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Abstract—An efficient technique for summarization of stereo- video coding and representation, giving users new capabilities
scopic video sequences is presented in this paper, which extractsof accessing, manipulating, and editing visual content [9],
a small but meaningful set of video frames using a content-based [10]. Moreover, the MPEG group has recently begun a new

sampling algorithm. The proposed video-content representation . ; .
provides the capability of browsing digital stereoscopic video standardization phase (MPEG-7) for a multimedia content

sequences and performing more efficient content-based queries description interface [11]. The MPEG-7 standard will specify a
and indexing. Each stereoscopic video sequence is first partitioned set of content descriptors for any multimedia information.

into shots by applying a shot-cut detection algorithm so that  Although most video archives mainly consist of 2-D video se-
frames (or stereo pairs) of similar visual characteristics are gath- 4ances, the use of 3-D video, obtained by stereoscopic or mul-
ered together. Each shot is then analyzed using stereo-imaging,; . . - . .
techniques, and the disparity field, occluded areas, and depth map tiview Ca_mera SYStemS’ has receptly increased since it p!’OVId?S
are estimated. A multiresolution implementation of the Recursive more efficient visual representation and enhances multimedia
Shortest Spanning Tree (RSST) algorithm is applied for color and communication. 3-D video enables users to handle and manip-
depth segmentation, while fusion of color and depth segments is ylate video objects more efficiently by exploiting, for example,
employed for reliable video object extraction. In particular, color depth information provided by stereo-image analysis. Further-

segments are projected onto depth segments so that video objects A
on the same depth plane are retained, while at the same time MOre; the problem of content-based segmentation is addressed

accurate object boundaries are extracted. Feature vectors are then More precisely since video objects are usually composed of re-
constructed using multidimensional fuzzy classification of segment gions belonging to the same depth plane [12]. Various appli-
features including size, location, color, and depth. Shot selection is cations, such as video surveillance, image/video indexing and
accomplished by_clusterlng similar sh_ots based on the generalized retrieval, or editing of video content, can gain from such 3-D
Lloyd—Max algorithm, while for a given shot, key frames are . . L .
extracted using an optimization method for locating frames of representation. For this reason, 3-D data acquisition and display
minimally correlated feature vectors. For efficientimplementation ~ Systems have attracted a great interest recently and consequently
of the latter method, a genetic algorithm is used. Experimental archives of 3-D video information are expected to rapidly in-
results are presented, which indicate the reliable performance of crease in the forthcoming years.
the proposed scheme on real-life stereoscopic video sequences. Traditionally, 3-D video sequences are represented by nu-
Index Terms—Content-based indexing and retrieval, stereo- merous consecutive frame sets, such as stereo pairs in the case
scopic image analysis, video summarization. of stereoscopic video, each of which corresponds to a constant
time interval. The images of each set are recorded using slightly
different viewpoints of the same scene. However, this image-se-
guence representation, which stems from the analog tape storage
R ECENT progress in the field of video analysis anghrocess, results in a linear (sequential) access of video content
processing has led to an explosion in the amount pf3] while this approach is adequate for viewing a video in
visual information being stored, accessed and transmittedey,qvie mode [14], it has a number of limitations for the new
This has stimulated new technologies for efficient searchin@merging multimedia applications, such as video browsing, con-
indexing, content-based retrieving and managing multimedigt-based indexing, and retrieval. Currently, the only way to
databases [1]{3]. The key for this rapid growth was urgegtowse a video sequence is to sequentially scan video frames, a
by the development of various video-compression standargggcess that is both time consuming and tedious. Furthermore,
such as MPEG-1/2 [4], [5] or H.261/3 [6], [7], each of which i§;ijgeo queries on entire video sequences are insufficient, due
associated with different applications and different bit rates. ¢ significant temporal redundancy of video content [15]. This
new dimension to visual communication is expected to be Prghear video representation is also not adequate for efficient or-
vided by the MPEG-4 standard [8], which allows content-basg@nization of large video archives, since storage requirements
of digitized video information, even in compressed domain, are

very large and present challenges to most multimedia servers
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network design and management, based, for example, on trafffeen proposed in the literature for stereo—video sequence anal-
modeling of video sources [17], new methods for efficient (norysis [26], [27]. In this paper, a more reliable representation of
linear) video-content representation and summarization shouldeo content is proposed by combining the results obtained
also be implemented [18]. from color and depth segmentation, so that video objects on the
Recently, some approaches have been proposed in the litagme depth plane are retained, while accurate object boundaries
ture for visual summarization, mainly in the framework of thare extracted. A multiresolution implementation of the Recur-
MPEG-7 standardization phase. In particular, shot-cut detectisime Shortest Spanning Tree (RSST) algorithm is employed for
has been presented in [19], which can be seen as the first sthgth color and depth segmentation. This hierarchical approach,
of video-content summarization. Extraction of frames at regpart from reducing computational cost, also prevents from pos-
ular time instances has been proposed in [20]. However, tBible oversegmentation, which is not desirable in the context of
work does not exploit shot information and frame similarityideo summarization. Then, appropriate features are extracted,
and therefore, shots of small duration but of significant conteimcluding segment size, location, average color components and
may be discarded, whereas at the same time, multiple frantepth, and gathered together using fuzzy classification to in-
with similar content may be retained from shots of longer durarease the robustness of the proposed summarization scheme.
tion. Selection of a single key frame for each shot has been pFénally, shots of similar content are grouped using the general-
sented in [21], [18], which cannot provide sufficient informatioiized Lloyd-Max algorithm [28], while key frames within each
about the video content, especially for long shots with a lot sklected shot are extracted by minimizing a cross correlation cri-
activity. Construction of compactimage maps or image mosaiggion by means of a genetic algorithm.
has been described in [14], [22]. Although such approaches caiThis paper is organized as follows. Section Il introduces the
be very efficient for specific applications, such as sports pretereoscopic image analysis that is necessary for extracting 3-D
grams or studio productions, they cannot provide satisfactanformation from a pair of left and right channel images and
results in real world complex shots, where background/foreenstructing disparity, occlusion and depth maps. Section Il
ground changes or complicated camera effects are encountepeesents the multiresolution implementation of the RSST algo-
A method for analyzing video and building a pictorial summargithm (M-RSST) that is used for segmenting the left channel
for visual representation has been proposed in [13]. This warkage and the corresponding depth map. A segmentation fu-
is concentrated on dividing a video sequence into consecutsien algorithm for combining color and depth segments is also
meaningful segments (story units) and then constructing a vide@sented in this section, while the fuzzy feature vector formula-
poster for each story unit based on shot dominance, insteadioh is introduced in Section IV. Then, all the above frame anal-
extracting key frames. Moreover, all the aforementioned worksis techniques are used in Section V for stereo video sequence
are dealing with 2-D video sequences and cannot be directly apalysis and summarization by means of shot-cut detection, shot
plied to 3-D video archives, since 3-D information is not takedlustering and key-frame selection. Finally, experimental results
into consideration. for a real-life stereo sequence are given in Section VI and con-
In the context of this paper, a generalized framework for nonlusions are drawn in Section VII.
linear representation of 3-D video sequences is proposed, re-
gardless of the scene complexity. A content-based sampling al-
gorithm [23] is used which segments the sequences into shots, Il. STEREOSCOPIdMAGE ANALYSIS

