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Abstract—An efficient technique for summarization of stereo-
scopic video sequences is presented in this paper, which extracts
a small but meaningful set of video frames using a content-based
sampling algorithm. The proposed video-content representation
provides the capability of browsing digital stereoscopic video
sequences and performing more efficient content-based queries
and indexing. Each stereoscopic video sequence is first partitioned
into shots by applying a shot-cut detection algorithm so that
frames (or stereo pairs) of similar visual characteristics are gath-
ered together. Each shot is then analyzed using stereo-imaging
techniques, and the disparity field, occluded areas, and depth map
are estimated. A multiresolution implementation of the Recursive
Shortest Spanning Tree (RSST) algorithm is applied for color and
depth segmentation, while fusion of color and depth segments is
employed for reliable video object extraction. In particular, color
segments are projected onto depth segments so that video objects
on the same depth plane are retained, while at the same time
accurate object boundaries are extracted. Feature vectors are then
constructed using multidimensional fuzzy classification of segment
features including size, location, color, and depth. Shot selection is
accomplished by clustering similar shots based on the generalized
Lloyd–Max algorithm, while for a given shot, key frames are
extracted using an optimization method for locating frames of
minimally correlated feature vectors. For efficient implementation
of the latter method, a genetic algorithm is used. Experimental
results are presented, which indicate the reliable performance of
the proposed scheme on real-life stereoscopic video sequences.

Index Terms—Content-based indexing and retrieval, stereo-
scopic image analysis, video summarization.

I. INTRODUCTION

RECENT progress in the field of video analysis and
processing has led to an explosion in the amount of

visual information being stored, accessed and transmitted.
This has stimulated new technologies for efficient searching,
indexing, content-based retrieving and managing multimedia
databases [1]–[3]. The key for this rapid growth was urged
by the development of various video-compression standards,
such as MPEG-1/2 [4], [5] or H.261/3 [6], [7], each of which is
associated with different applications and different bit rates. A
new dimension to visual communication is expected to be pro-
vided by the MPEG-4 standard [8], which allows content-based
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video coding and representation, giving users new capabilities
of accessing, manipulating, and editing visual content [9],
[10]. Moreover, the MPEG group has recently begun a new
standardization phase (MPEG-7) for a multimedia content
description interface [11]. The MPEG-7 standard will specify a
set of content descriptors for any multimedia information.

Although most video archives mainly consist of 2-D video se-
quences, the use of 3-D video, obtained by stereoscopic or mul-
tiview camera systems, has recently increased since it provides
more efficient visual representation and enhances multimedia
communication. 3-D video enables users to handle and manip-
ulate video objects more efficiently by exploiting, for example,
depth information provided by stereo-image analysis. Further-
more, the problem of content-based segmentation is addressed
more precisely since video objects are usually composed of re-
gions belonging to the same depth plane [12]. Various appli-
cations, such as video surveillance, image/video indexing and
retrieval, or editing of video content, can gain from such 3-D
representation. For this reason, 3-D data acquisition and display
systems have attracted a great interest recently and consequently
archives of 3-D video information are expected to rapidly in-
crease in the forthcoming years.

Traditionally, 3-D video sequences are represented by nu-
merous consecutive frame sets, such as stereo pairs in the case
of stereoscopic video, each of which corresponds to a constant
time interval. The images of each set are recorded using slightly
different viewpoints of the same scene. However, this image-se-
quence representation, which stems from the analog tape storage
process, results in a linear (sequential) access of video content
[13]. While this approach is adequate for viewing a video in
a movie mode [14], it has a number of limitations for the new
emerging multimedia applications, such as video browsing, con-
tent-based indexing, and retrieval. Currently, the only way to
browse a video sequence is to sequentially scan video frames, a
process that is both time consuming and tedious. Furthermore,
video queries on entire video sequences are insufficient, due
to significant temporal redundancy of video content [15]. This
linear video representation is also not adequate for efficient or-
ganization of large video archives, since storage requirements
of digitized video information, even in compressed domain, are
very large and present challenges to most multimedia servers
[16]. To make things worse, most video archives are expected
to be located on distributed platforms [3], [13], and thus, ac-
cess of video data imposes a great deal of bandwidth require-
ments. For this reason, apart from developing appropriate con-
gestion control schemes or proposing algorithms for effective
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network design and management, based, for example, on traffic
modeling of video sources [17], new methods for efficient (non-
linear) video-content representation and summarization should
also be implemented [18].

Recently, some approaches have been proposed in the litera-
ture for visual summarization, mainly in the framework of the
MPEG-7 standardization phase. In particular, shot-cut detection
has been presented in [19], which can be seen as the first stage
of video-content summarization. Extraction of frames at reg-
ular time instances has been proposed in [20]. However, this
work does not exploit shot information and frame similarity,
and therefore, shots of small duration but of significant content
may be discarded, whereas at the same time, multiple frames
with similar content may be retained from shots of longer dura-
tion. Selection of a single key frame for each shot has been pre-
sented in [21], [18], which cannot provide sufficient information
about the video content, especially for long shots with a lot of
activity. Construction of compact image maps or image mosaics
has been described in [14], [22]. Although such approaches can
be very efficient for specific applications, such as sports pro-
grams or studio productions, they cannot provide satisfactory
results in real world complex shots, where background/fore-
ground changes or complicated camera effects are encountered.
A method for analyzing video and building a pictorial summary
for visual representation has been proposed in [13]. This work
is concentrated on dividing a video sequence into consecutive
meaningful segments (story units) and then constructing a video
poster for each story unit based on shot dominance, instead of
extracting key frames. Moreover, all the aforementioned works
are dealing with 2-D video sequences and cannot be directly ap-
plied to 3-D video archives, since 3-D information is not taken
into consideration.

