
Locally Optimized Product Quantization
for Approximate Nearest Neighbor Search

Yannis Kalantidis and Yannis Avrithis
National Technical University of Athens

Background

I Vector quantization: Minimize distortion E =
∑

x∈X ‖x− q(x)‖2, where quantizer
q : x 7→ q(x) = argminc∈C ‖x− c‖.

I Product quantization [1]: C = C1 × · · · × Cm, i.e.: km centroids of the form
c = (c1, . . . , cm) with each sub-centroid cj ∈ Cj for j ∈ M = {1, . . . ,m}. m
independent sub-problems: q(x) = (q1(x1), . . . , qm(xm)).

I Optimized product quantization [2]: C = {Rĉ : ĉ ∈ C1 × · · · × Cm, RTR = I},
where orthogonal d × d matrix R optimized for subspace decomposition (rotation +
permutation).

Overview

Locally Optimized Product Quantization
for Approximate Nearest Neighbor Search

Yannis Kalantidis and Yannis Avrithis
National Technical University of Athens

{ykalant, iavr}@image.ntua.gr

Abstract

We present a simple vector quantizer that combines low
distortion with fast search and apply it to approximate near-
est neighbor (ANN) search in high dimensional spaces.
Leveraging the very same data structure that is used to pro-
vide non-exhaustive search, i.e., inverted lists or a multi-
index, the idea is to locally optimize an individual product
quantizer (PQ) per cell and use it to encode residuals. Lo-
cal optimization is over rotation and space decomposition;
interestingly, we apply a parametric solution that assumes
a normal distribution and is extremely fast to train. With
a reasonable space and time overhead that is constant in
the data size, we set a new state-of-the-art on several public
datasets, including a billion-scale one.

1. Introduction

Approximate nearest neighbor (ANN) search in high-
dimensional spaces is not only a recurring problem in com-
puter vision, but also undergoing significant progress. A
large body of methods maintain all data points in memory
and rely on efficient data structures to compute only a lim-
ited number of exact distances, that is ideally fixed [14]. At
the other extreme, mapping data points to compact binary
codes is not only efficient in space but may achieve fast ex-
haustive search in Hamming space [10, 16].

Product quantization (PQ) [12] is an alternative compact
encoding method that is discrete but not binary and can be
used for exhaustive or non-exhaustive search through in-
verted indexing or multi-indexing [3]. As is true for most
hashing methods [11], better fitting to the underlying distri-
bution is critical in search performance, and one such ap-
proach for PQ is optimized product quantization (OPQ) [9]
and its equivalent Cartesian k-means [15].

How are such training methods beneficial? Different cri-
teria are applicable, but the underlying principle is that all
bits allocated to data points should be used sparingly. Since
search can be made fast, such methods should be ultimately

(a) k-means (b) PQ

(c) OPQ (d) LOPQ

Figure 1. Four quantizers of 64 centroids () each, trained on a
random set of 2D points (), following a mixture distribution. (c)
and (d) also reorder dimensions, which is not shown in 2D.

seen as (lossy) data compression targeting minimal distor-
tion, with extreme examples being [1, 5].

As such, k-means, depicted in Fig. 1(a), is a vector quan-
tization method where by specifying k centroids, log2 k bits
can represent an arbitrary data point in Rd for any dimen-
sion d; but naı̈ve search is O(dk) and low distortion means
very large k. By constraining centroids on an axis-aligned,
m-dimensional grid, PQ achieves km centroids keeping
search at O(dk); but as illustrated in Fig. 1(b), many of
these centroids remain without data support e.g. if the dis-
tributions on m subspaces are not independent.

OPQ allows the grid to undergo arbitrary rotation and re-
ordering of dimensions to better align to data and balance
their variance across subspaces to match bit allocation that
is also balanced. But as shown in Fig. 1(c), a strongly multi-
modal distribution may not benefit from such alignment.

Our solution in this work is locally optimized product

1

Contribution

I Locality: Partitioning data in cells with a coarse quantizer of K cells, we locally
optimize one product quantizer per cell on the residual distribution.

I Efficient training: Local distributions are easier to optimize via a simple OPQ variant.

I Multiple search frameworks: Fits naturally to either a single or a multi-index [3].

I Product optimization: For an nth-order multi-index, we only optimize nK product
quantizers for a total of Kn cells.