clusters shots with similar video content together, selects a réPpepth information is estimated more reliably in stereo-image
resentative shot from each cluster, and finally, extracts mumpi%quences in contrast to monocular 2-D sequences [12], since
representative frames (key frames) for each selected shot. Thisye than one separate image views are available in the former

approach provides summarization of visual information simi,qa [29], [30]. The analysis below concentrates on depth esti-
larly to that used in current document search engines [3]. ThiSaiion from a binocular camera system.

it is possible to automatically generate low resolution video clip
previews (trailers) or stillimage mosaics, which play exactly th
same role for stereo video sequences as “thumbnails” for still
images. Fast browsing of stereo video content, efficient perfor-Consider a stereoscopic system with two camera®adl
mance of video queries and easy access to 3-D video databdsssjth A andbaseline distancé, as shown in Fig. 1. The op-
located on distributed platforms, can benefit from such cotieal axes of the two cameras are converging with adglehe
tent-based representation. origins of the two camera coordinate systems are located at the
For this purpose, high-level image processing and analyfisal points (lens centers), at distancrom the corresponding
techniques should be applied to stereo—video sequences in oiaege planed; (left channel) and; (right channel), respec-
to obtain an efficient description of video content. This catively. Itis assumed, without loss of generality, that the world co-
be accomplished through segmentation into semantically meandinate system coincides with the coordinate system of camera
ingful objects, which, with the exception of some specific agt (left camera), while the coordinate system of camera 2 (right
plications, is in general a very difficult task [24], [25]. How-camera) is obtained from the former through appropriate rota-
ever, in cases of 3-D video sequences, where depth infornians and translations.
tion can be estimated reliably, high-level video processing canA point w with world coordinates X, Y, Z) is projected on
be performed more efficiently, since video objects are usuallyage pland; as pointx1, 31 ) and on image plang as point
located on the same depth plane [12]. Several algorithms hdwe, y-), as illustrated in Fig. 1. Then, assuming a perspective

Disparity and Depth Estimation
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area ofs, x s, pixels, wheres, < s, due to the small
converging anglé between the two cameras. This is achieved
by minimizing the followingcost function:

d(xlv yl) = arg minJ(’U,, Ty, yl)

ucB
=arg r}];in{D(u, z1, y1) + S(u, =1, Y1)},
uC
V(zy, y1) € F 4)
wherew = [u, wu,|* is a displacement of pointzry, y1)
Image Image on image planel,. The first term of the right hand of (4),
Plane /, Plane /, D(u, x1, 11), corresponds to block error functiondefined as

(xpy) (0,)

D(u, z1, 1) = Z (Lo(z1 + ve + 2, 11 + 1y +¥)

z, yCW
a A\ (et ) ©)

whereW = {—w, ---, w} x {—w, ---, w} is a rectangular
Fig. 1. Geometry of a stereoscopic camera system with convergent optisindow or block. The second term of (4¥(u, z1, v1), is @
axes and perspective projection of a 3-D point on the corresponding imagg,oothness error function used to reduce possible noise in esti-

planes. matingd(x1, y1) and is defined as
projection scheme, a simple relation between the camera coordi- S(u, 1, y1) = Rz, 1) Z llu — o2 (6)
nates(zy, u1), (z2, y2) and depthZ can be obtained [29], [30] Y ’ e N )
Z — / Z
py= A\ TTOZZNE where N(zy, 1) = {d(xs — Ly de — Ly -

(Ac — 218)Z + Abs’ (Ae —218)Z +Abs' 1) g 4y — 1), d(zy +1, y1 — 1)} is the set of all disparity

(1) vectors of pixels neighboring t¢z;, 1) that have already
been calculated from (4), anjgl - || is the Euclidean norm.
The smoothing weight functio®(z1, %), whose estimation

is based on the local variance of imafe takes low values

in regions where matching is reliable, such as edges or highly
textured regions, and high values in regions where matching
is not reliable, such as regions of uniform intensity. This
function is also used for determining the exact size of the
search are#. Since in regions with a high value &f(x1, 1)

the disparity field is smooth, a small search area is adequate,

wheres = sin 6, ¢ = cos 6, s’ = sin /2, andd’ = cos 6/2.
As is observed from (1), the dep#h of w can be estimated if
its projectiongz1, ¥1) and(xz, y2) on image planeg; and/,
respectively are known. Consequently, for a given p@int 4 )
on Iy, its corresponderftzs, y2) on I, should be found. This is
accomplished by computing the disparity vect#e;, y1) =
[de(z1, 1) dy(z1, y1)]* atlocation(xy, y1) of camera 1 with
respect to camera 2

dy =dy (21, 11) while a larger search area is necessary for regions with a low
—2y — 1, value of R(x1, y1). This means thas, and s, are varied
AO\s + 21¢) — 21(he — 218)]Z — Ab(AE + 215) according taR(x1, y1), resulting in a faster implementation of

