Image retrieval, vector quantization and nearest neighbor search

Yannis Avrithis

National Technical University of Athens

Rennes, October 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

Part I: Image retrieval

- Particular object retrieval
- Match images under different viewpoint/lighting, occlusion
- Given local descriptors, investigate match kernels beyond Bag-of-Words

Part II: Vector quantization and nearest neighbor search

- Fast nearest neighbor search in high-dimensional spaces
- Encode vectors based on vector quantization

• Improve fitting to underlying distribution

Part I: Image retrieval

- Particular object retrieval
- Match images under different viewpoint/lighting, occlusion
- Given local descriptors, investigate match kernels beyond Bag-of-Words

Part II: Vector quantization and nearest neighbor search

- Fast nearest neighbor search in high-dimensional spaces
- Encode vectors based on vector quantization
- Improve fitting to underlying distribution

Part I: Image retrieval

To aggregate or not to aggregate: selective match kernels for image search

Joint work with Giorgos Tolias and Hervé Jégou, ICCV 2013

Overview

- Problem: particular object retrieval
- Build common model for matching (HE) and aggregation (VLAD) methods; derive new match kernels
- Evaluate performance under exact or approximate descriptors

Related work

- In our common model:
 - Bag-of-Words (BoW) [Sivic & Zisserman '03]
 - Descriptor approximation (Hamming embedding) [Jégou et al. '08]
 - Aggregated representations (VLAD, Fisher) [Jégou *et al.* '10][Perronnin *et al.* '10]

- Relevant to Part II:
 - Soft (multiple) assignment [Philbin et al. '08][Jégou et al. '10]
- Not discussed:
 - Spatial matching [Philbin et al. '08] [Tolias & Avrithis '11]
 - Query expansion [Chum et al. '07] [Tolias & Jégou '13]
 - Re-ranking [Qin et al. '11][Shen et al. '12]

Related work

- In our common model:
 - Bag-of-Words (BoW) [Sivic & Zisserman '03]
 - Descriptor approximation (Hamming embedding) [Jégou et al. '08]
 - Aggregated representations (VLAD, Fisher) [Jégou et al. '10][Perronnin et al. '10]

- Relevant to Part II:
 - Soft (multiple) assignment [Philbin et al. '08][Jégou et al. '10]
- Not discussed:
 - Spatial matching [Philbin et al. '08] [Tolias & Avrithis '11]
 - Query expansion [Chum et al. '07] [Tolias & Jégou '13]
 - Re-ranking [Qin et al. '11][Shen et al. '12]

Related work

- In our common model:
 - Bag-of-Words (BoW) [Sivic & Zisserman '03]
 - Descriptor approximation (Hamming embedding) [Jégou et al. '08]
 - Aggregated representations (VLAD, Fisher) [Jégou et al. '10][Perronnin et al. '10]

- Relevant to Part II:
 - Soft (multiple) assignment [Philbin et al. '08][Jégou et al. '10]
- Not discussed:
 - Spatial matching [Philbin et al. '08][Tolias & Avrithis '11]
 - Query expansion [Chum et al. '07][Tolias & Jégou '13]
 - Re-ranking [Qin et al. '11][Shen et al. '12]

Image representation

- Entire image: set of local descriptors $\mathcal{X} = \{x_1, \dots, x_n\}$
- Descriptors assigned to cell c: $\mathcal{X}_c = \{x \in \mathcal{X} : q(x) = c\}$

$$\mathcal{K}(\mathcal{X}, \mathcal{Y}) = \gamma(\mathcal{X}) \gamma(\mathcal{Y}) \sum_{c \in \mathcal{C}} w_c \mathbf{M}(\mathcal{X}_c, \mathcal{Y}_c)$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

$$\mathcal{K}(\mathcal{X}, \mathcal{Y}) = \gamma(\mathcal{X}) \gamma(\mathcal{Y}) \sum_{c \in \mathcal{C}} w_c \mathbf{M}(\mathcal{X}_c, \mathcal{Y}_c)$$

$$\mathcal{K}(\mathcal{X}, \mathcal{Y}) = \gamma(\mathcal{X}) \gamma(\mathcal{Y}) \sum_{c \in \mathcal{C}} w_c \mathbf{M}(\mathcal{X}_c, \mathcal{Y}_c)$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣・の��

Bag-of-Words (BoW) similarity function

Cosine similarity

$$M(\mathcal{X}_c, \mathcal{Y}_c) = |\mathcal{X}_c| \times |\mathcal{Y}_c| = \sum_{x \in \mathcal{X}_c} \sum_{y \in \mathcal{Y}_c} 1$$

Generic set similarity

 $\mathcal{K}(\mathcal{X}, \mathcal{Y}) = \gamma(\mathcal{X}) \gamma(\mathcal{Y}) \sum_{c \in \mathcal{C}} w_c \, \operatorname{M}(\mathcal{X}_c, \mathcal{Y}_c)$

Bag-of-Words (BoW) similarity function

Cosine similarity

$$M(\mathcal{X}_c, \mathcal{Y}_c) = |\mathcal{X}_c| \times |\mathcal{Y}_c| = \sum_{x \in \mathcal{X}_c} \sum_{y \in \mathcal{Y}_c} 1$$