References

[1] Jegou et al.. Product quantization for nearest neighbor search. PAMI, 2011.
[2] Ge et al.. Optimized product quantization for approximate nearest neighbor search.
CVPR, 2013.
[3] Babenko and Lempitsky. The inverted multi-index. CVPR, 2012.

Local Optimization

I If Z is the set of residuals of data points quantized to some cell and |Cj| = k for j ∈
M = {1, . . . ,m}, we locally optimize both space decomposition and sub-quantizers
per cell, using OPQ:

minimize
∑

z∈Z
min
ĉ∈Ĉ
‖z−Rĉ‖2

subject to Ĉ = C1 × · · · × Cm
RTR = I,

(1)

I Parametric solution: Assuming a normal distribution, minimize the theoretical lower
distortion bound as a function of R alone via PCA alignment and eigenvalue allocation.
Sub-quantizer optimization follows as in PQ.

I Residual distributions are closer to normal, so parametric solution fits better to LOPQ.

Multi-LOPQ

x = (xL , xR)

Q2

Q1 ...

..
.

Indexing and Search

I Single index: For each of K cells, residual is individually rotated and encoded. The
query point is soft-assigned to its w nearest cells. Asymmetric distances are computed
exhaustively via lookup tables.

I Multi-index: Two subspace quantizers Q1, Q2 of K centroids each are built. Residuals
are encoded per row and column: 2K local rotations and sub-quantizers for a total of
K2 cells. Search follows multi-sequence algorithm, with lazy evaluation of row/column-
rotated query residuals.

Experiments

I Protocol: We measure Recall@R, we set k = 256 in all cases and m = 8 unless otherwise stated.

I Multi-modal datasets: SYNTH1M (synthetic, 1M 128-dimensional vectors from 1K anisotropic

Gaussians), MNIST.

with fixed sub-quantizers, as well as both rotation and sub-
quantizers, referred to as LOR+PQ and LOPQ, respectively.
In the latter case, there is anO(K(d2+dk)) space overhead,
comparing e.g. to IVFADC [12]. Similarly, local rotation of
the query residual imposes an O(wd2) time overhead.

4.2. Local optimization

Let Z ∈ {Z1, . . . ,ZK} be the set of residuals of data
points quantized to some cell in E . Contrary to [12], we
PQ-encode these residuals by locally optimizing both space
decomposition and sub-quantizers per cell. Given m and k
as parameters, this problem is expressed as minimizing dis-
tortion as a function of orthogonal matrix R ∈ Rd×d and
sub-codebooks C1, . . . , Cm ⊂ Rd/m per cell,

minimize
∑

z∈Z
min
ĉ∈Ĉ
‖z−Rĉ‖2

subject to Ĉ = C1 × · · · × Cm
RTR = I,

(10)

where |Cj | = k for j ∈ M = {1, . . . ,m}. Given solution
R, C1, . . . , Cm, codebook C is found by (5). For j ∈ M,
sub-codebook Cj determines a sub-quantizer qj by

x 7→ qj(x) = arg min
ĉj∈Cj

‖x− ĉj‖ (11)

for x ∈ Rd/m, as in (2); collectively, sub-quantizers deter-
mine a product quantizer q = (q1, . . . , qm) by (4). Local
optimization can then be seen as a mapping Z 7→ (R, q).
Following [9, 15], there are two solutions that we briefly
describe here, focusing more on OPQP.

Parametric solution (OPQP [9]) is the outcome of as-
suming a d-dimensional, zero-mean normal distribution
N (0,Σ) of residual data Z and minimizing the theoretical
lower distortion bound as a function of R alone [9]. That is,
R is optimized independently prior to codebook optimiza-
tion, which can follow by independent k-means per sub-
space, exactly as in PQ.

Given the d × d positive definite covariance matrix Σ,
empirically measured on Z , the solution for R is found in
closed form, in two steps. First, rotating data by ẑ ← RTz
for z ∈ Z should yield a block-diagonal covariance matrix
Σ̂, with the j-th diagonal block being sub-matrix Σ̂jj of j-
th subspace, for j ∈ M. That is, subspace distributions
should be pairwise independent. This is accomplished e.g.
by diagonalizing Σ as UΛUT.