= (2) the minimization procedure.
(Ae = 215)Z + Abs' Depth and disparity estimation results are illustrated in Fig. 2
for the Claude sequence. In particular, Fig. 2(a) and (b) show
dy =dy(z1, 1) the original left and right channel images, respectively. The ver-
_ tical disparity is negligible for the given sequence, since the two
TR , cameras are located at the same vertical level. Thus, only the
_ D= Qemms)lng - Abs'yy (3) horizontal disparity fieldd,(z1, v1) is presented in Fig. 2(c),
(Ac — 218)Z + Abs' where areas in white correspond to positive disparity and areas
If the disparity vector is known, (2) and (3) reduce to an overd# gray to approximately zero disparity. Finally, the depth map
termined linear system of two equations with a single unknowis, illustrated in Fig. 2(d), where areas in black correspond to
Z (the depth) and a least-squares solution can be obtained [#Ackground and areas in gray to foreground. Note that in both
Disparity estimation is accomplished by means dhe disparity field and depth map, the shaded areas of gradual
a block matching algorithm, similar to that proposeéntensity change at the left of the person and at the right edge
in [31]. Let I(x,v) and L(x,v), (z,y) € F = oftheimage aredue to occlusion, whichis discussed in the fol-
{1,---, Mo} x {1,---, No}, denote the gray-level in- lowing.
tensities of images projected on plangsand I, at (z, y) ) )
location, where M,, N, are the image dimensions. TheB: ©Occlusion Detection
disparity vectord(z1, 11) = (22 — 21,42 —y1) € B = The above analysis of disparity estimation assumes that a cor-
{=52, -+, 5o} x {—sy, -+, sy} is estimated within a searchresponding point of imagé can always be found for all points
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(c) (d)

Fig. 2. Disparity and depth estimation for the Claude sequence. (a) L
channel image. (b) Right channel image. (c) Horizontal disparity field. (
Depth map.

ig. 4. Depth estimation and occlusion compensation for the Aqua sequence.
) Left channel image. (b) Right channel image. (c) Depth map without
compensation. (d) Compensated depth map.

L I‘; l

—— Criginal
,,,,,,, Compensated

each occluded area, and equal to the maximum disparity value
of that area. This way, each occluded area is effectively merged
with the neighboring area of maximum depth, which is consis-
tent with the fact that an object is occluded by another only if it
is located farther away from the camera.

The occlusion detection and compensation technique is illus-

cwshERBRE

Horizontal Disparity,
di(x,,160)

[
=

0 50 100 150 200 250 300

Horizontal Coordinate, x; trated in Fig. 3 for the left channel (image plahgof the Claude

(@)

sequence. The 1-D case is first presented in Fig. 3(a), where
the horizontal disparityl,.(x1, 160) of image liney; = 160 is
plotted versus:{, with (dotted line) and without (solid line) oc-
clusion compensation. It is evident that in intervals whérés
nondecreasing, the disparity is left unchanged. On the contrary,
intervals of decreasing disparity are detected as occlusion inter-
vals and disparity is compensated. This is accomplished by as-
signing constant disparity value, equal to the value of the neigh-
boring nonoccluded interval located to the left of each occluded
(©) (d) interval. The occluded areas of the entire 2-D horizontal dis-

Fio 3 Occlusion detect § o for the Claud parity field are shown as black in Fig. 3(b), while the compen-
T S eoccuion deteton and compernsaln for e Caude sedence dated disparity field and corresponding depth map are presented
(b) Occluded areas (in black). (c) Compensated horizontal disparity field. (@) Fig. 3(c) and (d), respectively. The results for the Aqua se-
Compensated depth map. guence are presented in Fig. 4. In particular, Fig. 4(a) and (b)
depict the original left and right frame of Aqua, while Fig. 4(c)
of image!;. However, due to the different camera viewpointsand (d) the depth maps before and after occlusion compensation.
there may be areas d@f that are occluded i, [32]. All dis- In both cases, the compensated depth map is more reliable.
parity values for occluded areas are not reliable and may result
in incorrect depth segmentation. Therefore, it is clear that: i)
these areas should be detected and ii) occlusion should be com-
pensated by assigning appropriate disparity values to occludedideo summarization can be performed more efficiently if the
areas. The former tas@cclusion detections accomplished by visual content of a sequence is described through its semantic
locating regions of ; where the horizontal disparity decreasegideo objects. Semantic segmentation has attracted much at-
continuously with respect to the horizontal coordinatewith  tention recently, especially in the framework of the emerging
a slope approximately equal tel [32]. Vertical disparity is MPEG-4 and MPEG-7 standards [9], [24], [25], [33]. Although
not taken into account for this purpose, since all disparities aseme solutions exist for specific applications (e.g., videophone
mostly horizontal, as explained above. The latter tagiclu- systems, news bulletins, etc.) [12], [34], [35], [36] semantic ob-
sion compensations tackled by keeping disparity constant irject extraction still remains an unsolved problem [37]. In stereo

[Il. OBJECTEXTRACTION
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—
|’i!l | ‘(a)

Fig.5. Demonstration of M-RSST algorithm for color segmentation on Clauggg. 6. Final color segmentation results. (a) Claude sequence. (b) Aqua
sequence. (a) Segmentation at resolution level 3. (b) Segment splitting at leveleuence.

(b)

video sequences, however, where depth information can be
timated more reliably, semantic video objects can be identifie
since usually a video object is located on the same depth pla
In order to retain semantic object extraction, and at the sar
time obtain accurate object boundaries (contours), color a
depth segmentation is first employed and then both segmer
tion maps are fused together.