Generic set similarity

 $\mathcal{K}(\mathcal{X}, \mathcal{Y}) = \gamma(\mathcal{X}) \gamma(\mathcal{Y}) \sum_{c \in \mathcal{C}} w_c \, \operatorname{M}(\mathcal{X}_c, \mathcal{Y}_c)$

Bag-of-Words (BoW) similarity function

Cosine similarity

$$M(\mathcal{X}_c, \mathcal{Y}_c) = |\mathcal{X}_c| \times |\mathcal{Y}_c| = \sum_{x \in \mathcal{X}_c} \sum_{y \in \mathcal{Y}_c} 1$$

$$\mathcal{K}(\mathcal{X},\mathcal{Y}) = \gamma(\mathcal{X})\,\gamma(\mathcal{Y})\sum_{c\in\mathcal{C}}w_c\,\,\mathrm{M}\,(\mathcal{X}_c,\mathcal{Y}_c)$$

Hamming Embedding (HE)

$$M\left(\mathcal{X}_{c}, \mathcal{Y}_{c}\right) = \sum_{x \in \mathcal{X}_{c}} \sum_{y \in \mathcal{Y}_{c}} w\left(h\left(b_{x}, b_{y}\right)\right)$$

Generic set similarity

 $\mathcal{K}(\mathcal{X}, \mathcal{Y}) = \gamma(\mathcal{X}) \gamma(\mathcal{Y}) \sum_{c \in \mathcal{C}} w_c \, \mathrm{M}\left(\mathcal{X}_c, \mathcal{Y}_c\right)$

Hamming Embedding (HE)

$$M\left(\mathcal{X}_{c}, \mathcal{Y}_{c}\right) = \sum_{x \in \mathcal{X}_{c}} \sum_{y \in \mathcal{Y}_{c}} w\left(h\left(b_{x}, b_{y}\right)\right)$$

Generic set similarity

 $\mathcal{K}(\mathcal{X}, \mathcal{Y}) = \gamma(\mathcal{X}) \gamma(\mathcal{Y}) \sum_{c \in \mathcal{C}} w_c \, \operatorname{M}\left(\mathcal{X}_c, \mathcal{Y}_c\right)$

Hamming Embedding (HE)

$$M\left(\mathcal{X}_{c}, \mathcal{Y}_{c}\right) = \sum_{x \in \mathcal{X}_{c}} \sum_{y \in \mathcal{Y}_{c}} w\left(h\left(b_{x}, b_{y}\right)\right)$$

$$\mathcal{K}(\mathcal{X},\mathcal{Y}) = \gamma(\mathcal{X})\,\gamma(\mathcal{Y})\sum_{c\in\mathcal{C}}w_c\,\,\mathrm{M}\,(\mathcal{X}_c,\mathcal{Y}_c)$$

 $\mathcal{K}(\mathcal{X},\mathcal{Y}) = \gamma(\mathcal{X}) \gamma(\mathcal{Y}) \sum_{c \in \mathcal{C}} w_c \, \mathrm{M}(\mathcal{X}_c, \mathcal{Y}_c)$

$$\mathcal{K}(\mathcal{X}, \mathcal{Y}) = \gamma(\mathcal{X}) \gamma(\mathcal{Y}) \sum_{c \in \mathcal{C}} w_c \, \mathrm{M}(\mathcal{X}_c, \mathcal{Y}_c)$$

$$\mathcal{K}(\mathcal{X}, \mathcal{Y}) = \gamma(\mathcal{X}) \gamma(\mathcal{Y}) \sum_{c \in \mathcal{C}} w_c \, \operatorname{M}(\mathcal{X}_c, \mathcal{Y}_c)$$

 $M(\mathcal{X}_c, \mathcal{Y}_c) = V(\mathcal{X}_c)^\top V(\mathcal{Y}_c) = \sum_{x \in \mathcal{X}_c} \sum_{y \in \mathcal{Y}_c} r(x)^\top r(y)$

Generic set similarity

 $\mathcal{K}(\mathcal{X}, \mathcal{Y}) = \gamma(\mathcal{X}) \gamma(\mathcal{Y}) \sum_{c \in \mathcal{C}} w_c \, \operatorname{M}(\mathcal{X}_c, \mathcal{Y}_c)$

 $M(\mathcal{X}_c, \mathcal{Y}_c) = V(\mathcal{X}_c)^\top V(\mathcal{Y}_c) = \sum_{x \in \mathcal{X}_c} \sum_{y \in \mathcal{Y}_c} r(x)^\top r(y)$

aggregated residual $\sum_{x \in \mathcal{X}_c} r(x)$ residual x - q(x)