In the context of this paper, a generalized framework for non-
linear representation of 3-D video sequences is proposed, re-
gardless of the scene complexity. A content-based sampling al-
gorithm [23] is used which segments the sequences into shots,
clusters shots with similar video content together, selects a rep-
resentative shot from each cluster, and finally, extracts multiple
representative frames (key frames) for each selected shot. This
approach provides summarization of visual information simi-
larly to that used in current document search engines [3]. Thus,
it is possible to automatically generate low resolution video clip
previews (trailers) or still image mosaics, which play exactly the
same role for stereo video sequences as “thumbnails” for still
images. Fast browsing of stereo video content, efficient perfor-
mance of video queries and easy access to 3-D video databases,
located on distributed platforms, can benefit from such con-
tent-based representation.

For this purpose, high-level image processing and analysis
techniques should be applied to stereo–video sequences in order
to obtain an efficient description of video content. This can
be accomplished through segmentation into semantically mean-
ingful objects, which, with the exception of some specific ap-
plications, is in general a very difficult task [24], [25]. How-
ever, in cases of 3-D video sequences, where depth informa-
tion can be estimated reliably, high-level video processing can
be performed more efficiently, since video objects are usually
located on the same depth plane [12]. Several algorithms have

been proposed in the literature for stereo–video sequence anal-
ysis [26], [27]. In this paper, a more reliable representation of
video content is proposed by combining the results obtained
from color and depth segmentation, so that video objects on the
same depth plane are retained, while accurate object boundaries
are extracted. A multiresolution implementation of the Recur-
sive Shortest Spanning Tree (RSST) algorithm is employed for
both color and depth segmentation. This hierarchical approach,
apart from reducing computational cost, also prevents from pos-
sible oversegmentation, which is not desirable in the context of
video summarization. Then, appropriate features are extracted,
including segment size, location, average color components and
depth, and gathered together using fuzzy classification to in-
crease the robustness of the proposed summarization scheme.
Finally, shots of similar content are grouped using the general-
ized Lloyd-Max algorithm [28], while key frames within each
selected shot are extracted by minimizing a cross correlation cri-
terion by means of a genetic algorithm.

This paper is organized as follows. Section II introduces the
stereoscopic image analysis that is necessary for extracting 3-D
information from a pair of left and right channel images and
constructing disparity, occlusion and depth maps. Section III
presents the multiresolution implementation of the RSST algo-
rithm (M-RSST) that is used for segmenting the left channel
image and the corresponding depth map. A segmentation fu-
sion algorithm for combining color and depth segments is also
presented in this section, while the fuzzy feature vector formula-
tion is introduced in Section IV. Then, all the above frame anal-
ysis techniques are used in Section V for stereo video sequence
analysis and summarization by means of shot-cut detection, shot
clustering and key-frame selection. Finally, experimental results
for a real-life stereo sequence are given in Section VI and con-
clusions are drawn in Section VII.

II. STEREOSCOPICIMAGE ANALYSIS

Depth information is estimated more reliably in stereo-image
sequences in contrast to monocular 2-D sequences [12], since
more than one separate image views are available in the former
case [29], [30]. The analysis below concentrates on depth esti-
mation from a binocular camera system.

A. Disparity and Depth Estimation

Consider a stereoscopic system with two cameras offocal
length andbaseline distance, as shown in Fig. 1. The op-
tical axes of the two cameras are converging with angle. The
origins of the two camera coordinate systems are located at the
focal points (lens centers), at distancefrom the corresponding
image planes (left channel) and (right channel), respec-
tively. It is assumed, without loss of generality, that the world co-
ordinate system coincides with the coordinate system of camera
1 (left camera), while the coordinate system of camera 2 (right
camera) is obtained from the former through appropriate rota-
tions and translations.

A point w with world coordinates ( ) is projected on
image plane as point and on image plane as point

, as illustrated in Fig. 1. Then, assuming a perspective
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Fig. 1. Geometry of a stereoscopic camera system with convergent optical
axes and perspective projection of a 3-D point on the corresponding image
planes.

projection scheme, a simple relation between the camera coordi-
nates and depth can be obtained [29], [30]

(1)

where , and .
As is observed from (1), the depth of can be estimated if
its projections and on image planes and
respectively are known. Consequently, for a given point
on , its correspondent on should be found. This is
accomplished by computing the disparity vector

at location of camera 1 with
respect to camera 2

(2)

(3)

If the disparity vector is known, (2) and (3) reduce to an overde-
termined linear system of two equations with a single unknown,

