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Part I: Image retrieval

To aggregate or not to aggregate:
selective match kernels for image search

Joint work with Giorgos Tolias and Hervé Jégou, ICCV 2013



Overview

• Problem: particular object retrieval

• Build common model for matching (HE) and aggregation (VLAD)
methods; derive new match kernels

• Evaluate performance under exact or approximate descriptors



Related work

• In our common model:
• Bag-of-Words (BoW) [Sivic & Zisserman ’03]
• Descriptor approximation (Hamming embedding) [Jégou et al. ’08]
• Aggregated representations (VLAD, Fisher) [Jégou et al. ’10][Perronnin

et al. ’10]

• Relevant to Part II:
• Soft (multiple) assignment [Philbin et al. ’08][Jégou et al. ’10]

• Not discussed:
• Spatial matching [Philbin et al. ’08][Tolias & Avrithis ’11]
• Query expansion [Chum et al. ’07][Tolias & Jégou ’13]
• Re-ranking [Qin et al. ’11][Shen et al. ’12]
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Image representation

• Entire image: set of local descriptors X = {x1, . . . , xn}
• Descriptors assigned to cell c: Xc = {x ∈ X : q(x) = c}

Generic set similarity

K(X ,Y) = γ(X ) γ(Y)
∑
c∈C

wc M (Xc,Yc)
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Design choices

Hamming embedding

• Binary signature & voting per descriptor (not aggregated)

• Selective: discard weak votes

VLAD

• One aggregated vector per cell

• Linear operation

Questions

• Is aggregation good with large vocabularies (e.g. 65k)?

• How important is selectivity in this case?
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Common model

Non aggregated

MN(Xc,Yc) =
∑
x∈Xc

∑
y∈Yc

σ
(
φ(x)>φ(y)
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selectivity function descriptor representation (residual, binary, scalar)

Aggregated
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(
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normalization (`2, power-law) cell representation
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BoW, HE and VLAD in the common model
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Selective Match Kernel (SMK)

SMK(Xc,Yc) =
∑
x∈Xc

∑
y∈Yc

σα(r̂(x)>r̂(y))

• Descriptor representation: `2-normalized residual

φ(x) = r̂(x) = r(x)/‖r(x)‖
• Selectivity function

σα(u) =

{
sign(u)|u|α, u > τ
0, otherwise
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Matching example—impact of threshold

α = 1, τ = 0.0

α = 1, τ = 0.25

thresholding removes false correspondences



Matching example—impact of shape parameter

α = 3, τ = 0.0

α = 3, τ = 0.25

weighs matches based on confidence



Aggregated Selective Match Kernel (ASMK)

ASMK(Xc,Yc) = σα

(
V̂ (Xc)>V̂ (Yc)

)
• Cell representation: `2-normalized aggregated residual

Φ(Xc) = V̂ (Xc) = V (Xc)/‖V (Xc)‖

• Similar to [Arandjelovic & Zisserman ’13], but:
• with selectivity function σα
• used with large vocabularies
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Aggregated features: k = 128 as in VLAD



Aggregated features: k = 65K as in ASMK



Why to aggregate: burstiness

• Burstiness: non-iid statistical behaviour of descriptors

• Matches of bursty features dominate the total similarity score

• Previous work: [Jégou et al. ’09][Chum & Matas ’10][Torii et al. ’13]

In this work

• Aggregation and normalization per cell handles burstiness

• Keeps a single representative, similar to max-pooling
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Binary counterparts SMK? and ASMK?

• Full vector representation: high memory cost

• Approximate vector representation: binary vector

SMK?(Xc,Yc) =
∑
x∈Xc

∑
y∈Yc

σα

{
b̂(r(x))>b̂(r(y))

}

ASMK?(Xc,Yc) = σα

b̂
(∑
x∈Xc

r(x)

)>

b̂

∑
y∈Yc

r(y)


b̂ includes centering and rotation as in HE, followed by binarization
and `2-normalization



Impact of selectivity
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Impact of aggregation

• Improves performance for different vocabulary sizes

• Reduces memory requirements of inverted file

k memory ratio

8k 69 %
16k 78 %
32k 85 %
65k 89 %

 70
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m
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k