Generic set similarity

 $\mathcal{K}(\mathcal{X}, \mathcal{Y}) = \gamma(\mathcal{X}) \gamma(\mathcal{Y}) \sum_{c \in \mathcal{C}} w_c \, \operatorname{M}(\mathcal{X}_c, \mathcal{Y}_c)$

$$\mathbf{M}\left(\mathcal{X}_{c}, \mathcal{Y}_{c}\right) = V(\mathcal{X}_{c})^{\top} V(\mathcal{Y}_{c}) = \sum_{x \in \mathcal{X}_{c}} \sum_{y \in \mathcal{Y}_{c}} r(x)^{\top} r(y)$$

$$\mathcal{K}(\mathcal{X},\mathcal{Y}) = \gamma(\mathcal{X})\,\gamma(\mathcal{Y})\sum_{c\in\mathcal{C}}w_c\,\,\mathrm{M}\,(\mathcal{X}_c,\mathcal{Y}_c)$$

$$\mathcal{K}(\mathcal{X},\mathcal{Y}) = \gamma(\mathcal{X})\,\gamma(\mathcal{Y})\sum_{c\in\mathcal{C}}w_c\,\,\mathrm{M}\,(\mathcal{X}_c,\mathcal{Y}_c)$$

$$\mathcal{K}(\mathcal{X}, \mathcal{Y}) = \gamma(\mathcal{X}) \gamma(\mathcal{Y}) \sum_{c \in \mathcal{C}} w_c \, \mathrm{M}(\mathcal{X}_c, \mathcal{Y}_c)$$

Design choices

Hamming embedding

- Binary signature & voting per descriptor (not aggregated)
- Selective: discard weak votes

VLAD

- One aggregated vector per cell
- Linear operation

Questions

• Is aggregation good with large vocabularies (e.g. 65k)?

▲ロ → ▲ 冊 → ▲ 目 → ▲ 目 → の Q ()

• How important is selectivity in this case?

Design choices

Hamming embedding

- Binary signature & voting per descriptor (not aggregated)
- Selective: discard weak votes

VLAD

- One aggregated vector per cell
- Linear operation

Questions

• Is aggregation good with large vocabularies (e.g. 65k)?

• How important is selectivity in this case?

Non aggregated

$$M_{N}(\mathcal{X}_{c}, \mathcal{Y}_{c}) = \sum_{x \in \mathcal{X}_{c}} \sum_{y \in \mathcal{Y}_{c}} \sigma\left(\phi(x)^{\top} \phi(y)\right)$$

selectivity function

descriptor representation (residual, binary, scalar)

Aggregated

$$M_{A}(\mathcal{X}_{c},\mathcal{Y}_{c}) = \sigma \left\{ \psi \left(\sum_{x \in \mathcal{X}_{c}} \phi(x) \right)^{\top} \psi \left(\sum_{y \in \mathcal{Y}_{c}} \phi(y) \right) \right\} = \sigma \left(\Phi(\mathcal{X}_{c})^{\top} \Phi(\mathcal{Y}_{c}) \right)$$

normalization (ℓ_2 , power-law)

cell representation

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - わへぐ

Non aggregated

$$M_{N}(\mathcal{X}_{c}, \mathcal{Y}_{c}) = \sum_{x \in \mathcal{X}_{c}} \sum_{y \in \mathcal{Y}_{c}} \sigma \left(\phi(x)^{\top} \phi(y) \right)$$

selectivity function

descriptor representation (residual, binary, scalar)

Aggregated

$$M_{A}(\mathcal{X}_{c},\mathcal{Y}_{c}) = \sigma \left\{ \psi \left(\sum_{x \in \mathcal{X}_{c}} \phi(x) \right)^{\top} \psi \left(\sum_{y \in \mathcal{Y}_{c}} \phi(y) \right) \right\} = \sigma \left(\Phi(\mathcal{X}_{c})^{\top} \Phi(\mathcal{Y}_{c}) \right)$$

normalization (ℓ_2 , power-law)

cell representation

Aggregated

$$M_{A}(\mathcal{X}_{c}, \mathcal{Y}_{c}) = \sigma \left\{ \psi \left(\sum_{x \in \mathcal{X}_{c}} \phi(x) \right)^{\top} \psi \left(\sum_{y \in \mathcal{Y}_{c}} \phi(y) \right) \right\} = \sigma \left(\Phi(\mathcal{X}_{c})^{\top} \Phi(\mathcal{Y}_{c}) \right)$$

normalization (ℓ_2 , power-law)

cell representation

▲ロ → ▲ 冊 → ▲ 目 → ▲ 目 → の Q ()

Aggregated

$$\mathcal{M}_{\mathcal{A}}(\mathcal{X}_{c},\mathcal{Y}_{c}) = \sigma \left\{ \psi \left(\sum_{x \in \mathcal{X}_{c}} \phi(x) \right)^{\top} \psi \left(\sum_{y \in \mathcal{Y}_{c}} \phi(y) \right) \right\} = \sigma \left(\Phi(\mathcal{X}_{c})^{\top} \Phi(\mathcal{Y}_{c}) \right)$$

normalization (ℓ_2 , power-law)

cell representation

▲ロ → ▲ 冊 → ▲ 目 → ▲ 目 → の Q ()