(the depth) and a least-squares solution can be obtained [27].
Disparity estimation is accomplished by means of

a block matching algorithm, similar to that proposed
in [31]. Let and

, denote the gray-level in-
tensities of images projected on planesand , at
location, where are the image dimensions. The
disparity vector

is estimated within a search

area of pixels, where due to the small
converging angle between the two cameras. This is achieved
by minimizing the followingcost function:

arg min

arg min

(4)

where is a displacement of point
on image plane . The first term of the right hand of (4),

, corresponds to ablock error function,defined as

(5)

where is a rectangular
window or block. The second term of (4), , is a
smoothness error function used to reduce possible noise in esti-
mating and is defined as

(6)

where
is the set of all disparity

vectors of pixels neighboring to that have already
been calculated from (4), and is the Euclidean norm.
The smoothing weight function , whose estimation
is based on the local variance of image, takes low values
in regions where matching is reliable, such as edges or highly
textured regions, and high values in regions where matching
is not reliable, such as regions of uniform intensity. This
function is also used for determining the exact size of the
search area . Since in regions with a high value of
the disparity field is smooth, a small search area is adequate,
while a larger search area is necessary for regions with a low
value of . This means that and are varied
according to , resulting in a faster implementation of
the minimization procedure.

Depth and disparity estimation results are illustrated in Fig. 2
for the Claude sequence. In particular, Fig. 2(a) and (b) show
the original left and right channel images, respectively. The ver-
tical disparity is negligible for the given sequence, since the two
cameras are located at the same vertical level. Thus, only the
horizontal disparity field is presented in Fig. 2(c),
where areas in white correspond to positive disparity and areas
in gray to approximately zero disparity. Finally, the depth map
is illustrated in Fig. 2(d), where areas in black correspond to
background and areas in gray to foreground. Note that in both
the disparity field and depth map, the shaded areas of gradual
intensity change at the left of the person and at the right edge
of the image are due to occlusion, which is discussed in the fol-
lowing.

B. Occlusion Detection

The above analysis of disparity estimation assumes that a cor-
responding point of image can always be found for all points
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Fig. 2. Disparity and depth estimation for the Claude sequence. (a) Left
channel image. (b) Right channel image. (c) Horizontal disparity field. (d)
Depth map.

Fig. 3. Occlusion detection and compensation for the Claude sequence. (a)
1-D detection and compensation for line 160 of horizontal disparity field.
(b) Occluded areas (in black). (c) Compensated horizontal disparity field. (d)
Compensated depth map.

of image . However, due to the different camera viewpoints,
there may be areas of that are occluded in [32]. All dis-
parity values for occluded areas are not reliable and may result
in incorrect depth segmentation. Therefore, it is clear that: i)
these areas should be detected and ii) occlusion should be com-
pensated by assigning appropriate disparity values to occluded
areas. The former task,occlusion detection,is accomplished by
locating regions of where the horizontal disparity decreases
continuously with respect to the horizontal coordinatewith
a slope approximately equal to [32]. Vertical disparity is
not taken into account for this purpose, since all disparities are
mostly horizontal, as explained above. The latter task,occlu-
sion compensation,is tackled by keeping disparity constant in

Fig. 4. Depth estimation and occlusion compensation for the Aqua sequence.
(a) Left channel image. (b) Right channel image. (c) Depth map without
compensation. (d) Compensated depth map.

each occluded area, and equal to the maximum disparity value
of that area. This way, each occluded area is effectively merged
with the neighboring area of maximum depth, which is consis-
tent with the fact that an object is occluded by another only if it
is located farther away from the camera.

The occlusion detection and compensation technique is illus-
trated in Fig. 3 for the left channel (image plane) of the Claude
sequence. The 1-D case is first presented in Fig. 3(a), where
the horizontal disparity of image line is
plotted versus , with (dotted line) and without (solid line) oc-
clusion compensation. It is evident that in intervals whereis
nondecreasing, the disparity is left unchanged. On the contrary,
intervals of decreasing disparity are detected as occlusion inter-
vals and disparity is compensated. This is accomplished by as-
signing constant disparity value, equal to the value of the neigh-
boring nonoccluded interval located to the left of each occluded
interval. The occluded areas of the entire 2-D horizontal dis-
parity field are shown as black in Fig. 3(b), while the compen-
sated disparity field and corresponding depth map are presented
in Fig. 3(c) and (d), respectively. The results for the Aqua se-
quence are presented in Fig. 4. In particular, Fig. 4(a) and (b)
depict the original left and right frame of Aqua, while Fig. 4(c)
and (d) the depth maps before and after occlusion compensation.
In both cases, the compensated depth map is more reliable.

III. OBJECTEXTRACTION

Video summarization can be performed more efficiently if the
visual content of a sequence is described through its semantic
video objects. Semantic segmentation has attracted much at-
tention recently, especially in the framework of the emerging
MPEG-4 and MPEG-7 standards [9], [24], [25], [33]. Although
some solutions exist for specific applications (e.g., videophone
systems, news bulletins, etc.) [12], [34], [35], [36] semantic ob-
ject extraction still remains an unsolved problem [37]. In stereo
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Fig. 5. Demonstration of M-RSST algorithm for color segmentation on Claude
sequence. (a) Segmentation at resolution level 3. (b) Segment splitting at level 3.

video sequences, however, where depth information can be es-
timated more reliably, semantic video objects can be identified
since usually a video object is located on the same depth plane.
In order to retain semantic object extraction, and at the same
time obtain accurate object boundaries (contours), color and
depth segmentation is first employed and then both segmenta-
tion maps are fused together.