A. Color and Depth Segmentation (a)

A multiresolution implementation of the RSST [38] algoig. 7. Final depth segmentation results. (a) Claude sequence. (b) Aqua
rithm, called M-RSST, is used both for color and depth segequence.
mentation. In this implementation, the RSST algorithm, which
is considered one of the most powerful tools forimage segmehe segmentation results for the image of the lowest reso-
tation compared to other techniques [39], is recursively appliggtion. Then, each boundary pixel (orx8 block) is split
toimages of increasing resolution. This approach, apartfrom &gto four new segments (of sizex4 pixels) according to
celerating the segmentation procedure, also reduces the numslggp 1 of the M-RSST algorithm, as shown in Fig. 5(b).
of small objects, which is a useful property in the context ofhese segments are merged at resolution level 2 and the
video summarization. process is repeated in an iterative way to produce the final

Consider an imagéd of size My x Ny pixels. Initially, a segmentation mask, illustrated in Fig. 6(a) for the Claude
multiresolution decomposition of imagkis performed until sequence. Similarly, Fig. 6(b) presents the final color seg-
a lowest resolution level, saq, so that a hierarchy of im- mentation results for the left channel of the Aqua sequence.
ages/(0) =1, I(1), ---, I(Lyp) is constructed. Consequently,Depth segmentation results are depicted in Fig. 7. For the
a truncated image pyramid is created, each layer of which callaude sequence, two segments are extracted as presented
tains a quarter of the pixels of the layer below. The conventiorial Fig. 7(a), corresponding to the foreground and the back-
RSST algorithm is first applied to the image of the lowest resolground object. Similarly, nine segments are extracted for the
tion, I(Lo), to provide an initial image segmentation. In the folAqua sequence [Fig. 7(b)].
lowing steps, an iteration begins so that the images of higher resThe computational complexity of the M-RSST algorithm is
olution are taken into consideration. Particularly, the followingonsiderably lower than that of the conventional RSST. This is
tasks are repeated in each iteration of the proposed M-RSSTdale to the fact that the initial number of segments at each resolu-
gorithm, until the highest resolution imagéd) is reached. tion level is significantly reduced; only the boundary pixels are

1) Each boundary pixel of all resulting segments of the cufurther segmented. However, the computational improvement is
rent resolution level, corresponding to four pixels of th8ot straightforward to calculate, since the speed of the M-RSST

next h|gher resolution |eve|, is Sp“t into four new Segalgorithm heaVily depends on the initial number of Segments

ments. and the image complexity. Experimental results have indicated
2) New link weights are calculated and sorted. an average speed improvement ratio in the order of 400 for an
3) Segments are recursively merged using the conventiofBRge size of 728576 and initial resolution levél, = 3 [40].

RSST iteration phase. Furthermore, the M-RSST algorithm also eliminates very small

Fig. 5 illustrates the results of color segmentation for thg€gments, which is desirable in the framework of video summa-
left channel of the Claude sequence, the original frame B¥ation since oversegmentation is avoided.
which is depicted in Fig. 2(a). A minimum link weight (dis-
tance) threshold is selected to terminate the segmentat%n
process similarly to that used in the conventional RSST al- Although depth segmentation provides a more meaningful
gorithm [38]. A lowest resolution level ofLy, = 3 (i.e., frame content representation than color segmentation, i.e.,
block resolution of &8 pixels) is adopted. Fig. 5(a) showscloser to semantic objects, it cannot accurately identify object

Segmentation Fusion
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(b)

Fig. 8. Segmentation fusion results for the Claude sequence. (a) Depth segmentation overlaid with color segment contours (in white). (b) dlojesgr¢and
Background object.

| ij\ 3 t - & d L]
- ® @
i~ |
(d) - IR |
i
€ @ |
;
) (h) ()

Fig. 9. Object extraction after segmentation fusion for the Aqua sequence.

boundaries (contours), due to erroneous estimation of dispaiiigich color segmeniy is associated with that depth segment
field and occlusion issues. On the contrary, color segmentatiwhose area of intersection is maximized. This is accomplished
contains the most reliable object boundaries, but usually means of grojection function
oversegments a video object into multiple regions [25]. For
this reason, a video object is extracted by fusing several colob(55: G*) = {arg maxa(g N 57)},  i=1,2, -+, K°
segments using the depth information. geas

Let us assume thak° color and K¢ depth segments have ®)

been extracted using the M-RSST algorithm, denoteffas= \yhereq(.) is the area, i.e., the number of pixels, of a segment.

1,2, KeandSf, i = 1,2, -, K9 respectively. TheS;  Based on the previous equatidki¢ sets of color segments are
andsS¢ are mutually exclusive. Let us also denotediiandG¢ defined, say(;, i = 1, 2, - --, K¢, each of which contains all
the output masks of color and depth segmentation color segments that are projected onto the same depth segment
Sé:
G ={S5,i=1,2,---, K°} C;={g€Gplg,GH=85", i=12 - K%

Gd:{sng:L 277Kd} (7) (9)
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(@

Fig. 10. Object extraction for the “Eye to Eye” sequence. (a) Original left channel frame. (b) Color segmentation. (c) Depth segmentationo(d)d-obgeprt
#1. (e) Foreground object #2. (f) Background object.

Then, the final segmentation magkconsists ofk = K< seg- segments should be reduced by appropriately regulating the dis-

ments, saysS;, i = 1, 2, ---, K, each of which is generated agance threshold. Fig. 11 shows the color segmentation results for
the union of all elements of the corresponding&gt the previously described frames of the Claude, Aqua, and “Eye
to Eye” sequences using a distance threshold such that the total
Si = U 9, i=12 -, K (10) number of color segments is the same as the number of semantic
g€C; objects presented in Figs. 8(b), (c), 9, and 10(d)—(f), respec-

tively. The results obtained are not satisfactory since regions
corresponding to different objects have been merged together.
Instead, combining color and depth information a more mean-

ful visual content representation is provided, justifying the

. . - in
Cl:eggqsintagﬁgefusg)thzzultmseiizt% rnessehnc;ce(:] m’tEItg‘os df;;:éé;ditional computational cost for depth segmentation. In some
u qu - Dep 9 lon, Shown with two di %gses, however, especially for long shots, disparity differences