Aggregated

$$M_{A}(\mathcal{X}_{c}, \mathcal{Y}_{c}) = \sigma \left\{ \psi \left(\sum_{x \in \mathcal{X}_{c}} \phi(x) \right)^{\top} \psi \left(\sum_{y \in \mathcal{Y}_{c}} \phi(y) \right) \right\} = \sigma \left(\Phi(\mathcal{X}_{c})^{\top} \Phi(\mathcal{Y}_{c}) \right)$$

normalization (ℓ_{2} , power-law) cell representation

▲ロ → ▲ 冊 → ▲ 目 → ▲ 目 → の Q ()
Common model

Aggregated

$$M_{A}(\mathcal{X}_{c}, \mathcal{Y}_{c}) = \sigma \left\{ \psi \left(\sum_{x \in \mathcal{X}_{c}} \phi(x) \right)^{\top} \psi \left(\sum_{y \in \mathcal{Y}_{c}} \phi(y) \right) \right\} = \sigma \left(\Phi(\mathcal{X}_{c})^{\top} \Phi(\mathcal{Y}_{c}) \right)$$

normalization (ℓ_{2} , power-law) cell representation

▲ロ → ▲ 冊 → ▲ 目 → ▲ 目 → の Q ()

BoW, HE and VLAD in the common model

Model	$M(\mathcal{X}_c, \mathcal{Y}_c)$	$\phi(x)$	$\sigma(u)$	$\psi(z)$	$\Phi(\mathcal{X}_c)$
BoW	$M_{\rm N}$ or $M_{\rm A}$	1	u	z	$ \mathcal{X}_c $
HE	M_N only		$w\left(\frac{B}{2}(1-u)\right)$		
VLAD	$M_{\rm N}$ or $M_{\rm A}$		u ,		$V(\mathcal{X}_c)$

$$\begin{aligned} \mathsf{BoW} \qquad \mathsf{M}(\mathcal{X}_{c},\mathcal{Y}_{c}) &= \sum_{x \in \mathcal{X}_{c}} \sum_{y \in \mathcal{Y}_{c}} 1 = |\mathcal{X}_{c}| \times |\mathcal{Y}_{c}| \\ \mathsf{HE} \qquad \mathsf{M}\left(\mathcal{X}_{c},\mathcal{Y}_{c}\right) &= \sum_{x \in \mathcal{X}_{c}} \sum_{y \in \mathcal{Y}_{c}} \psi\left(\mathsf{h}\left(b_{x},b_{y}\right)\right) \\ \mathsf{VLAD} \qquad \mathsf{M}\left(\mathcal{X}_{c},\mathcal{Y}_{c}\right) &= \sum_{x \in \mathcal{X}_{c}} \sum_{y \in \mathcal{Y}_{c}} r\left(x\right)^{\top} r\left(y\right) = V(\mathcal{X}_{c})^{\top} V(\mathcal{Y}_{c}) \\ \qquad \mathsf{M}_{\mathsf{N}}(\mathcal{X}_{c},\mathcal{Y}_{c}) &= \sum_{x \in \mathcal{X}_{c}} \sum_{y \in \mathcal{Y}_{c}} \sigma\left(\phi(x)^{\top}\phi(y)\right) \\ \mathsf{M}_{\mathsf{A}}(\mathcal{X}_{c},\mathcal{Y}_{c}) &= \sigma\left\{\psi\left(\sum_{x \in \mathcal{X}_{c}} \phi(x)\right)^{\top} \psi\left(\sum_{y \in \mathcal{Y}_{c}} \phi(y)\right)\right\} = \sigma\left(\Phi(\mathcal{X}_{c})^{\top} \Phi(\mathcal{Y}_{c})\right) \end{aligned}$$

BoW, HE and VLAD in the common model

Model	$M(\mathcal{X}_c, \mathcal{Y}_c)$	$\phi(x)$	$\sigma(u)$	$\psi(z)$	$\Phi(\mathcal{X}_c)$
BoW	$M_{\rm N}$ or $M_{\rm A}$	1	u	z	$ \mathcal{X}_c $
HE	M_{N} only	\hat{b}_x	$w\left(\frac{B}{2}(1-u)\right)$		_
VLAD	$M_{\rm N}$ or $M_{\rm A}$		u		$V(\mathcal{X}_c)$

$$\begin{aligned} \mathsf{BoW} \qquad \mathrm{M}(\mathcal{X}_c, \mathcal{Y}_c) &= \sum_{x \in \mathcal{X}_c} \sum_{y \in \mathcal{Y}_c} 1 = |\mathcal{X}_c| \times |\mathcal{Y}_c| \\ \mathsf{HE} \qquad \mathrm{M}\left(\mathcal{X}_c, \mathcal{Y}_c\right) &= \sum_{x \in \mathcal{X}_c} \sum_{y \in \mathcal{Y}_c} w\left(\mathrm{h}\left(b_x, b_y\right)\right) \end{aligned}$$

$$x \in \mathcal{X}_c \ y \in \mathcal{Y}_c$$

VLAD
$$M(\mathcal{X}_c, \mathcal{Y}_c) = \sum_{x \in \mathcal{X}_c} \sum_{y \in \mathcal{Y}_c} r(x)^\top r(y) = V(\mathcal{X}_c)^\top V(\mathcal{Y}_c)$$