A. Color and Depth Segmentation

A multiresolution implementation of the RSST [38] algo-
rithm, called M-RSST, is used both for color and depth seg-
mentation. In this implementation, the RSST algorithm, which
is considered one of the most powerful tools for image segmen-
tation compared to other techniques [39], is recursively applied
to images of increasing resolution. This approach, apart from ac-
celerating the segmentation procedure, also reduces the number
of small objects, which is a useful property in the context of
video summarization.

Consider an image of size pixels. Initially, a
multiresolution decomposition of image is performed until
a lowest resolution level, say , so that a hierarchy of im-
ages is constructed. Consequently,
a truncated image pyramid is created, each layer of which con-
tains a quarter of the pixels of the layer below. The conventional
RSST algorithm is first applied to the image of the lowest resolu-
tion, , to provide an initial image segmentation. In the fol-
lowing steps, an iteration begins so that the images of higher res-
olution are taken into consideration. Particularly, the following
tasks are repeated in each iteration of the proposed M-RSST al-
gorithm, until the highest resolution image is reached.

1) Each boundary pixel of all resulting segments of the cur-
rent resolution level, corresponding to four pixels of the
next higher resolution level, is split into four new seg-
ments.

2) New link weights are calculated and sorted.
3) Segments are recursively merged using the conventional

RSST iteration phase.
Fig. 5 illustrates the results of color segmentation for the

left channel of the Claude sequence, the original frame of
which is depicted in Fig. 2(a). A minimum link weight (dis-
tance) threshold is selected to terminate the segmentation
process similarly to that used in the conventional RSST al-
gorithm [38]. A lowest resolution level of (i.e.,
block resolution of 8 8 pixels) is adopted. Fig. 5(a) shows

Fig. 6. Final color segmentation results. (a) Claude sequence. (b) Aqua
sequence.

Fig. 7. Final depth segmentation results. (a) Claude sequence. (b) Aqua
sequence.

the segmentation results for the image of the lowest reso-
lution. Then, each boundary pixel (or 88 block) is split
into four new segments (of size 44 pixels) according to
step 1 of the M-RSST algorithm, as shown in Fig. 5(b).
These segments are merged at resolution level 2 and the
process is repeated in an iterative way to produce the final
segmentation mask, illustrated in Fig. 6(a) for the Claude
sequence. Similarly, Fig. 6(b) presents the final color seg-
mentation results for the left channel of the Aqua sequence.
Depth segmentation results are depicted in Fig. 7. For the
Claude sequence, two segments are extracted as presented
in Fig. 7(a), corresponding to the foreground and the back-
ground object. Similarly, nine segments are extracted for the
Aqua sequence [Fig. 7(b)].

The computational complexity of the M-RSST algorithm is
considerably lower than that of the conventional RSST. This is
due to the fact that the initial number of segments at each resolu-
tion level is significantly reduced; only the boundary pixels are
further segmented. However, the computational improvement is
not straightforward to calculate, since the speed of the M-RSST
algorithm heavily depends on the initial number of segments
and the image complexity. Experimental results have indicated
an average speed improvement ratio in the order of 400 for an
image size of 720576 and initial resolution level [40].
Furthermore, the M-RSST algorithm also eliminates very small
segments, which is desirable in the framework of video summa-
rization since oversegmentation is avoided.

B. Segmentation Fusion

Although depth segmentation provides a more meaningful
frame content representation than color segmentation, i.e.,
closer to semantic objects, it cannot accurately identify object
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Fig. 8. Segmentation fusion results for the Claude sequence. (a) Depth segmentation overlaid with color segment contours (in white). (b) Foregroundobject. (c)
Background object.

Fig. 9. Object extraction after segmentation fusion for the Aqua sequence.

boundaries (contours), due to erroneous estimation of disparity
field and occlusion issues. On the contrary, color segmentation
contains the most reliable object boundaries, but usually
oversegments a video object into multiple regions [25]. For
this reason, a video object is extracted by fusing several color
segments using the depth information.

Let us assume that color and depth segments have
been extracted using the M-RSST algorithm, denoted as,

and , , respectively. The
and are mutually exclusive. Let us also denote byand
the output masks of color and depth segmentation

(7)

Each color segment is associated with that depth segment
whose area of intersection is maximized. This is accomplished
by means of aprojection function

arg max

(8)

where is the area, i.e., the number of pixels, of a segment.
Based on the previous equation, sets of color segments are
defined, say , , each of which contains all
color segments that are projected onto the same depth segment

:

(9)
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Fig. 10. Object extraction for the “Eye to Eye” sequence. (a) Original left channel frame. (b) Color segmentation. (c) Depth segmentation. (d) Foreground object
#1. (e) Foreground object #2. (f) Background object.