gray levels as in Fig. 7(a), is overlaid in F'.g' 8(a) with t_he whit e small and depth cannot be accurately estimated. These cases
contours of the color segments, as obtained from Fig. 6(a)._It detected since thev usually result in only one depth seament
is apparent that the person in the foreground correspondsa{g © y usualy resuttin onty P 9 '
. and subsequently, depth information is discarded and segmen-
one depth segment and to three color segments, while the b%glf‘bn is based on color only
ground to one depth and six color segments. It is also apparen{ '
that only depth segmentation contains both objects in their en-
tirety, while only color segmentation contains the exact object
contours. One segment for each semantic object with correciThe visual content of a frame is described by extracting sev-
boundaries can be provided by fusing color and depth segmenal features from each segment (object). All these features are
tation results. The extracted foreground/background objects fmthered to form a frame feature vector. However, since the
the Claude sequence are illustrated in Fig. 8(b) and (c) respeamber of segments varies from frame to frame, the feature
tively. Similarly, it is observed that the nine extracted objects famector length also varies. Thus, any comparison between feature
the Aqua sequence (Fig. 9) all correspond to semantic entitiectors of different frames is practically unfeasible. To over-
of Aqua. come this problem, we classify frame segments into pre-deter-
Another example of segmentation fusion is illustrated imined classes, forming a multidimensional histogram. In this
Fig. 10 for a frame of the “Eye to Eye” sequence, which is alfoamework, each element of a feature vector corresponds to a
used for summarization in Section VI. The original left channalpecific class, or equivalently to a histogram bin. In order to
frame is depicted in Fig. 10(a) and presents two people talkireduce the possibility of classifying two similar segments to
in a conference room. Color and depth segmentation is shodifferent classes, causing erroneous comparisons, a degree of
in Fig. 10(b) and (c) respectively. The results of segmentatiomembership is allocated to each class, resulting in a fuzzy clas-
fusion are illustrated in Fig. 10(d)—(f), where it is again verifiedification formulation [41], [42]. In this case, each sample is al-
that the three semantic objects are accurately obtained. lowed to belong to several (or all) classes with different degrees
In all previous cases, semantic object identification cannot bé membership. Therefore, two similar samples are not classi-
achieved by using color segmentation only, since usually an dted to different bins as in conventional histograms.
ject consists of multiple regions with different color characteris- In particular, for each segmesst, ¢ = 1, ---, K, we form

tics. In order to compare the two techniques, the number of cobm I, x 1 vectors; = [¢(S;)d(S)I* (S;)a(S;)]”, where the

IV. Fuzzy FEATURE VECTOR FORMULATION
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(a) (b)

Fig. 11. Color segmentation with a limited target number of segments. (a) Claude sequence. (b) Aqua sequence. (c) “Eye to Eye” sequence.
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Detection Analysis —L Denih J’ Fusion Formulation
ep
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Stereo Video Summarization
Feature Vectors

Shot Key-Frame
Clustering Extraction

Stereoscopic
Video
Database

Fig. 12. Block diagram of the proposed scheme for summarization of stereoscopic video sequences.

3x1 vectore includes the average color components of segmeinations of indices, resulting in a total af = Q' feature

S;, dis its depthya is its size, and is a 2< 1 vector containing elements:if = [f1 f» --- fa]?. Note that a large number
the horizontal and vertical location of the segment center. Th&partitions does not necessarily improve key-frame extraction
domain ofjth element; ;, j =1, 2, ---, L of s; is partitioned effectiveness, as it results in “noisy” classification. Based on ex-
into @ regions using the membership functigns (s;, ;), n; = periments, a reasonable choice with respect to complexity and
1,2, ---, Q. Thepuy,,(s; ;) denotes the degree of membershipffectiveness i€) = 3.

of s; ; to the class with index ;. Gathering class indices;

for all elementsi = 1, 2, ---, L, anL-dimensional clasa = V. STEREG-VIDEO SUMMARIZATION

[n1 na --- nr]? is defined. Then, the degree of membership

of each vectos; to class: can be performed through a product In ordgr to analyze an entire set_of stereo_scoplc video se-
of membership functiong,..(s; ;) of all elementss; ; of s; to guences in a database and summarize their visual content, sev-
n; 2,7 2, 7

. eral tasks are required, as illustrated in the block diagram of
the respective elements; of n Fig. 12. First, since a video sequence is a collection of different
= shots, each of which corresponds to a continuous action of a
pn(8i) = H pon (53, 3)- (12) single camera operation [19],shot-cut detectiomlgorithm is
o ) =t ] applied. Several algorithms have been reported in the literature
A multidimensional fuzzy histogram is constructed, gathy, shot-change detection of 2-D video sequences which deal
ering all feature samples;, i = 1, ---, K. The value of the yth the detection of cut, fading, or dissolve changes either in
fuzzy histogramt (n) is defined as the sum, over all segment$,ompressed or uncompressed domain [19], [43]. Since, in case
of the corresponding degrees of membershjfs; ) of 3-D video sequences, a shot change occurs at the same frame
1 XK 1 KL instance for all multiview channels, the aforementioned algo-
H(n) = - > tn(si) = 7 ST #ni(50.)- (13)  rithms can be applied to one channel, e.g., the left. In our ap-
i=1 i=1 j=1 proach the algorithm proposed in [19] has been adopted due to
Thus,H (n) can be viewed as a degree of membership of a whate efficiency and low computational complexity.
frame to class:. A frame feature vectof is then formed by  Then, the aforementioned video sequence analysis is applied
gathering values of (n) for all classes, i.e., for all com- to every frame (stereo pair) for the construction of feature vec-
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tors, and a content-based sampling algorithm is used for sucioser to the centers of the shot clusters. In a case wifere-
marizing the stereo information by discarding shots or frames &, each shot represents a cluster and thus the average dis-
similar visual content. In particular, a shot feature vector is cotertion Rs reaches zero. On the other hand, small values of
structed based on the feature vectors of all frames in each slt, are usually desired in order to reduce storage requirements
and shot selection is accomplished by clustering similar sha@iisd achieve efficient 3-D video summarization. The optimal
together and selecting a limited number of shot cluster reprelue of Ks is estimated using an information-theoretic crite-