$$M_{N}(\mathcal{X}_{c},\mathcal{Y}_{c}) = \sum_{x \in \mathcal{X}_{c}} \sum_{y \in \mathcal{Y}_{c}} \overset{\bullet}{\sigma} \left(\phi(x)^{\top} \phi(y) \right)$$

$$M_{A}(\mathcal{X}_{c},\mathcal{Y}_{c}) = \sigma \left\{ \psi \left(\sum_{x \in \mathcal{X}_{c}} \phi(x) \right)^{\top} \psi \left(\sum_{y \in \mathcal{Y}_{c}} \phi(y) \right) \right\} = \sigma \left(\Phi(\mathcal{X}_{c})^{\top} \Phi(\mathcal{Y}_{c}) \right)$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ / 圖 / のへで

BoW, HE and VLAD in the common model

Model	$\mathrm{M}(\mathcal{X}_c,\mathcal{Y}_c)$	$\phi(x)$	$\sigma(u)$	$\psi(z)$	$\Phi(\mathcal{X}_c)$
BoW	$M_{\rm N}$ or $M_{\rm A}$	1	u	z	$ \mathcal{X}_c $
HE	M_{N} only	\hat{b}_x	$w\left(\frac{B}{2}(1-u)\right)$		
VLAD	$M_{\rm N}$ or $M_{\rm A}$	r(x)	u u	z	$V(\mathcal{X}_c)$

$$\mathsf{BoW} \qquad \mathrm{M}(\mathcal{X}_c, \mathcal{Y}_c) = \sum_{x \in \mathcal{X}_c} \sum_{y \in \mathcal{Y}_c} 1 = |\mathcal{X}_c| \times |\mathcal{Y}_c|$$

HE
$$\operatorname{M}(\mathcal{X}_{c},\mathcal{Y}_{c}) = \sum_{x \in \mathcal{X}_{c}} \sum_{y \in \mathcal{Y}_{c}} w\left(\operatorname{h}(b_{x},b_{y})\right)$$

$$\mathsf{VLAD} \quad \mathsf{M}\left(\mathcal{X}_{c}, \mathcal{Y}_{c}\right) = \sum_{x \in \mathcal{X}_{c}} \sum_{y \in \mathcal{Y}_{c}} r(x)^{\top} r(y) = V(\mathcal{X}_{c})^{\top} V(\mathcal{Y}_{c})$$
$$\mathsf{M}_{\mathsf{N}}(\mathcal{X}_{c}, \mathcal{Y}_{c}) = \sum_{x \in \mathcal{X}_{c}} \sum_{y \in \mathcal{Y}_{c}} \sigma\left(\phi(x)^{\top} \phi(y)\right)$$
$$\mathsf{M}_{\mathsf{A}}(\mathcal{X}_{c}, \mathcal{Y}_{c}) = \sigma\left\{\psi\left(\sum_{x \in \mathcal{X}_{c}} \phi(x)\right)^{\top} \psi\left(\sum_{y \in \mathcal{Y}_{c}} \phi(y)\right)\right\} = \sigma\left(\Phi(\mathcal{X}_{c})^{\top} \Phi(\mathcal{Y}_{c})\right)$$

Selective Match Kernel (SMK)

$$\mathsf{SMK}(\mathcal{X}_c, \mathcal{Y}_c) = \sum_{x \in \mathcal{X}_c} \sum_{y \in \mathcal{Y}_c} \sigma_\alpha(\hat{r}(x)^\top \hat{r}(y))$$

• Descriptor representation: ℓ_2 -normalized residual

$$\phi(x) = \hat{r}(x) = r(x)/\|r(x)\|$$

• Selectivity function

$$\sigma_{\alpha}(u) = \begin{cases} \operatorname{sign}(u)|u|^{\alpha}, & u > \tau \\ 0, & \text{otherwise} \end{cases}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - わへぐ

Selective Match Kernel (SMK)

$$\mathsf{SMK}(\mathcal{X}_c, \mathcal{Y}_c) = \sum_{x \in \mathcal{X}_c} \sum_{y \in \mathcal{Y}_c} \sigma_\alpha(\hat{r}(x)^\top \hat{r}(y))$$

• Descriptor representation: ℓ_2 -normalized residual

0.2

$$\phi(x) = \hat{r}(x) = r(x) / ||r(x)||$$

Selectivity function

$$\sigma_{\alpha}(u) = \begin{cases} \operatorname{sign}(u)|u|^{\alpha}, & u > \tau \\ 0, & \operatorname{otherwise} \end{cases}$$

-0.4-0.2 0 0.2 0.4 0.6 0.8 1 dot product

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Matching example—impact of threshold