Oxford5k - MA

SMK
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ASMK

with k = 8k on Oxford5k
• VLAD → 65.5%
• SMK → 74.2%
• ASMK → 78.1%



Comparison to state of the art

Dataset MA Oxf5k Oxf105k Par6k Holiday

ASMK? 76.4 69.2 74.4 80.0
ASMK? × 80.4 75.0 77.0 81.0
ASMK 78.1 - 76.0 81.2
ASMK × 81.7 - 78.2 82.2

HE [Jégou et al. ’10] 51.7 - - 74.5
HE [Jégou et al. ’10] × 56.1 - - 77.5
HE-BURST [Jain et al. ’10] 64.5 - - 78.0
HE-BURST [Jain et al. ’10] × 67.4 - - 79.6
Fine vocab. [Mikuĺık et al. ’10] × 74.2 67.4 74.9 74.9
AHE-BURST [Jain et al. ’10] 66.6 - - 79.4
AHE-BURST [Jain et al. ’10] × 69.8 - - 81.9
Rep. structures [Torri et al. ’13] × 65.6 - - 74.9



Discussion

• Aggregation is also beneficial with large vocabularies → burstiness

• Selectivity always helps (with or without aggregation)

• Descriptor approximation reduces performance only slightly



Part II: Vector quantization
and nearest neighbor search

Locally optimized product quantization

Joint work with Yannis Kalantidis, CVPR 2014



Overview

• Problem: given query point q, find its nearest neighbor with respect
to Euclidean distance within data set X in a d-dimensional space

• Focus on large scale: encode (compress) vectors, speed up distance
computations

• Fit better underlying distribution with little space & time overhead



Applications

• Retrieval (image as point) [Jégou et al. ’10][Perronnin et al. ’10]

• Retrieval (descriptor as point) [Tolias et al. ’13][Qin et al. ’13]

• Localization, pose estimation [Sattler et al. ’12][Li et al. ’12]

• Classification [Boiman et al. ’08][McCann & Lowe ’12]

• Clustering [Philbin et al. ’07][Avrithis ’13]



Related work

• Indexing
• Inverted index (image retrieval)
• Inverted multi-index [Babenko & Lempitsky ’12] (nearest neighbor

search)

• Encoding and ranking
• Vector quantization (VQ)
• Product quantization (PQ) [Jégou et al. ’11]
• Optimized product quantization (OPQ) [Ge et al. ’13]

Cartesian k-means [Norouzi & Fleet ’13]
• Locally optimized product quantization (LOPQ) [Kalantidis and

Avrithis ’14]

• Not discussed
• Tree-based indexing, e.g., [Muja and Lowe ’09]
• Hashing and binary codes, e.g., [Norouzi et al. ’12]
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Inverted index—issues

• Are items in a postings list equally important?

• What changes under soft (multiple) assignment?

• How should vectors be encoded for memory efficiency and fast search?
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Figure 1. Indexing the set of 600 points (small black) distributed non-uniformly within the unit 2D square. Left – the inverted index based
on standard quantization (the codebook has 16 2D codewords; boundaries are in green). Right – the inverted multi-index based on product
quantization (each of the two codebooks has 16 1D codewords). The number of operations needed to match a query to codebooks is the
same for both structures. Two example queries are issued (light-blue and light-red circles). The lists returned by the inverted index (left)
contain 45 and 62 words respectively (circled). Note that when a query lies near a space partition boundary (as happens most often in high
dimensions) the resulting list is heavily “skewed” and may not contain many of the nearest neighbors. Note also that the inverted index
is not able to return lists of a pre-specified small length (e.g. 30 points). For the same queries, the candidate lists of at least 30 vectors
are requested from the inverted multi-index (right) and the lists containing 31 and 32 words are returned (circled). As even such short
lists require visiting several nearest cells in the partition (which can be done efficiently via the multi-sequence algorithm), the resulting
vector sets span the neighborhoods that are much less “skewed” (i.e., the neighborhoods are approximately centered at the queries). In high
dimensions, the capability to visit many cells that surround the query from different directions translates into considerably higher accuracy
of retrieval and nearest neighbor search.

multi-index table corresponds to a part of the original vec-
tor space and contains a list of points that fall within that
part. Importantly, we propose a simple and efficient algo-
rithm that produces a sequence of multi-index entries or-
dered by the increasing distance between the given query
vector and the centroid of the corresponding entry. Simi-
larly to standard inverted indices, concatenating the vector
lists for a certain number of entries that are closest to the
query vector then produces the candidate list.