sentatives. rion, namely theanaximum description leng{tMDL) [44].
A. Shot Selection B. Key-Frame Extraction
Leth; € RM,i =1, 2, ---, Ns be the shot feature vector After extracting the most representative shots, the next step

for the <th shot, calculated as the average of all frame featuitgto select the key frames within each one of the selected shots.
vectors within the respective sha¥s is the total number of This is achieved by minimizing a cross correlation criterion, so
shots in a sequence aidd = Q' is the feature vector length. that the selected frames are not similar to each other. Let us de-
Then,E = {h;, i =1, 2, ---, Ns}isthe set of all shot feature note by f, € R™,i € V = {1, ---, Ny} the feature vector
vectors. Lets be the number of shots to be selectedgnd=  of theth frame of a given shot, whe®¥ is the total number

1, 2, .-+, Kg the feature vectors that best represent these shof§rames of the shot. Let us assume that #ig most charac-
(shot representatives). For eagh an influence set is formed, teristic frames should be selected. In order to define a measure
say Z; which contains all shot feature vectdisc £ that are of correlation betweei  feature vectors, we first define the
closest tag; indexvectora = (ay, ---, ax,) € U C VEF where

Zi ={h € E: 65(h, q;) < 6s(h, q;)V j # i}, U={(a1, -, ar,) € VEria) < <ak,} (18)
i:1727"'7KS (14) -
is the subset o’ “# which contains all sorted index vec-
whereés(-) denotes the distance between two vectors, e.g., tioes a. Each index vectom corresponds to a set of frame
Euclidean norm. Then the average distortion, defined as  numbers. Thecorrelation measureof Ky feature vectors
fi,t=a1, -, ax, is then defined as

K,
Rs(qy, 42, -+ k) = Z Z és(h, q;) (15) Rp(a) =Rp(ay, -+, ak,)

i=1 he7;
=1 heZi Krp—1 Kg

is a performance measure of the representation of shot feature = N Z Z (paz-,aj)2 (29)
vectors by the cluster centgys The optimal vectorg, are thus Kr(Kr—1) i=1 =i+l
cRaIc_uIated _by m|n|m|z_|ng’~25. However, direct m|n|m|zat|qn of Wgerepa. .. isthe correlation coefficient of feature vectdis
s is a tedious task since the unknown parameters are involve % i
both in distance9s(-) and influence zones. For this reason?ndf
minimization is performed in an iterative way using the ger{[J
eralized Lloyd-Max orK -meansalgorithm [28]. Starting from
arbitrary initial valuesy,;(0),¢ = 1, 2, ---, K, the new cen-
ters are calculated through the following equationsfor 0:

Hence, searching for a set &f = minimally correlated fea-
re vectors is equivalent to searching for an index vegtbiat
minimizesRr(a). Searching is limited in subsét. Therefore
any permutations of the elementsafesults in the same key
frames. The set of th& - least correlated feature vectors, cor-

Zi(n) = {h € E:65(h, q;(n)) < ds(h, q;(n))Vj # i}, responding to thé( - key frames, is thus represented by
i=1,2, Ks (169) @ = (41, -, ax,)=arg mnRgr(a). (20)
acl

Unfortunately, the complexity of an exhaustive search for the
gi(n+1) = cent(Zi(n)),  i=1,2,---,Ks (16b) minimum value ofRr(a) is such that a direct implementa-
tion would be practically unfeasible, since the multidimensional
space U includes all possible sets (combinations) of frames. A
dramatic reduction in complexity can be achieved thrdogh-

Z h 17) rithmic searchwhich has been introduced in [45] and provides a
very fast convergence to a sub-optimal solution. However, since
the search procedure is by definition confined to a very small,
where |Z;(n)| is the cardinality of Z;(n). The algorithm pre-defined subset of the search space U, there is always a sig-
converges to the solutiofig,, ¢., ---, gx,) after a small nificant possibility of converging to a local minimum &f(a),
number of iterations. Finally, th& s most representative shotsresulting in poor performance. For this reasomgeaetic algo-
are extracted as the ones whose feature vectors are closesithion (GA) [40] approach is used in this paper. Both search algo-
(@1 @2, -+ -» Qx,), Since there is no guarantee that the clusteithms are based on the assumption that frames which are close
centers correspond to actual shot feature vectors. to each other (in time) have similar properties, therefore indices
Note that as the number of selected shi§tsincreases, the which are close to each other (I) have similar correlation
average distortion decreases, since the shot feature vectors@easures.

whereyg, (n) denotes théth center at theth iteration, andz; (n)
its influence set. The center 4f(n) is estimated by the function

cent(Z;(n)) =

2] W oty
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Fig. 13. “Eye to Eye” sequence witNg = 76 shots, shown with one frame per shot.

