- Encode each data point **x** by binary code $\mathbf{y} = h(\mathbf{x})$, and represent all encoded points by matrix $Y \in \{-1, 1\}^{k \times n}$.
 - For instance, $Y = sgn(A^{\top}X)$ for random projections, where $A \in \mathbb{R}^{d \times k}$ represents the k random vectors.

• Now, given a query q, encode it as h(q) and search in Y by Hamming distance.

Binary codes and Hamming distance

- Given a set of n data points $\mathbf{x}_i \in \mathbb{R}^d$, represented by matrix $X \in \mathbb{R}^{d \times n}$.
- Define k hash functions $h_j : \mathbb{R}^d \to \{-1, 1\}$, and let $h(\mathbf{x}) = (h_1(\mathbf{x}), \dots, h_k(\mathbf{x})).$
- Encode each data point x by binary code y = h(x), and represent all encoded points by matrix $Y \in \{-1, 1\}^{k \times n}$.
 - For instance, $Y = sgn(A^{\top}X)$ for random projections, where $A \in \mathbb{R}^{d \times k}$ represents the k random vectors.

• Now, given a query **q**, encode it as $h(\mathbf{q})$ and search in Y by Hamming distance.

[Weiss et al. '08]

- Define similarity matrix S with $S_{ij} = \exp(-\|\mathbf{x}_i \mathbf{x}_j\|^2/t^2)$.
- Require binary codes to be similarity preserving, balanced, and uncorrelated:

minimize subject to

nize
$$\sum_{ij} S_{ij} \|\mathbf{y}_i - \mathbf{y}_j\|^2$$

t to $\mathbf{y}_i \in \{-1, 1\}^k$
 $\sum_i \mathbf{y}_i = 0$
 $\frac{1}{2} \sum_i \mathbf{y}_i \mathbf{y}_i^\top = I.$

[Weiss et al. '08]

- Define similarity matrix S with $S_{ij} = \exp(-\|\mathbf{x}_i \mathbf{x}_j\|^2/t^2)$.
- Require binary codes to be similarity preserving, balanced, and uncorrelated:

minimize $\sum_{ij} S_{ij} \|\mathbf{y}_i - \mathbf{y}_j\|^2$ subject to $\mathbf{y}_i \in \{-1, 1\}^k$ $\sum_i \mathbf{y}_i = 0$ $\frac{1}{n} \sum_i \mathbf{y}_i \mathbf{y}_i^\top = I.$

Spectral hashing Relaxation

- Define Laplacian matrix L = D S with $D = \text{diag}(S\mathbf{1})$.
- Problem is relaxed as

minimize $\operatorname{tr}(YLY^{\top})$ subject to $Y\mathbf{1} = 0$ $YY^{\top} = I$,

and solutions are the k eigenvectors of L with minimal eigenvalue, excluding eigenvector 1 with eigenvalue 0.

• See also Laplacian eigenmaps [Belkin & Niyogi '01].

Spectral hashing Relaxation

- Define Laplacian matrix L = D S with $D = \operatorname{diag}(S\mathbf{1})$.
- Problem is relaxed as

minimize $\operatorname{tr}(YLY^{\top})$ subject to $Y\mathbf{1} = 0$ $YY^{\top} = I$,

and solutions are the k eigenvectors of L with minimal eigenvalue, excluding eigenvector $\mathbf{1}$ with eigenvalue 0.

• See also Laplacian eigenmaps [Belkin & Niyogi '01].

Out of sample extension

- Replace data points by probability distribution p; and Laplacian matrix by Laplacian operator L_p acting on functions.
- Then, solutions are the k eigenfunctions f of L_p (such that $L_p f = \lambda f$) with minimal eigenvalue, excluding eigenfunction $f(\mathbf{x}) = 1$ with eigenvalue 0.
- If p is uniform, then eigenfunctions have outer product form, and for 1-dimensional distribution on [a, b],

$$\phi_j(x) = \sin\left(\frac{\pi}{2} + \frac{j\pi}{b-a}x\right)$$
$$\lambda_j = 1 - e^{-\frac{t^2}{2}\left(\frac{j\pi}{b-a}\right)^2}$$

Out of sample extension

- Replace data points by probability distribution p; and Laplacian matrix by Laplacian operator L_p acting on functions.
- Then, solutions are the k eigenfunctions f of L_p (such that $L_p f = \lambda f$) with minimal eigenvalue, excluding eigenfunction $f(\mathbf{x}) = 1$ with eigenvalue 0.
- If p is uniform, then eigenfunctions have outer product form, and for 1-dimensional distribution on [a, b],

$$\phi_j(x) = \sin\left(\frac{\pi}{2} + \frac{j\pi}{b-a}x\right)$$
$$\lambda_j = 1 - e^{-\frac{t^2}{2}\left(\frac{j\pi}{b-a}\right)^2}$$