Crucially, given comparable time budgets for querying
the dataset as well as for the initial index construction, in-
verted multi-indices subdivide the vector space orders of
magnitude more densely compared to standard inverted in-
dices (Figure 1). Our experiments demonstrate the ad-
vantages resulting from this property, in particular in the
context of very large scale approximate nearest neighbor
search. We evaluate the inverted multi-index on the BI-
GANN dataset of 1 billion SIFT vectors recently introduced
by Jegou et al. [11] as well as on the “Tiny Images” dataset
of 80 million GIST vectors introduced by [24]. We show
that as a result of the “extra-fine” granularity, the candidate
lists produced by querying multi-indices are more accurate
(have shorter lengths and higher probability of containing
true nearest neighbors) compared to standard inverted in-
dices. We also demonstrate that in combination with a suit-
able reranking procedure, multi-indices substantially im-
prove the state-of-the-art approximate nearest neighbor re-
trieval performance on the BIGANN dataset.

2. Related Work

The use of inverted indices has a long history in infor-
mation retrieval [15]. Their use in computer vision was pi-

oneered by Sivic and Zisserman [23]. Since then, a large
number of improvements that transfer further ideas from
text retrieval (e.g. [4]), improve the quantization process
(e.g. [20]), and integrate the query process with geomet-
ric verification (e.g. [27]) have been proposed. Many of
these improvements can be used in conjunction with in-
verted multi-indices in the same way as with regular in-
verted indices.

Approximate near(est) neighbor (ANN) search is a core
operation in AI. ANN-systems based on tree-based indices
(e.g. [2]) as well as on random projections (e.g. [7]) are
often employed. However, the large memory footprint of
these methods limits their use to smaller datasets (up to mil-
lions of vectors). Recently, lossy compression schemes that
admit both compact storage and efficient distance evalua-
tions and are therefore more suitable for large-scale datasets
have been developed. Towards this end, binary encoding
schemes (e.g. [22, 25, 21]) as well as product quantization
[9] have brought down both memory consumption and dis-
tance evaluation time by order(s) of magnitude compared
to manipulating uncompressed vectors, to the point where
exhaustive search can be used to query rather large datasets
(up to many millions of vectors).

The idea of fast distance computation via product quan-
tization introduced by Jegou et al. [9] has served as a pri-
mary inspiration for this work. Our contribution, however,
is complementary to that of [9]. In fact, the systems pre-
sented by Jegou et al. in [9, 11, 10] use standard inverted
indices and, consequently, have to rerank rather long can-
didate lists when querying very large datasets in order to
achieve high recall. Unlike [9, 11, 10], we focus on the
use of PQ for indexing and candidate list generation. We
also note that while we combine multi-indices with the PQ-

• decompose vectors as x = (x1,x2)

• train codebooks C1, C2 from datasets {x1
n}, {x2

n}
• induced codebook C1 × C2 gives a finer partition

• given query q, visit cells (c1, c2) ∈ C1 × C2 in ascending order of
distance to q by multi-sequence algorithm
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Figure 1. Indexing the set of 600 points (small black) distributed non-uniformly within the unit 2D square. Left – the inverted index based
on standard quantization (the codebook has 16 2D codewords; boundaries are in green). Right – the inverted multi-index based on product
quantization (each of the two codebooks has 16 1D codewords). The number of operations needed to match a query to codebooks is the
same for both structures. Two example queries are issued (light-blue and light-red circles). The lists returned by the inverted index (left)
contain 45 and 62 words respectively (circled). Note that when a query lies near a space partition boundary (as happens most often in high
dimensions) the resulting list is heavily “skewed” and may not contain many of the nearest neighbors. Note also that the inverted index
is not able to return lists of a pre-specified small length (e.g. 30 points). For the same queries, the candidate lists of at least 30 vectors
are requested from the inverted multi-index (right) and the lists containing 31 and 32 words are returned (circled). As even such short
lists require visiting several nearest cells in the partition (which can be done efficiently via the multi-sequence algorithm), the resulting
vector sets span the neighborhoods that are much less “skewed” (i.e., the neighborhoods are approximately centered at the queries). In high
dimensions, the capability to visit many cells that surround the query from different directions translates into considerably higher accuracy
of retrieval and nearest neighbor search.