 $\alpha = 1, \ \tau = 0.0$

$$\alpha=1,\ \tau=0.25$$

thresholding removes false correspondences

Matching example—impact of shape parameter

 $\alpha = 3, \ \tau = 0.0$

 $\alpha = 3, \ \tau = 0.25$

weighs matches based on confidence

Aggregated Selective Match Kernel (ASMK)

$$\mathsf{ASMK}(\mathcal{X}_c, \mathcal{Y}_c) = \sigma_\alpha \left(\hat{V}(\mathcal{X}_c)^\top \hat{V}(\mathcal{Y}_c) \right)$$

• Cell representation: ℓ_2 -normalized aggregated residual

イロト 不得 トイヨト イヨト ヨー ろくで

Similar to [Arandjelovic & Zisserman '13], but:

- with selectivity function σ_{lpha}
- used with large vocabularies

Aggregated Selective Match Kernel (ASMK)

$$\mathsf{ASMK}(\mathcal{X}_c, \mathcal{Y}_c) = \sigma_\alpha \left(\hat{V}(\mathcal{X}_c)^\top \hat{V}(\mathcal{Y}_c) \right)$$

• Cell representation: ℓ_2 -normalized aggregated residual

イロト 不得 トイヨト イヨト ヨー ろくで

- Similar to [Arandjelovic & Zisserman '13], but:
 - with selectivity function σ_{α}
 - used with large vocabularies

Aggregated features: k = 128 as in VLAD

Aggregated features: k = 65K as in ASMK

▲ロト ▲聞 ト ▲ 臣 ト ▲ 臣 ト 一臣 … 釣んで

Why to aggregate: burstiness

- Burstiness: non-iid statistical behaviour of descriptors
- Matches of bursty features dominate the total similarity score
- Previous work: [Jégou et al. '09][Chum & Matas '10][Torii et al. '13]

In this work

- Aggregation and normalization per cell handles burstiness
- Keeps a single representative, similar to max-pooling

Why to aggregate: burstiness

- Burstiness: non-iid statistical behaviour of descriptors
- Matches of bursty features dominate the total similarity score
- Previous work: [Jégou et al. '09][Chum & Matas '10][Torii et al. '13]

In this work

- Aggregation and normalization per cell handles burstiness
- Keeps a single representative, similar to max-pooling

Binary counterparts SMK* and ASMK*

- Full vector representation: high memory cost
- Approximate vector representation: binary vector

$$\begin{split} \mathsf{SMK}^{\star}(\mathcal{X}_{c},\mathcal{Y}_{c}) &= \sum_{x\in\mathcal{X}_{c}}\sum_{y\in\mathcal{Y}_{c}}\sigma_{\alpha}\left\{\hat{b}(r(x))^{\top}\hat{b}(r(y))\right\}\\ \mathsf{ASMK}^{\star}(\mathcal{X}_{c},\mathcal{Y}_{c}) &= \sigma_{\alpha}\left\{\hat{b}\left(\sum_{x\in\mathcal{X}_{c}}r(x)\right)^{\top}\hat{b}\left(\sum_{y\in\mathcal{Y}_{c}}r(y)\right)\right\} \end{split}$$

 \hat{b} includes centering and rotation as in HE, followed by binarization and $\ell_2\text{-normalization}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

Impact of selectivity

Impact of aggregation

- Improves performance for different vocabulary sizes
- Reduces memory requirements of inverted file

k	memory ratio
8k	69%
16k	78%
32k	85%
65k	89%

with k = 8k on Oxford5k

- VLAD $\rightarrow 65.5\%$
- SMK $\rightarrow 74.2\%$
- ASMK \rightarrow 78.1%

イロト 不得 トイヨト イヨト ヨー ろくで

Comparison to state of the art

Dataset	MA	Oxf5k	Oxf105k	Par6k	Holiday
ASMK*		76.4	69.2	74.4	80.0
ASMK*	×	80.4	75.0	77.0	81.0
ASMK		78.1	-	76.0	81.2
ASMK	×	81.7	-	78.2	82.2
HE [Jégou <i>et al.</i> '10]		51.7	-	-	74.5
HE [Jégou <i>et al.</i> '10]	×	56.1	-	-	77.5
HE-BURST [Jain et al. '10]		64.5	-	-	78.0
HE-BURST [Jain et al. '10]	×	67.4	-	-	79.6
Fine vocab. [Mikulík et al. '10]	×	74.2	67.4	74.9	74.9
AHE-BURST [Jain et al. '10]		66.6	-	-	79.4
AHE-BURST [Jain et al. '10]	×	69.8	-	-	81.9
Rep. structures [Torri et al. '13]	×	65.6	-	-	74.9

Discussion

- Aggregation is also beneficial with large vocabularies \rightarrow burstiness

- Selectivity always helps (with or without aggregation)
- Descriptor approximation reduces performance only slightly

Part II: Vector quantization and nearest neighbor search

Locally optimized product quantization

Joint work with Yannis Kalantidis, CVPR 2014

イロト 不得 トイヨト イヨト ヨー ろくで

Overview

- Problem: given query point **q**, find its nearest neighbor with respect to Euclidean distance within data set \mathcal{X} in a *d*-dimensional space
- Focus on large scale: encode (compress) vectors, speed up distance computations
- Fit better underlying distribution with little space & time overhead