Example

イロト 不得 トイヨト イヨト ヨー ろくで

- Red: outer-product eigenfunctions: excluded
- Better to cut long dimension first
- Lower spatial frequencies are better than higher ones

Example

- Red: outer-product eigenfunctions: excluded
- Better to cut long dimension first
- Lower spatial frequencies are better than higher ones

• Red: radius = 0; green: radius = 1; blue: radius = 2

Spectral hashing Algorithm

- 1. Rotate data points by PCA.
- **2.** Evaluate k smallest eigenvalues for each PCA direction.
- **3.** Sort the kd eigenvalues, exclude outer-product ones, and select the k smallest.
- 4. Set hash function $h_j(\mathbf{x}) = \operatorname{sgn}(\phi_j(\mathbf{x}))$ for each of the corresponding k eigenfunctions ϕ_j .

Result on LabelMe

Iterative quantization

[Gong and Lazebnik '11]

Quantize each data point to the closest vertex of the binary cube, $(\pm 1,\pm 1).$

イロト 不得 トイヨト イヨト ヨー ろくで

Iterative quantization Formulation

- Assume data points to be zero centered, $X\mathbf{1} = 0$.
- Assume hash functions $y^j = h_j(\mathbf{x}) = \operatorname{sgn}(\mathbf{a}_j \cdot \mathbf{x})$, or $Y = \operatorname{sgn}(A^\top X)$.
- Drop similarity preservation
- Balance $h_j(\mathbf{x}) \cdot \mathbf{1} = 0$ is equivalent to variance of $h_j(\mathbf{x})$ being maximized:

maximize
$$\sum_{j} \operatorname{var}(\operatorname{sgn}(\mathbf{a}_{j}^{\top} X))$$

subject to $\frac{1}{n} Y Y^{\top} = I.$

Iterative quantization Relaxation

- Drop sgn.
- Relax correlation constraint by just requiring hyperplanes to be orthogonal:

maximize $\operatorname{tr}(A^{\top}XX^{\top}A)$ subject to $A^{\top}A = I$,

and a solution consists of the k eigenvectors of data covariance matrix XX^\top with maximal eigenvalue.

• See also semi-supervised hashing [Wang et al. '10].

Iterative quantization Relaxation

- Drop sgn.
- Relax correlation constraint by just requiring hyperplanes to be orthogonal:

maximize $\operatorname{tr}(A^{\top}XX^{\top}A)$ subject to $A^{\top}A = I$,

and a solution consists of the k eigenvectors of data covariance matrix XX^\top with maximal eigenvalue.

• See also semi-supervised hashing [Wang et al. '10].

Iterative quantization Refinement

- But, if A is an optimal solution, then so is AR^{\top} for orthogonal $R \in \mathbb{R}^{k \times k}$.
- So, if $Z = A^{\top}X$ is the projected data, define loss

$$E(Y,R) = ||Y - RZ||_F^2$$

and repeat

- Fix R, update $Y \leftarrow \operatorname{sgn}(RZ)$
- Fix Y, update $R \leftarrow UV^{\top}$ where $YZ^{\top} = USV^{\top}$ (align by SVD)

See also multiclass spectral clustering [Yu & Shi '03].

Iterative quantization Refinement

- But, if A is an optimal solution, then so is AR^{\top} for orthogonal $R \in \mathbb{R}^{k \times k}$.
- So, if $Z = A^{\top}X$ is the projected data, define loss

$$E(Y,R) = ||Y - RZ||_F^2$$

and repeat

- Fix R, update $Y \leftarrow \operatorname{sgn}(RZ)$
- Fix Y, update $R \leftarrow UV^{\top}$ where $YZ^{\top} = USV^{\top}$ (align by SVD)

• See also multiclass spectral clustering [Yu & Shi '03].

Iterative quantization Result on CIFAR

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …のへ(?)