multi-index table corresponds to a part of the original vec-
tor space and contains a list of points that fall within that
part. Importantly, we propose a simple and efficient algo-
rithm that produces a sequence of multi-index entries or-
dered by the increasing distance between the given query
vector and the centroid of the corresponding entry. Simi-
larly to standard inverted indices, concatenating the vector
lists for a certain number of entries that are closest to the
query vector then produces the candidate list.

Crucially, given comparable time budgets for querying
the dataset as well as for the initial index construction, in-
verted multi-indices subdivide the vector space orders of
magnitude more densely compared to standard inverted in-
dices (Figure 1). Our experiments demonstrate the ad-
vantages resulting from this property, in particular in the
context of very large scale approximate nearest neighbor
search. We evaluate the inverted multi-index on the BI-
GANN dataset of 1 billion SIFT vectors recently introduced
by Jegou et al. [11] as well as on the “Tiny Images” dataset
of 80 million GIST vectors introduced by [24]. We show
that as a result of the “extra-fine” granularity, the candidate
lists produced by querying multi-indices are more accurate
(have shorter lengths and higher probability of containing
true nearest neighbors) compared to standard inverted in-
dices. We also demonstrate that in combination with a suit-
able reranking procedure, multi-indices substantially im-
prove the state-of-the-art approximate nearest neighbor re-
trieval performance on the BIGANN dataset.

2. Related Work

The use of inverted indices has a long history in infor-
mation retrieval [15]. Their use in computer vision was pi-

oneered by Sivic and Zisserman [23]. Since then, a large
number of improvements that transfer further ideas from
text retrieval (e.g. [4]), improve the quantization process
(e.g. [20]), and integrate the query process with geomet-
ric verification (e.g. [27]) have been proposed. Many of
these improvements can be used in conjunction with in-
verted multi-indices in the same way as with regular in-
verted indices.

Approximate near(est) neighbor (ANN) search is a core
operation in AI. ANN-systems based on tree-based indices
(e.g. [2]) as well as on random projections (e.g. [7]) are
often employed. However, the large memory footprint of
these methods limits their use to smaller datasets (up to mil-
lions of vectors). Recently, lossy compression schemes that
admit both compact storage and efficient distance evalua-
tions and are therefore more suitable for large-scale datasets
have been developed. Towards this end, binary encoding
schemes (e.g. [22, 25, 21]) as well as product quantization
[9] have brought down both memory consumption and dis-
tance evaluation time by order(s) of magnitude compared
to manipulating uncompressed vectors, to the point where
exhaustive search can be used to query rather large datasets
(up to many millions of vectors).

The idea of fast distance computation via product quan-
tization introduced by Jegou et al. [9] has served as a pri-
mary inspiration for this work. Our contribution, however,
is complementary to that of [9]. In fact, the systems pre-
sented by Jegou et al. in [9, 11, 10] use standard inverted
indices and, consequently, have to rerank rather long can-
didate lists when querying very large datasets in order to
achieve high recall. Unlike [9, 11, 10], we focus on the
use of PQ for indexing and candidate list generation. We
also note that while we combine multi-indices with the PQ-

• decompose vectors as x = (x1,x2)