Then, the final segmentation maskconsists of seg-
ments, say, , , each of which is generated as
the union of all elements of the corresponding set

(10)

(11)

Segmentation fusion results are presented in Fig. 8 for the
Claude sequence. Depth segmentation, shown with two different
gray levels as in Fig. 7(a), is overlaid in Fig. 8(a) with the white
contours of the color segments, as obtained from Fig. 6(a). It
is apparent that the person in the foreground corresponds to
one depth segment and to three color segments, while the back-
ground to one depth and six color segments. It is also apparent
that only depth segmentation contains both objects in their en-
tirety, while only color segmentation contains the exact object
contours. One segment for each semantic object with correct
boundaries can be provided by fusing color and depth segmen-
tation results. The extracted foreground/background objects for
the Claude sequence are illustrated in Fig. 8(b) and (c) respec-
tively. Similarly, it is observed that the nine extracted objects for
the Aqua sequence (Fig. 9) all correspond to semantic entities
of Aqua.

Another example of segmentation fusion is illustrated in
Fig. 10 for a frame of the “Eye to Eye” sequence, which is also
used for summarization in Section VI. The original left channel
frame is depicted in Fig. 10(a) and presents two people talking
in a conference room. Color and depth segmentation is shown
in Fig. 10(b) and (c) respectively. The results of segmentation
fusion are illustrated in Fig. 10(d)–(f), where it is again verified
that the three semantic objects are accurately obtained.

In all previous cases, semantic object identification cannot be
achieved by using color segmentation only, since usually an ob-
ject consists of multiple regions with different color characteris-
tics. In order to compare the two techniques, the number of color

segments should be reduced by appropriately regulating the dis-
tance threshold. Fig. 11 shows the color segmentation results for
the previously described frames of the Claude, Aqua, and “Eye
to Eye” sequences using a distance threshold such that the total
number of color segments is the same as the number of semantic
objects presented in Figs. 8(b), (c), 9, and 10(d)–(f), respec-
tively. The results obtained are not satisfactory since regions
corresponding to different objects have been merged together.
Instead, combining color and depth information a more mean-
ingful visual content representation is provided, justifying the
additional computational cost for depth segmentation. In some
cases, however, especially for long shots, disparity differences
are small and depth cannot be accurately estimated. These cases
are detected since they usually result in only one depth segment,
and subsequently, depth information is discarded and segmen-
tation is based on color only.

IV. FUZZY FEATURE VECTORFORMULATION

The visual content of a frame is described by extracting sev-
eral features from each segment (object). All these features are
gathered to form a frame feature vector. However, since the
number of segments varies from frame to frame, the feature
vector length also varies. Thus, any comparison between feature
vectors of different frames is practically unfeasible. To over-
come this problem, we classify frame segments into pre-deter-
mined classes, forming a multidimensional histogram. In this
framework, each element of a feature vector corresponds to a
specific class, or equivalently to a histogram bin. In order to
reduce the possibility of classifying two similar segments to
different classes, causing erroneous comparisons, a degree of
membership is allocated to each class, resulting in a fuzzy clas-
sification formulation [41], [42]. In this case, each sample is al-
lowed to belong to several (or all) classes with different degrees
of membership. Therefore, two similar samples are not classi-
fied to different bins as in conventional histograms.

In particular, for each segment , , we form
an vector , where the
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Fig. 11. Color segmentation with a limited target number of segments. (a) Claude sequence. (b) Aqua sequence. (c) “Eye to Eye” sequence.

Fig. 12. Block diagram of the proposed scheme for summarization of stereoscopic video sequences.

3 1 vector includes the average color components of segment
is its depth, is its size, and is a 2 1 vector containing

the horizontal and vertical location of the segment center. The
domain of th element of is partitioned
into regions using the membership functions

. The denotes the degree of membership
of to the class with index . Gathering class indices
for all elements , an -dimensional class

is defined. Then, the degree of membership
of each vector to class can be performed through a product
of membership functions of all elements of to
the respective elements of

(12)

A multidimensional fuzzy histogram is constructed, gath-
ering all feature samples . The value of the
fuzzy histogram is defined as the sum, over all segments,
of the corresponding degrees of membership

(13)

Thus, can be viewed as a degree of membership of a whole
frame to class . A frame feature vector is then formed by
gathering values of for all classes , i.e., for all com-

binations of indices, resulting in a total of feature
elements: . Note that a large number
of partitions does not necessarily improve key-frame extraction
effectiveness, as it results in “noisy” classification. Based on ex-
periments, a reasonable choice with respect to complexity and
effectiveness is .

V. STEREO–VIDEO SUMMARIZATION

In order to analyze an entire set of stereoscopic video se-
quences in a database and summarize their visual content, sev-
eral tasks are required, as illustrated in the block diagram of
Fig. 12. First, since a video sequence is a collection of different
shots, each of which corresponds to a continuous action of a
single camera operation [19], ashot-cut detectionalgorithm is
applied. Several algorithms have been reported in the literature
for shot-change detection of 2-D video sequences which deal
with the detection of cut, fading, or dissolve changes either in
compressed or uncompressed domain [19], [43]. Since, in case
of 3-D video sequences, a shot change occurs at the same frame
instance for all multiview channels, the aforementioned algo-
rithms can be applied to one channel, e.g., the left. In our ap-
proach the algorithm proposed in [19] has been adopted due to
its efficiency and low computational complexity.