VI. EXPERIMENTAL RESULTS gorithms for shot clustering and key-frame extraction are sepa-
rately applied using feature vectors of all frames and shots.
The problem of shot clustering and selection is addressed
The 3-D stereoscopic television program “Eye to Eye” [46fjrst. The entire sequence under examination consisféof=
of total duration 25 minutes (12 739 frames at 10 framesl@b ShOtS, which are depicted in F|g 13. For presentation pur-
has been used in our experiments for the evaluation of the pferses, each shot is depicted by one frame, whose feature vector
posed summarization scheme. The sequence was produced t#osest to the respective shot feature vector, i.e., the average
the framework of the ACTS MIRAGE project [47] in collabora+feature vector over all frames of the shot. In this experiment,
tion with AEA TeChnOlOgy and ITC. Studio shots were executqﬁe number of shot clusters has been selected tb’@e: 10.
using Europe’s stereoscopic studio unit, which was developgflis number of clusters is estimated using the MDL criterion
jointly by AEA Technology and Thomson Multimedia within[44] as described in Section V-A. The results of the shot clus-
the earlier RACE DISTIMA project [48], while location ac-tering mechanism are illustrated in Figs. 14 (clusters 1-5) and
tion shots were captured using a special lightweight and rugggs (clusters 6-10). As is observed, most of the shots containing
stereo cam built for the ITC by AEA Technology. similar visual content, in terms of the number and complexity
The stereo video sequence is first analyzed and for each stavéobjects, are assigned to the same shot cluster. Fig. 16 de-
pair, a depth map is estimated. The M-RSST algorithm is theitts the ten shot cluster representatives, which are selected as
applied on both the depth map and the left channel image, ahd shots whose feature vector is closest to the corresponding
the resulting depth and color segments are fused together. Praghester centers. It is clear that the visual content of the 25-min
features are derived from the final segmentation, including sesequence is efficiently summarized by the ten extracted shots of
ment size, location, color, and depth. Each feature domainttes figure. Thus, it is possible to automatically generate low-
partitioned in¢? = 3 classes and fuzzy classification with tri-resolution video clip previews (trailers) or still image mosaics
angular membership functions of 50% overlap is used for tlo¢ stereo —video sequences.
construction of feature vectors, so that the total feature vectorn order to evaluate the added benefit of including depth map
length isQ” = 2187 since, in our casé, = 7. The shot de- estimation and segmentation fusion in the proposed stereo-sum-
tection and feature extraction algorithms are applied offline toarization system, a comparison between single channel and
the sequence, so that all information regarding shot change stereo—video summarization is also accomplished. In particular,
stances, as well as the feature vector representation of all videdor segmentation, without depth estimation and fusion, is ap-
frames, is stored in a database and readily available. Hence pdiked to the left channel only, and the respective summarization
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Fig. 14. Shot clusters 1-5 from “Eye to Eye” sequence (with color and depth segment fusion).
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Fig. 15. Shot clusters 6-10 from “Eye to Eye” sequence (with color and depth segment fusion).

results are shown in Figs. 17 (clusters 1-5) and 18 (clustén®se shots are assigned to more than one clusters (mainly clus-
6-10). It is clear that shot separation according to visual comrs 2 and 3). Similarly, the shot cluster representatives using
tent is not as successful as in the case of the stereo sequecaleyr segmentation only are depicted in Fig. 19. It can be ob-
where the disparity field is used. For example, using color asérved that the selected key shots contain multiple instances of
depth information, the shots illustrating the hostess are clagsie same visual content, while certain distinctive shots of long
fied to the same group (cluster 1). Using color information onlguration do not have an associated cluster representative.
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Cstrl Cluster 2 Cluster 3 Cluster 4 Cluster 5 »:Ch'istér 6 Cluster 7 Cluster 8 éiuﬁier 9 Cluster 10
Shot 57 Shot 54 Shot 63 Shot 69 Shot 15 Shot 6 Shot 16 Shot 38 Shot 34 Shot 42

Fig. 16. TheKs = 10 selected shot cluster representatives from “Eye to Eye” sequence with color and depth segment fusion.
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Fig. 17. “Shot clusters 1-5 from “Eye to Eye” sequence (left channel with color segmentation only).

Note also that the additional computational cost for disparigstimating the disparity field can be achieved using the algo-
estimation and depth segmentation is not very restrictive. Rithm proposed recently in [26]. Thus, it can be claimed that the
example, single channel processing using color segmentatamded benefit of using depth information justifies the additional
only takes about 4.37 s/frame on a Sun Ultra 10 (333 MHzpmputational cost.
workstation for a frame size of 3%264 pixels. Instead, two- In some cases, however, the disparity differences among
channel processing with disparity estimation and fusion requireljects (discretized to image resolution) are typically small,
about 9.91 s/frame (including color segmentation). The abokesulting in an erroneous estimation of the depth. This hap-
processing times are averaged over all frames of the whole pens especially for long shots where different depths of ob-
guence. In order to accelerate processing of stereo sequenc@s;ta cannot be accurately detected. However, this is not the
sub-sampled version of the two channel images is used (blockest common case, especially for stereoscopic video se-
of 2x 2 pixels) for depth estimation and segmentation. Note thatiences, which are usually produced so that depth infor-
with further sub-sampling (blocks of4 pixels) the total corre- mation is of primary importance. In particular, in the “Eye
sponding processing time is 5.85 s/frame, which is comparaldte Eye” sequence used in our experiments, 532 frames out
to single channel processing. Such sub-sampling does not sifj-12 739 are detected as frames of no significant depth in-
nificantly affect object extraction performance, since accurafiermation, i.e., 4.18% of the total sequence. These shots are
object contours are obtained through color and depth segmeatected since only one depth segment is extracted, and then
fusion. Further reduction of the computational complexity fqorocessed using color information only.
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Fig. 18. Shot clusters 6—10 “Eye to Eye” sequence (left channel with color segmentation only).
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Fig. 19. Shot cluster representatives (left channel with color segmentation only).
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Fig. 20. Shot 38 from “Eye to Eye” sequence with- = 188 frames, shown with one frame every seven.

The proposed key-frame selection mechanism is evakery small percentage of frames is retained, it is clear that, in
ated using two different shots. The first, shot 38, consists bbth cases, one can visualize the content of the shots by just
Ny = 188 frames (stereo pairs) and represents an outda®mtamining the selected key frames.
crowded scene with considerable camera motion, while theKey-frame selection is also compared with the single channel
second, shot 69, consists df= = 726 frames and representscase, applying color segmentation only. The respective results
a studio scene with two people and very limited motion. Fefre presented in Figs. 22(b) and 23(b) for the two shots. It is ob-
presentation purposes, one frame every seven is shown for dageq that the extracted key frames cannot efficiently describe
first shot in Fig. 20, while one frame every 20 is shown fo{he visual content of the shot. In particular, the first two extracted
the second in Fig. 21, since it is much longer and involv frames of shot 38 are of similar content, while the first two

less action. The results of the cross-correlation approac e .
bp d the last two frames of shot 69 also present similar visual

using the genetic implementation are shown in Fig. 22(a) aﬁﬁ . h here i kev f ith visual
Fig. 23(a) respectively. For the first shdf,p — 4 key frames © aracteristics. Furthermore, there is no key frame with visua

are extracted, while for the seconifz = 5. These numbers content similar to that of the frame 9598 of shot 69 as it hap-

are estimated by examining the temporal varlatlon of the frarR€Ns in the two-channel case where key frame 9599 has been
feature vectors of each shot, as described in [40]. Althougrestracted.