Applications

• Retrieval (image as point) [Jégou et al. '10][Perronnin et al. '10]

- Retrieval (descriptor as point) [Tolias et al. '13][Qin et al. '13]
- Localization, pose estimation [Sattler et al. '12][Li et al. '12]
- Classification [Boiman et al. '08][McCann & Lowe '12]
- Clustering [Philbin et al. '07][Avrithis '13]

Related work

- Indexing
 - Inverted index (image retrieval)
 - Inverted multi-index [Babenko & Lempitsky '12] (nearest neighbor search)
- Encoding and ranking
 - Vector quantization (VQ)
 - Product quantization (PQ) [Jégou et al. '11]
 - Optimized product quantization (OPQ) [Ge et al. '13] Cartesian k-means [Norouzi & Fleet '13]
 - Locally optimized product quantization (LOPQ) [Kalantidis and Avrithis '14]

- Not discussed
 - Tree-based indexing, e.g., [Muja and Lowe '09]
 - Hashing and binary codes, e.g., [Norouzi et al. '12

Related work

- Indexing
 - Inverted index (image retrieval)
 - Inverted multi-index [Babenko & Lempitsky '12] (nearest neighbor search)
- Encoding and ranking
 - Vector quantization (VQ)
 - Product quantization (PQ) [Jégou et al. '11]
 - Optimized product quantization (OPQ) [Ge *et al.* '13] Cartesian *k*-means [Norouzi & Fleet '13]
 - Locally optimized product quantization (LOPQ) [Kalantidis and Avrithis '14]

Not discussed

- Tree-based indexing, e.g., [Muja and Lowe '09]
- Hashing and binary codes, e.g., [Norouzi et al. '12

Related work

- Indexing
 - Inverted index (image retrieval)
 - Inverted multi-index [Babenko & Lempitsky '12] (nearest neighbor search)
- Encoding and ranking
 - Vector quantization (VQ)
 - Product quantization (PQ) [Jégou et al. '11]
 - Optimized product quantization (OPQ) [Ge *et al.* '13] Cartesian *k*-means [Norouzi & Fleet '13]
 - Locally optimized product quantization (LOPQ) [Kalantidis and Avrithis '14]

- Not discussed
 - Tree-based indexing, e.g., [Muja and Lowe '09]
 - Hashing and binary codes, e.g., [Norouzi et al. '12]

query

ranked shortlist

Inverted index—issues

- Are items in a postings list equally important?
- What changes under soft (multiple) assignment?
- How should vectors be encoded for memory efficiency and fast search?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - わへぐ

Inverted multi-index

- decompose vectors as $\mathbf{x} = (\mathbf{x}^1, \mathbf{x}^2)$
- train codebooks $\mathcal{C}^1, \mathcal{C}^2$ from datasets $\{\mathbf{x}_n^1\}, \{\mathbf{x}_n^2\}$
- induced codebook C¹ × C² gives a finer partition
- given query q, visit cells (c¹, c²) ∈ C¹ × C² in ascending order of distance to q by multi-sequence algorithm

イロト 不得 トイヨト イヨト ヨー ろくで

Inverted multi-index

- decompose vectors as $\mathbf{x} = (\mathbf{x}^1, \mathbf{x}^2)$
- train codebooks $\mathcal{C}^1, \mathcal{C}^2$ from datasets $\{\mathbf{x}_n^1\}, \{\mathbf{x}_n^2\}$
- induced codebook $\mathcal{C}^1 imes \mathcal{C}^2$ gives a finer partition
- given query q, visit cells (c¹, c²) ∈ C¹ × C² in ascending order of distance to q by multi-sequence algorithm

くしゃ 不良 そうやく ひゃくしゃ うくの

Inverted multi-index

- decompose vectors as $\mathbf{x} = (\mathbf{x}^1, \mathbf{x}^2)$
- train codebooks $\mathcal{C}^1, \mathcal{C}^2$ from datasets $\{\mathbf{x}_n^1\}, \{\mathbf{x}_n^2\}$
- induced codebook $\mathcal{C}^1 \times \mathcal{C}^2$ gives a finer partition
- given query q, visit cells $(c^1, c^2) \in C^1 \times C^2$ in ascending order of distance to q by multi-sequence algorithm

イロト 不得 トイヨト イヨト ヨー ろくで

Multi-sequence algorithm

$$\mathcal{C}^1 \rightarrow$$

 $\mathcal{C}^2 \downarrow$

C).6	0.8	4.1	6.1	8.1	9.1
2	2.5	2.7	6	8	10	11
З	3.5	3.7	7	9	11	12
e	5.5	6.7	10	12	14	15
7	7.5	7.7	11	13	15	16
1	1.5	11.7	15	17	19	20

Vector quantization (VQ)

Vector quantization (VQ)

Vector quantization (VQ)

Vector quantization (VQ)

- For small distortion \rightarrow large $k = |\mathcal{C}|$:
 - hard to train
 - too large to store
 - too slow to search

Product quantization (PQ)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Product quantization (PQ)