Then, the aforementioned video sequence analysis is applied
to every frame (stereo pair) for the construction of feature vec-
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tors, and a content-based sampling algorithm is used for sum-
marizing the stereo information by discarding shots or frames of
similar visual content. In particular, a shot feature vector is con-
structed based on the feature vectors of all frames in each shot,
and shot selection is accomplished by clustering similar shots
together and selecting a limited number of shot cluster repre-
sentatives.

A. Shot Selection

Let , be the shot feature vector
for the th shot, calculated as the average of all frame feature
vectors within the respective shot; is the total number of
shots in a sequence and is the feature vector length.
Then, is the set of all shot feature
vectors. Let be the number of shots to be selected and,

the feature vectors that best represent these shots
(shot representatives). For each, an influence set is formed,
say which contains all shot feature vectors that are
closest to

(14)

where denotes the distance between two vectors, e.g., the
Euclidean norm. Then the average distortion, defined as

(15)

is a performance measure of the representation of shot feature
vectors by the cluster centers. The optimal vectors are thus
calculated by minimizing . However, direct minimization of

is a tedious task since the unknown parameters are involved
both in distances and influence zones. For this reason,
minimization is performed in an iterative way using the gen-
eralized Lloyd-Max or -meansalgorithm [28]. Starting from
arbitrary initial values , , the new cen-
ters are calculated through the following equations for :

(16a)

(16b)

where denotes theth center at the th iteration, and
its influence set. The center of is estimated by the function

(17)

where is the cardinality of . The algorithm
converges to the solution after a small
number of iterations. Finally, the most representative shots
are extracted as the ones whose feature vectors are closest to

, since there is no guarantee that the cluster
centers correspond to actual shot feature vectors.

Note that as the number of selected shots increases, the
average distortion decreases, since the shot feature vectors are

closer to the centers of the shot clusters. In a case where
, each shot represents a cluster and thus the average dis-

tortion reaches zero. On the other hand, small values of
are usually desired in order to reduce storage requirements

and achieve efficient 3-D video summarization. The optimal
value of is estimated using an information-theoretic crite-
rion, namely themaximum description length(MDL) [44].

B. Key-Frame Extraction

After extracting the most representative shots, the next step
is to select the key frames within each one of the selected shots.
This is achieved by minimizing a cross correlation criterion, so
that the selected frames are not similar to each other. Let us de-
note by the feature vector
of the th frame of a given shot, where is the total number
of frames of the shot. Let us assume that the most charac-
teristic frames should be selected. In order to define a measure
of correlation between feature vectors, we first define the
indexvector where

(18)

is the subset of which contains all sorted index vec-
tors . Each index vector corresponds to a set of frame
numbers. Thecorrelation measureof feature vectors

is then defined as

(19)

where is the correlation coefficient of feature vectors
and .

Hence, searching for a set of minimally correlated fea-
ture vectors is equivalent to searching for an index vectorthat
minimizes . Searching is limited in subset. Therefore
any permutations of the elements ofresults in the same key
frames. The set of the least correlated feature vectors, cor-
responding to the key frames, is thus represented by

arg min (20)

Unfortunately, the complexity of an exhaustive search for the
minimum value of is such that a direct implementa-
tion would be practically unfeasible, since the multidimensional
space U includes all possible sets (combinations) of frames. A
dramatic reduction in complexity can be achieved throughloga-
rithmic search, which has been introduced in [45] and provides a
very fast convergence to a sub-optimal solution. However, since
the search procedure is by definition confined to a very small,
pre-defined subset of the search space U, there is always a sig-
nificant possibility of converging to a local minimum of ,
resulting in poor performance. For this reason, agenetic algo-
rithm (GA) [40] approach is used in this paper. Both search algo-
rithms are based on the assumption that frames which are close
to each other (in time) have similar properties, therefore indices
which are close to each other (in) have similar correlation
measures.
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Fig. 13. “Eye to Eye” sequence withN = 76 shots, shown with one frame per shot.

VI. EXPERIMENTAL RESULTS

The 3-D stereoscopic television program “Eye to Eye” [46],
of total duration 25 minutes (12 739 frames at 10 frames/s),
has been used in our experiments for the evaluation of the pro-
posed summarization scheme. The sequence was produced in
the framework of the ACTS MIRAGE project [47] in collabora-
tion with AEA Technology and ITC. Studio shots were executed
using Europe’s stereoscopic studio unit, which was developed
jointly by AEA Technology and Thomson Multimedia within
the earlier RACE DISTIMA project [48], while location ac-
tion shots were captured using a special lightweight and rugged
stereo cam built for the ITC by AEA Technology.