• train codebooks C1, C2 from datasets {x1
n}, {x2

n}
• induced codebook C1 × C2 gives a finer partition

• given query q, visit cells (c1, c2) ∈ C1 × C2 in ascending order of
distance to q by multi-sequence algorithm
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Figure 1. Indexing the set of 600 points (small black) distributed non-uniformly within the unit 2D square. Left – the inverted index based
on standard quantization (the codebook has 16 2D codewords; boundaries are in green). Right – the inverted multi-index based on product
quantization (each of the two codebooks has 16 1D codewords). The number of operations needed to match a query to codebooks is the
same for both structures. Two example queries are issued (light-blue and light-red circles). The lists returned by the inverted index (left)
contain 45 and 62 words respectively (circled). Note that when a query lies near a space partition boundary (as happens most often in high
dimensions) the resulting list is heavily “skewed” and may not contain many of the nearest neighbors. Note also that the inverted index
is not able to return lists of a pre-specified small length (e.g. 30 points). For the same queries, the candidate lists of at least 30 vectors
are requested from the inverted multi-index (right) and the lists containing 31 and 32 words are returned (circled). As even such short
lists require visiting several nearest cells in the partition (which can be done efficiently via the multi-sequence algorithm), the resulting
vector sets span the neighborhoods that are much less “skewed” (i.e., the neighborhoods are approximately centered at the queries). In high
dimensions, the capability to visit many cells that surround the query from different directions translates into considerably higher accuracy
of retrieval and nearest neighbor search.

multi-index table corresponds to a part of the original vec-
tor space and contains a list of points that fall within that
part. Importantly, we propose a simple and efficient algo-
rithm that produces a sequence of multi-index entries or-
dered by the increasing distance between the given query
vector and the centroid of the corresponding entry. Simi-
larly to standard inverted indices, concatenating the vector
lists for a certain number of entries that are closest to the
query vector then produces the candidate list.

Crucially, given comparable time budgets for querying
the dataset as well as for the initial index construction, in-
verted multi-indices subdivide the vector space orders of
magnitude more densely compared to standard inverted in-
dices (Figure 1). Our experiments demonstrate the ad-
vantages resulting from this property, in particular in the
context of very large scale approximate nearest neighbor
search. We evaluate the inverted multi-index on the BI-
GANN dataset of 1 billion SIFT vectors recently introduced
by Jegou et al. [11] as well as on the “Tiny Images” dataset
of 80 million GIST vectors introduced by [24]. We show
that as a result of the “extra-fine” granularity, the candidate
lists produced by querying multi-indices are more accurate
(have shorter lengths and higher probability of containing
true nearest neighbors) compared to standard inverted in-
dices. We also demonstrate that in combination with a suit-
able reranking procedure, multi-indices substantially im-
prove the state-of-the-art approximate nearest neighbor re-
trieval performance on the BIGANN dataset.

2. Related Work

The use of inverted indices has a long history in infor-
mation retrieval [15]. Their use in computer vision was pi-

oneered by Sivic and Zisserman [23]. Since then, a large
number of improvements that transfer further ideas from
text retrieval (e.g. [4]), improve the quantization process
(e.g. [20]), and integrate the query process with geomet-
ric verification (e.g. [27]) have been proposed. Many of
these improvements can be used in conjunction with in-
verted multi-indices in the same way as with regular in-
verted indices.

Approximate near(est) neighbor (ANN) search is a core
operation in AI. ANN-systems based on tree-based indices
(e.g. [2]) as well as on random projections (e.g. [7]) are
often employed. However, the large memory footprint of
these methods limits their use to smaller datasets (up to mil-
lions of vectors). Recently, lossy compression schemes that
admit both compact storage and efficient distance evalua-
tions and are therefore more suitable for large-scale datasets
have been developed. Towards this end, binary encoding
schemes (e.g. [22, 25, 21]) as well as product quantization
[9] have brought down both memory consumption and dis-
tance evaluation time by order(s) of magnitude compared
to manipulating uncompressed vectors, to the point where
exhaustive search can be used to query rather large datasets
(up to many millions of vectors).

The idea of fast distance computation via product quan-
tization introduced by Jegou et al. [9] has served as a pri-
mary inspiration for this work. Our contribution, however,
is complementary to that of [9]. In fact, the systems pre-
sented by Jegou et al. in [9, 11, 10] use standard inverted
indices and, consequently, have to rerank rather long can-
didate lists when querying very large datasets in order to
achieve high recall. Unlike [9, 11, 10], we focus on the
use of PQ for indexing and candidate list generation. We
also note that while we combine multi-indices with the PQ-

• decompose vectors as x = (x1,x2)