II. Quantization

Vector quantization

[Gray '84]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Vector quantization

[Gray '84]

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ()~

Vector quantization

[Gray '84]

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- For small distortion \rightarrow large $k = |\mathcal{C}|$:
 - hard to train
 - too large to store
 - too slow to search

Product quantization

[Jégou et al. '11]

Product quantization

[Jégou et al. '11]

- train: $q=(q^1,\ldots,q^m)$ where q^1,\ldots,q^m obtained by VQ
- store: $|\mathcal{C}| = k^m$ with $|\mathcal{C}^1| = \cdots = |\mathcal{C}^m| = k$

• search:
$$\|\mathbf{y} - q(\mathbf{x})\|^2 = \sum_{j=1}^m \|\mathbf{y}^j - q^j(\mathbf{x}^j)\|^2$$
 where $q^j(\mathbf{x}^j) \in \mathcal{C}^j$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

[Ge et al. '13]

minimize $\sum_{\mathbf{x} \in \mathcal{X}} \min_{\hat{\mathbf{c}} \in \hat{\mathcal{C}}} \|\mathbf{x} - R\hat{\mathbf{c}}\|^2$ subject to $\hat{\mathcal{C}} = \mathcal{C}^1 \times \cdots \times \mathcal{C}^m$ $R^\top R = I$

◆□▶ ◆□▶ ◆ 臣▶ ★ 臣▶ 「臣」 のへで

Non-parametric solution

$$\begin{array}{ll} \text{rotate:} & \hat{X} \leftarrow RX \\ \text{update:} & q \leftarrow \mathsf{PQ}(\hat{X}) \quad [\text{one step}] \\ \text{assign:} & Y \leftarrow q(\hat{X}) \\ \text{align:} & R \leftarrow UV^{\top} \text{ where } YX^{\top} = USV^{\top} \end{array}$$

• From PQ only one step of centroid update is needed, because update of *R* does not alter assignment.

• Alignment minimizes $||Y - RX||_F^2$, as in ITQ.

Non-parametric solution

$$\begin{array}{ll} \text{rotate:} & \hat{X} \leftarrow RX \\ \text{update:} & q \leftarrow \mathsf{PQ}(\hat{X}) \quad [\text{one step}] \\ \text{assign:} & Y \leftarrow q(\hat{X}) \\ \text{align:} & R \leftarrow UV^{\top} \text{ where } YX^{\top} = USV^{\top} \end{array}$$

• From PQ only one step of centroid update is needed, because update of *R* does not alter assignment.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

• Alignment minimizes $||Y - RX||_F^2$, as in ITQ.

Parametric solution for $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \Sigma)$

• From rate-distortion theory, distortion satisfies

$$E \ge k^{-2/d} d|\Sigma|^{1/d}$$

and practical distortion achieved by k-means is typically within $\sim 5\%$ of the bound. So after rotation $\hat{\Sigma} = R \Sigma R^{\top}$,

$$E_{\mathsf{PQ}} \ge k^{-2m/d} \frac{d}{m} \sum_{i=1}^{m} |\hat{\Sigma}_{ii}|^{m/d}$$

But, by arithmetic-geometric means and Fisher's inequalities,

$$\frac{1}{m} \sum_{i=1}^{m} |\hat{\Sigma}_{ii}|^{m/d} \ge \prod_{i=1}^{m} |\hat{\Sigma}_{ii}|^{1/d} \ge |\hat{\Sigma}|^{1/d} = |\Sigma|^{1/d}$$

with equality implying balanced variance and independence.

Parametric solution for $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \Sigma)$

• From rate-distortion theory, distortion satisfies

$$E \ge k^{-2/d} d|\Sigma|^{1/d}$$

and practical distortion achieved by k-means is typically within $\sim 5\%$ of the bound. So after rotation $\hat{\Sigma} = R \Sigma R^{\top}$,

$$E_{\mathsf{PQ}} \ge k^{-2m/d} \frac{d}{m} \sum_{i=1}^{m} |\hat{\Sigma}_{ii}|^{m/d}$$

• But, by arithmetic-geometric means and Fisher's inequalities,

$$\frac{1}{m} \sum_{i=1}^{m} |\hat{\Sigma}_{ii}|^{m/d} \ge \prod_{i=1}^{m} |\hat{\Sigma}_{ii}|^{1/d} \ge |\hat{\Sigma}|^{1/d} = |\Sigma|^{1/d}$$

with equality implying balanced variance and independence.