The stereo video sequence is first analyzed and for each stereo
pair, a depth map is estimated. The M-RSST algorithm is then
applied on both the depth map and the left channel image, and
the resulting depth and color segments are fused together. Proper
features are derived from the final segmentation, including seg-
ment size, location, color, and depth. Each feature domain is
partitioned in classes and fuzzy classification with tri-
angular membership functions of 50% overlap is used for the
construction of feature vectors, so that the total feature vector
length is 2 187 since, in our case, . The shot de-
tection and feature extraction algorithms are applied offline to
the sequence, so that all information regarding shot change in-
stances, as well as the feature vector representation of all video
frames, is stored in a database and readily available. Hence, al-

gorithms for shot clustering and key-frame extraction are sepa-
rately applied using feature vectors of all frames and shots.

The problem of shot clustering and selection is addressed
first. The entire sequence under examination consists of

shots, which are depicted in Fig. 13. For presentation pur-
poses, each shot is depicted by one frame, whose feature vector
is closest to the respective shot feature vector, i.e., the average
feature vector over all frames of the shot. In this experiment,
the number of shot clusters has been selected to be .
This number of clusters is estimated using the MDL criterion
[44] as described in Section V-A. The results of the shot clus-
tering mechanism are illustrated in Figs. 14 (clusters 1–5) and
15 (clusters 6–10). As is observed, most of the shots containing
similar visual content, in terms of the number and complexity
of objects, are assigned to the same shot cluster. Fig. 16 de-
picts the ten shot cluster representatives, which are selected as
the shots whose feature vector is closest to the corresponding
cluster centers. It is clear that the visual content of the 25-min
sequence is efficiently summarized by the ten extracted shots of
this figure. Thus, it is possible to automatically generate low-
resolution video clip previews (trailers) or still image mosaics
of stereo –video sequences.

In order to evaluate the added benefit of including depth map
estimation and segmentation fusion in the proposed stereo-sum-
marization system, a comparison between single channel and
stereo–video summarization is also accomplished. In particular,
color segmentation, without depth estimation and fusion, is ap-
plied to the left channel only, and the respective summarization
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Fig. 14. Shot clusters 1–5 from “Eye to Eye” sequence (with color and depth segment fusion).

Fig. 15. Shot clusters 6–10 from “Eye to Eye” sequence (with color and depth segment fusion).

results are shown in Figs. 17 (clusters 1–5) and 18 (clusters
6–10). It is clear that shot separation according to visual con-
tent is not as successful as in the case of the stereo sequence,
where the disparity field is used. For example, using color and
depth information, the shots illustrating the hostess are classi-
fied to the same group (cluster 1). Using color information only,

those shots are assigned to more than one clusters (mainly clus-
ters 2 and 3). Similarly, the shot cluster representatives using
color segmentation only are depicted in Fig. 19. It can be ob-
served that the selected key shots contain multiple instances of
the same visual content, while certain distinctive shots of long
duration do not have an associated cluster representative.



512 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLGY, VOL. 10, NO. 4, JUNE 2000

Fig. 16. TheK = 10 selected shot cluster representatives from “Eye to Eye” sequence with color and depth segment fusion.

Fig. 17. “Shot clusters 1–5 from “Eye to Eye” sequence (left channel with color segmentation only).

Note also that the additional computational cost for disparity
estimation and depth segmentation is not very restrictive. For
example, single channel processing using color segmentation
only takes about 4.37 s/frame on a Sun Ultra 10 (333 MHz)
workstation for a frame size of 352264 pixels. Instead, two-
channel processing with disparity estimation and fusion requires
about 9.91 s/frame (including color segmentation). The above
processing times are averaged over all frames of the whole se-
quence. In order to accelerate processing of stereo sequences, a
sub-sampled version of the two channel images is used (blocks
of 2 2 pixels) for depth estimation and segmentation. Note that
with further sub-sampling (blocks of 44 pixels) the total corre-
sponding processing time is 5.85 s/frame, which is comparable
to single channel processing. Such sub-sampling does not sig-
nificantly affect object extraction performance, since accurate
object contours are obtained through color and depth segment
fusion. Further reduction of the computational complexity for

estimating the disparity field can be achieved using the algo-
rithm proposed recently in [26]. Thus, it can be claimed that the
added benefit of using depth information justifies the additional
computational cost.

In some cases, however, the disparity differences among
objects (discretized to image resolution) are typically small,
resulting in an erroneous estimation of the depth. This hap-
pens especially for long shots where different depths of ob-
jects cannot be accurately detected. However, this is not the
most common case, especially for stereoscopic video se-
quences, which are usually produced so that depth infor-
mation is of primary importance. In particular, in the “Eye
to Eye” sequence used in our experiments, 532 frames out
of 12 739 are detected as frames of no significant depth in-
formation, i.e., 4.18% of the total sequence. These shots are
detected since only one depth segment is extracted, and then
processed using color information only.
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Fig. 18. Shot clusters 6–10 “Eye to Eye” sequence (left channel with color segmentation only).

Fig. 19. Shot cluster representatives (left channel with color segmentation only).

Fig. 20. Shot 38 from “Eye to Eye” sequence withN = 188 frames, shown with one frame every seven.