• train codebooks C1, C2 from datasets {x1
n}, {x2

n}
• induced codebook C1 × C2 gives a finer partition

• given query q, visit cells (c1, c2) ∈ C1 × C2 in ascending order of
distance to q by multi-sequence algorithm



Multi-sequence algorithm

C1 →

C2
↓



Vector quantization (VQ)

minimize
∑
x∈X

min
c∈C
‖x− c‖2 =

∑
x∈X
‖x− q(x)‖2 = E(C)

dataset codebook quantizer distortion
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Vector quantization (VQ)

• For small distortion → large k = |C|:
• hard to train
• too large to store
• too slow to search



Product quantization (PQ)

minimize
∑
x∈X

min
c∈C
‖x− c‖2

subject to C = C1 × · · · × Cm



Product quantization (PQ)

• train: q = (q1, . . . , qm) where q1, . . . , qm obtained by VQ

• store: |C| = km with |C1| = · · · = |Cm| = k

• search: ‖y − q(x)‖2 =

m∑
j=1

‖yj − qj(xj)‖2 where qj(xj) ∈ Cj



Optimized product quantization (OPQ)

minimize
∑
x∈X

min
ĉ∈Ĉ
‖x−Rĉ‖2

subject to Ĉ = C1 × · · · × Cm
R>R = I



OPQ, parametric solution for X ∼ N (0,Σ)

• independence: PCA-align by diagonalizing Σ as UΛU>

• balanced variance: permute Λ such that
∏
i λi is constant in each

subspace; R← UP>
π

• find Ĉ by PQ on rotated data x̂ = R>x



Locally optimized product quantization (LOPQ)

• compute residuals r(x) = x− q(x) on coarse quantizer q

• collect residuals Zi = {r(x) : q(x) = ci} per cell

• train (Ri, qi)← OPQ(Zi) per cell



Locally optimized product quantization (LOPQ)

• better capture support of data distribution, like local PCA [Kambhatla
& Leen ’97]

• multimodal (e.g. mixture) distributions
• distributions on nonlinear manifolds

• residual distributions closer to Gaussian assumption



Multi-LOPQ

x = ( x1 , x2 )

q2

q1 ...

..
.



Comparison to state of the art
SIFT1B, 64-bit codes

Method R = 1 R = 10 R = 100

Ck-means [Norouzi & Fleet ’13] – – 0.649
IVFADC 0.106 0.379 0.748
IVFADC [Jégou et al. ’11] 0.088 0.372 0.733
OPQ 0.114 0.399 0.777
Multi-D-ADC [Babenko & Lempitsky ’12] 0.165 0.517 0.860

LOR+PQ 0.183 0.565 0.889
LOPQ 0.199 0.586 0.909

Most benefit comes from locally optimized rotation!
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Comparison to state of the art
SIFT1B, 128-bit codes

T Method R = 1 10 100

20K
IVFADC+R [Jégou et al. ’11] 0.262 0.701 0.962
LOPQ+R 0.350 0.820 0.978

10K
Multi-D-ADC [Babenko & Lempitsky ’12] 0.304 0.665 0.740
OMulti-D-OADC [Ge et al. ’13] 0.345 0.725 0.794
Multi-LOPQ 0.430 0.761 0.782

30K
Multi-D-ADC [Babenko & Lempitsky ’12] 0.328 0.757 0.885
OMulti-D-OADC [Ge et al. ’13] 0.366 0.807 0.913
Multi-LOPQ 0.463 0.865 0.905

100K
Multi-D-ADC [Babenko & Lempitsky ’12] 0.334 0.793 0.959
OMulti-D-OADC [Ge et al. ’13] 0.373 0.841 0.973
Multi-LOPQ 0.476 0.919 0.973



Residual encoding in related work

• PQ (IVFADC) [Jégou et al. ’11]: single product quantizer for all cells

• [Uchida et al. ’12]: multiple product quantizers shared by multiple cells

• OPQ [Ge et al. ’13]: single product quantizer for all cells, globally
optimized for rotation (single/multi-index)

• LOPQ: with/without one product quantizer per cell, with/without
rotation optimization per cell (single/multi-index)

• [Babenko & Lempitsky ’14]: one product quantizer per cell, optimized
for rotation per cell (multi-index)
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