Parametric solution for $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \Sigma)$

- independence: PCA-align by diagonalizing Σ as $U\Lambda U^{\top}$
- balanced variance: permute Λ by π such that $\prod_i \lambda_i$ is constant in each subspace; $R \leftarrow UP_{\pi}^{\top}$

• find \hat{C} by PQ on rotated data $\hat{X} = RX$

Locally optimized product quantization

[Kalantidis & Avrithis '14]

▲ロ → ▲ 冊 → ▲ 目 → ▲ 目 → の Q ()

- compute residuals $r(\mathbf{x}) = \mathbf{x} q(\mathbf{x})$ on coarse quantizer q
- collect residuals $\mathcal{Z}_i = \{r(\mathbf{x}) : q(\mathbf{x}) = \mathbf{c}_i\}$ per cell
- train $(R_i, q_i) \leftarrow \mathsf{OPQ}(\mathcal{Z}_i)$ per cell

Locally optimized product quantization

[Kalantidis & Avrithis '14]

- residual distributions closer to Gaussian assumption
- better captures the support of data distribution, like local PCA

- multimodal (e.g. mixture) distributions
- distributions on nonlinear manifolds

Local principal component analysis

[Kambhatla & Leen '97]

But, we are not doing dimensionality reduction!

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

III. Non-exhaustive search

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへで

Non-exhaustive search

[Jégou et al. '11]

Product quantization Result on SIFT1M

Product quantization vs. FLANN on SIFT1M

Optimized product quantization Result on SIFT1M

▲□ > ▲圖 > ▲目 > ▲目 > → 目 → ④ < ④ >

Optimized product quantization vs. binary codes on SIFT1M

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへの

[Babenko & Lempitsky '12]

- decompose vectors as $\mathbf{x} = (\mathbf{x}^1, \mathbf{x}^2)$
- train codebooks $\mathcal{C}^1, \mathcal{C}^2$ from datasets $\{\mathbf{x}_n^1\}, \{\mathbf{x}_n^2\}$
- induced codebook $\mathcal{C}^1 imes \mathcal{C}^2$ gives a finer partition
- given query q, visit cells (c¹, c²) ∈ C¹ × C² in ascending order of distance to q by multi-sequence algorithm

イロト 不得 トイヨト イヨト ヨー ろくで

[Babenko & Lempitsky '12]

- decompose vectors as $\mathbf{x} = (\mathbf{x}^1, \mathbf{x}^2)$
- train codebooks $\mathcal{C}^1, \mathcal{C}^2$ from datasets $\{\mathbf{x}_n^1\}, \{\mathbf{x}_n^2\}$
- induced codebook $\mathcal{C}^1 imes \mathcal{C}^2$ gives a finer partition
- given query q, visit cells $(c^1, c^2) \in C^1 \times C^2$ in ascending order of distance to q by multi-sequence algorithm

Multi-sequence algorithm

Result on SIFT1B: are NN in candidate lists?

Locally optimized product quantization Result on SIFT1B, 64-bit codes

Method	R = 1	R = 10	R = 100
Ck-means [Norouzi & Fleet '13]	-	-	0.649
IVFADC [Jégou <i>et al.</i> '11]	0.106	0.379	0.748
IVFADC [Jégou <i>et al.</i> '11]	0.088	0.372	0.733
OPQ [Ge <i>et al.</i> '13]	0.114	0.399	0.777
Multi-D-ADC [Babenko & Lempitsky '12]	0.165	0.517	0.860
LOR+PQ [Kalantidis & Avrithis '14]	0.183	0.565	0.889
LOPQ [Kalantidis & Avrithis '14]	0.199	0.586	0.909

Most benefit comes from locally optimized rotation!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - わへぐ

Multi-LOPQ

[Kalantidis & Avrithis '14]

Multi-LOPQ

Result on SIFT1B, 128-bit codes

Т	Method	R = 1	10	100
20K	IVFADC+R [Jégou <i>et al.</i> '11]	0.262	0.701	0.962
	LOPQ+R [Kalantidis & Avrithis '14]	0.350	0.820	0.978
10K	Multi-D-ADC [Babenko & Lempitsky '12]	0.304	0.665	0.740
	OMulti-D-OADC [Ge et al. '13]	0.345	0.725	0.794
	Multi-LOPQ [Kalantidis & Avrithis '14]	0.430	0.761	0.782
30K	Multi-D-ADC [Babenko & Lempitsky '12]	0.328	0.757	0.885
	OMulti-D-OADC [Ge et al. '13]	0.366	0.807	0.913
	Multi-LOPQ [Kalantidis & Avrithis '14]	0.463	0.865	0.905
100K	Multi-D-ADC [Babenko & Lempitsky '12]	0.334	0.793	0.959
	OMulti-D-OADC [Ge et al. '13]	0.373	0.841	0.973
	Multi-LOPQ [Kalantidis & Avrithis '14]	0.476	0.919	0.973

Multi-LOPQ

Image query on Flickr 100M (deep learned features, 4k ightarrow 128 dimensions)

< ロ > < 同 > < 回 > < 回 >

http://image.ntua.gr/iva/research/

Thank you!

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~