The proposed key-frame selection mechanism is evalu-
ated using two different shots. The first, shot 38, consists of

frames (stereo pairs) and represents an outdoor
crowded scene with considerable camera motion, while the
second, shot 69, consists of frames and represents
a studio scene with two people and very limited motion. For
presentation purposes, one frame every seven is shown for the
first shot in Fig. 20, while one frame every 20 is shown for
the second in Fig. 21, since it is much longer and involves
less action. The results of the cross-correlation approach
using the genetic implementation are shown in Fig. 22(a) and
Fig. 23(a) respectively. For the first shot, key frames
are extracted, while for the second, . These numbers
are estimated by examining the temporal variation of the frame
feature vectors of each shot, as described in [40]. Although a

very small percentage of frames is retained, it is clear that, in
both cases, one can visualize the content of the shots by just
examining the selected key frames.

Key-frame selection is also compared with the single channel
case, applying color segmentation only. The respective results
are presented in Figs. 22(b) and 23(b) for the two shots. It is ob-
served that the extracted key frames cannot efficiently describe
the visual content of the shot. In particular, the first two extracted
key frames of shot 38 are of similar content, while the first two
and the last two frames of shot 69 also present similar visual
characteristics. Furthermore, there is no key frame with visual
content similar to that of the frame 9 598 of shot 69 as it hap-
pens in the two-channel case where key frame 9 599 has been
extracted.
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Fig. 21. Shot 69 from “Eye to eye” sequence withN = 726 frames, shown with one frame every 20.

Fig. 22. Key frames from shot 38 selected by: (a) the genetic algorithm with both channels; (b) genetic algorithm with left channel with color segmentation only;
and (c) the method of [19].

Finally, the proposed key-frame extraction method is com-
pared with the one presented in [19]. Key frames are extracted
at time instances when the accumulated differences of the dc
images exceed a pre-determined threshold. The key frames ex-
tracted using this method for the shots of Figs. 20 and 21 are
presented in Figs. 22(c) and 23(c), respectively. The selection
of the threshold value is anad hocprocess and in our case it has
been tuned so that the average number of key frames extracted
for the whole stereo sequence is the same as that of the proposed
method. However, using this threshold, two key frames are only
extracted from shot 38, which are not adequate for visual con-
tent description of the shot. Furthermore, for shot 69, although
the same number of key frames is extracted, the second, third,
and fourth key frames have similar visual content. It is clear that

the summarization performance of this technique is not so sat-
isfactory, especially for shots where complicated camera effects
are encountered.

VII. CONCLUSION

Stereo–video archives are anticipated to rapidly increase in
the forthcoming years. However, traditionally stereo–image se-
quences are represented by numerous consecutive image pairs
(frames), each of which corresponds to a constant time interval.
Such a linear, or sequential, video representation has a number
of limitations for the new emerging multimedia applications,
such as video browsing, content-based indexing and retrieval.
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Fig. 23. Key frames from shot 69 selected by: (a) the genetic algorithm with both channels; (b) genetic algorithm with left channel with color segmentation only;
and (c) the method of [19].

Furthermore, the bandwidth and storage requirements of digi-
tized stereo information, even in compressed form, present chal-
lenges to the most multimedia servers. For this reason, new
methods for nonlinear video-content representation should be
implemented. In this paper, an efficient video-content represen-
tation algorithm for stereo-image sequences has been presented.
In particular, stereo video is partitioned into shots by applying a
shot-cut detection algorithm, and then a content-based sampling
algorithm is employed for discarding shots or frames of sim-
ilar visual properties. This approach provides summarization of
visual information similarly to that used in current document
search engines.

Stereo-visual content is extracted by a novel segmenta-
tion algorithm, which combines both color and depth infor-
mation. The adopted approach projects color segments onto
depth segments so that video objects identified by depth
segmentation are retained, while at the same time accurate
object boundaries are extracted. A multiresolution implemen-
tation of the RSST algorithm (M-RSST) is presented to per-
form both color and depth segmentation. Apart from acceler-
ating the segmentation procedure, this algorithm also prevents
oversegmentation, which is not desirable in the framework
of stereo video summarization. Depth is estimated from the
disparity field between the left and right channel images,
while occluded areas are efficiently detected and compen-
sated with appropriate disparity values. Better performance of
the visual description can be achieved by integrating tracking
functionalities, thus resulting in a selection mechanism that
is less susceptible to noise [49], [50]. It is illustrated in
the experiments that both object extraction and video sum-
marization perform significantly better when depth estima-

tion and segmentation fusion are incorporated, compared to
single-channel results with color segmentation only, justifying
the extra computational load for disparity estimation.

Based on the obtained video-object segmentation, segment
features including size, location, color, and depth are used
for the construction of feature vectors based on fuzzy classi-
fication, reducing the influence of segmentation discontinu-
ities. Consequently, a feature-based video representation is
achieved instead of the traditional frame-based one, which
is more suitable for stereo content description. The gener-
alized Lloyd–Max algorithm is used for clustering shots of
similar visual content due to its efficiency and computational
simplicity. For a given shot, key frames are extracted by min-
imizing a cross-correlation criterion so that frames of mini-
mally correlated feature vectors are located. Since an exhaus-
tive search for the optimal solution is practically unfeasible,
a genetic algorithm has been employed. Experimental results
indicate reliable performance on real-life stereoscopic video
recordings. Finally, the proposed stereo video summarization
technique is compared to single channel summarization as
well as to other techniques, with quite promising results.
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