• train:
$$q = (q^1, \dots, q^m)$$
 where q^1, \dots, q^m obtained by VQ
• store: $|\mathcal{C}| = k^m$ with $|\mathcal{C}^1| = \dots = |\mathcal{C}^m| = k$
• search: $\|\mathbf{y} - q(\mathbf{x})\|^2 = \sum_{j=1}^m \|\mathbf{y}^j - q^j(\mathbf{x}^j)\|^2$ where $q^j(\mathbf{x}^j) \in \mathcal{C}^j$

Optimized product quantization (OPQ)

OPQ, parametric solution for $\mathcal{X} \sim \mathcal{N}(\mathbf{0}, \Sigma)$

- independence: PCA-align by diagonalizing Σ as $U\Lambda U^{\top}$
- balanced variance: permute Λ such that $\prod_i \lambda_i$ is constant in each subspace; $R \leftarrow UP_{\pi}^{\top}$
- find $\hat{\mathcal{C}}$ by PQ on rotated data $\hat{\mathbf{x}} = R^{\top}\mathbf{x}$

Locally optimized product quantization (LOPQ)

- compute residuals $r(\mathbf{x}) = \mathbf{x} q(\mathbf{x})$ on coarse quantizer q
- collect residuals $\mathcal{Z}_i = \{r(\mathbf{x}) : q(\mathbf{x}) = \mathbf{c}_i\}$ per cell
- train $(R_i, q_i) \leftarrow \mathsf{OPQ}(\mathcal{Z}_i)$ per cell

Locally optimized product quantization (LOPQ)

- better capture support of data distribution, like local PCA [Kambhatla & Leen '97]
 - multimodal (e.g. mixture) distributions
 - distributions on nonlinear manifolds
- residual distributions closer to Gaussian assumption

Multi-LOPQ

Comparison to state of the art SIFT1B, 64-bit codes

Method	R = 1	R = 10	R = 100
Ck-means [Norouzi & Fleet '13]	-	-	0.649
IVFADC	0.106	0.379	0.748
IVFADC [Jégou <i>et al.</i> '11]	0.088	0.372	0.733
OPQ	0.114	0.399	0.777
Multi-D-ADC [Babenko & Lempitsky '12]	0.165	0.517	0.860
LOR+PQ	0.183	0.565	0.889
LOPQ	0.199	0.586	0.909

Most benefit comes from locally optimized rotation!

Comparison to state of the art SIFT1B, 64-bit codes

Method	R = 1	R = 10	R = 100
Ck-means [Norouzi & Fleet '13]	-	-	0.649
IVFADC	0.106	0.379	0.748
IVFADC [Jégou <i>et al.</i> '11]	0.088	0.372	0.733
OPQ	0.114	0.399	0.777
Multi-D-ADC [Babenko & Lempitsky '12]	0.165	0.517	0.860
LOR+PQ	0.183	0.565	0.889
LOPQ	0.199	0.586	0.909

Most benefit comes from locally optimized rotation!

Comparison to state of the art SIFT1B, 128-bit codes

T	Method	R = 1	10	100
20K	IVFADC+R [Jégou et al. '11]	0.262	0.701	0.962
	LOPQ+R	0.350	0.820	0.978
10K	Multi-D-ADC [Babenko & Lempitsky '12]	0.304	0.665	0.740
	OMulti-D-OADC [Ge et al. '13]	0.345	0.725	0.794
	Multi-LOPQ	0.430	0.761	0.782
30K	Multi-D-ADC [Babenko & Lempitsky '12]	0.328	0.757	0.885
	OMulti-D-OADC [Ge et al. '13]	0.366	0.807	0.913
	Multi-LOPQ	0.463	0.865	0.905
100K	Multi-D-ADC [Babenko & Lempitsky '12]	0.334	0.793	0.959
	OMulti-D-OADC [Ge et al. '13]	0.373	0.841	0.973
	Multi-LOPQ	0.476	0.919	0.973

Residual encoding in related work

- PQ (IVFADC) [Jégou et al. '11]: single product quantizer for all cells
- [Uchida et al. '12]: multiple product quantizers shared by multiple cells
- OPQ [Ge *et al.* '13]: single product quantizer for all cells, globally optimized for rotation (single/multi-index)
- LOPQ: with/without one product quantizer per cell, with/without rotation optimization per cell (single/multi-index)
- [Babenko & Lempitsky '14]: one product quantizer per cell, optimized for rotation per cell (multi-index)

(日)、(型)、(E)、(E)、(E)、(O)()

Residual encoding in related work

- PQ (IVFADC) [Jégou et al. '11]: single product quantizer for all cells
- [Uchida et al. '12]: multiple product quantizers shared by multiple cells
- OPQ [Ge *et al.* '13]: single product quantizer for all cells, globally optimized for rotation (single/multi-index)
- LOPQ: with/without one product quantizer per cell, with/without rotation optimization per cell (single/multi-index)
- [Babenko & Lempitsky '14]: one product quantizer per cell, optimized for rotation per cell (multi-index)

・ロト・日本・モート モー うへぐ

http://image.ntua.gr/iva/research/

Thank you!