514 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLGY, VOL. 10, NO. 4, JUNE 2000

- n - - J : . ! - | -
Y )
= - =) A

Frame 8878

N .
Frame 88398 Frame 8918 Frame §938 Frame 8958 Frame 8998 Frame 9018 Frame 9038 Frame 9058

- - '} ;':x f ¢ 4 DA
1! aff £ i\ s

Frame 9078 Frame 9098 Frame 9118 Frame 9138 Frame 9158 Frame 9178 Frame 9198 Frame 9218 Frame 9238 Frame 9258

Frame 9278 Frame 9298 8 Frame 93 Frame 9358 Frame 9378 Frame 9398 Frame 9418 Frame 9438 Frame 9458

Frame 9-!-78 Frame 9498 Frame 9518 Frame 9538

Frame 9598

Frame 9578

Frame 9558

Fig. 21. Shot 69 from “Eye to eye” sequence with- = 726 frames, shown with one frame every 20.

Frame 3968

Frame 3788 Frame 3941
(c)

Fig. 22. Key frames from shot 38 selected by: (a) the genetic algorithm with both channels; (b) genetic algorithm with left channel with colotisegménta
and (c) the method of [19].

Finally, the proposed key-frame extraction method is conthe summarization performance of this technique is not so sat-
pared with the one presented in [19]. Key frames are extractisthctory, especially for shots where complicated camera effects
at time instances when the accumulated differences of theate encountered.
images exceed a pre-determined threshold. The key frames ex-
tracted using this method for the shots of Figs. 20 and 21 are
presented in Figs. 22(c) and 23(c), respectively. The selection VII. CONCLUSION
of the threshold value is aad hocprocess and in our case it has
been tuned so that the average number of key frames extracte8tereo—video archives are anticipated to rapidly increase in
for the whole stereo sequence is the same as that of the propdkedorthcoming years. However, traditionally stereo—image se-
method. However, using this threshold, two key frames are orquences are represented by numerous consecutive image pairs
extracted from shot 38, which are not adequate for visual caofframes), each of which corresponds to a constant time interval.
tent description of the shot. Furthermore, for shot 69, althou§uch a linear, or sequential, video representation has a number
the same number of key frames is extracted, the second, thofl)imitations for the new emerging multimedia applications,
and fourth key frames have similar visual content. It is clear thatich as video browsing, content-based indexing and retrieval.
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(b)

" Frame 8879

(©

Fig. 23. Key frames from shot 69 selected by: (a) the genetic algorithm with both channels; (b) genetic algorithm with left channel with colotisegménta
and (c) the method of [19].

Furthermore, the bandwidth and storage requirements of difen and segmentation fusion are incorporated, compared to
tized stereo information, even in compressed form, present chaiiigle-channel results with color segmentation only, justifying
lenges to the most multimedia servers. For this reason, nédve extra computational load for disparity estimation.
methods for nonlinear video-content representation should beBased on the obtained video-object segmentation, segment
implemented. In this paper, an efficient video-content represegatures including size, location, color, and depth are used
tation algorithm for stereo-image sequences has been preserftatihe construction of feature vectors based on fuzzy classi-
In particular, stereo video is partitioned into shots by applyingfation, reducing the influence of segmentation discontinu-
shot-cut detection algorithm, and then a content-based samplifiss. Consequently, a feature-based video representation is
algorithm is employed for discarding shots or frames of simchieved instead of the traditional frame-based one, which
ilar visual properties. This approach provides summarization@f more suitable for stereo content description. The gener-
visual information similarly to that used in current documen§jized Lloyd—Max algorithm is used for clustering shots of
search engines. _ similar visual content due to its efficiency and computational

_ Stereo-visual content is extracted by a novel segmentsyjicity. For a given shot, key frames are extracted by min-
tion algorithm, which combines both color and depth Imcori'rnizing a cross-correlation criterion so that frames of mini-

mation. The adopted approach projects color segments Omglly correlated feature vectors are located. Since an exhaus-

depth segments so that video objects identified by deFﬁUe search for the optimal solution is practically unfeasible,

segmentanon are retained, while at th? same “".‘e accurgtSenetic algorithm has been employed. Experimental results
object boundaries are extracted. A multiresolution implemen-

tation of the RSST algorithm (M-RSST) is presented to pe'rrr—]i'c(;fdti f“iprl]z”pertfém?gcgsgg ::rl(;lge .Ztgcr)essﬁqorg:.vﬁiz
form both color and depth segmentation. Apart from acceler: INgs. Fihaty, prop Vi u zall

ating the segmentation procedure, this algorithm also preveFﬁglrlm'que 1S r;:omparr(‘aq to smg_leh cha_mnel summarlzan?n as
oversegmentation, which is not desirable in the framewoll€" @5 to other techniques, with quite promising results.

of stereo video summarization. Depth is estimated from the
disparity field between the left and right channel images,
while occluded areas are efficiently detected and compen-
sated with appropriate disparity values. Better performance ofThe authors wish to thank C. Girdwood, the project manager
the visual description can be achieved by integrating trackiog the ITC (Winchester), for providing the 3-D video sequence
functionalities, thus resulting in a selection mechanism thd&ye to Eye,” which was produced in the framework of ACTS
is less susceptible to noise [49], [50]. It is illustrated iIMIRAGE project. They also want to express their gratitude to
the experiments that both object extraction and video suid+. S. Pastoor of the HHI (Berlin), for providing the video se-
marization perform significantly better when depth estimajuences of the DISTIMA project. Finally, the authors would like

ACKNOWLEDGMENT
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efficient implementation of the key-frame selection technique
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