Second, determinants |Σ̂jj | should be equal for j ∈ M,
i.e., variance should be balanced across subspaces. This is
achieved by eigenvalue allocation [9]. In particular, a set B
of m buckets Bj is initialized with Bj = ∅, j ∈ M, each
of capacity d∗ = d/m. Eigenvalues in Λ are then traversed
in descending order, λ1 ≥ · · · ≥ λd. Each eigenvalue λs,
s = 1, . . . , d, is greedily allocated to the non-full bucketB∗

100 101 102 103 104

0

0.2

0.4

0.6

0.8

1

R

re
ca

ll@
R

IVFADC
I-PCA+RP
I-PCA
I-OPQ
LOPQ

Figure 2. Recall@R performance on SYNTH1M—recall@R is
defined in section 5.1. We use K = 1024 and w = 8 for all
methods; for all product quantizers, we use m = 8 and k = 256.
Curves for IVFADC, I-OPQ and I-PCA+RP coincide everywhere.

of minimal variance, i.e., B∗ ← B∗ ∪ s with

B∗ = arg min
B∈B
|B|<d∗

∏

s∈B
λs, (12)

until all buckets are full. Then, buckets determine a re-
ordering of dimensions: if vector bj ∈ Rd∗ contains ele-
ments of bucket Bj (in any order) for j ∈ M and b =
(b1, . . . ,bm), then vector b is read off as a permutation π
of set {1, . . . , d}. If Pπ is the permutation matrix of π, then
matrix UPT

π represents a re-ordering of eigenvectors of Σ
and is the final solution for R. In other words, Z is first
PCA-aligned and then dimensions are grouped in subspaces
exactly as eigenvalues are allocated to buckets.
Non-parametric solution (OPQNP [9] or Ck-means [15])
is a variant of k-means, carried out in all m subspaces in
parallel, interlacing in each iteration its two traditional steps
assign and update with steps to rotate data and optimize R,
i.e., align centroids to data. OPQP is extremely faster than
OPQNP in practice. Because we locally optimize thousands
of quantizers, OPQNP training is impractical, so we only use
it in one small experiment in section 5.2 and otherwise focus
on OPQP, which we refer to as I-OPQ in the sequel.

4.3. Example

To illustrate the benefit of local optimization, we experi-
ment on our synthetic dataset SYNTH1M, containing 1M
128-dimensional data points and 10K queries, generated by
taking 1000 samples from each of 1000 components of an
anisotropic Gaussian mixture distribution. All methods are
non-exhaustive as in section 4.1, i.e. using a coarse quan-
tizer, inverted lists and PQ-encoded residuals; however, all
optimization variants are global except for LOPQ. For fair
comparison here and in section 5, I-OPQ is our own non-
exhaustive adaptation of [9]. IVFADC (PQ) [12] uses natu-
ral order of dimensions and no optimization.

Figure 2 shows results on ANN search. On this ex-
tremely multi-modal distribution, I-OPQ fails to improve

Compared methods (MNIST, SIFT1M, GIST1M). We
compare against three of the methods discussed in sec-
tion 4.3, all using a single index on a coarse quantizer and
PQ-encoded residuals, with any optimization being global.
In particular, IVFADC [12], our I-PCA+RP, and our non-
exhaustive adaptation of OPQ [9], using either OPQP or
OPQNP global optimization. These non-exhaustive variants
are not only faster, but also superior. OPQNP is too slow
to train, so is only shown for MNIST; otherwise I-OPQ
refers to OPQP. We do not consider transform coding [4]
or ITQ [10] since they are outperformed by I-OPQ in [9].
Compared methods (SIFT1B). After some experiments on
a single index comparing mainly to IVFADC and I-OPQ,
we focus on using a multi-index, comparing against Multi-
D-ADC [3] and its recent variant OMulti-D-OADC [8], cur-
rently the state-of-the-art. Both methods PQ-encode the
residuals of the subspace quantizers. Additionally, OMulti-
D-OADC uses OPQNP to globally optimize both the ini-
tial data prior to multi-index construction and the residuals.
We also report results for IVFADC with re-ranking (IV-
FADC+R) [13], Ck-means [15], KLSH-ADC [17], multi-
index hashing (Multi-I-Hashing) [16], and the very recent
joint inverted indexing (Joint-ADC) [19].
Implementation. Results followed by a citation are repro-
duced from the corresponding publication. For the rest we
use our own implementations in Matlab and C++ on a 8-
core machine with 64GB RAM. For k-means and exhaus-
tive nearest neighbor assignment we use yael3.

5.2. Results on MNIST, SIFT1M, GIST1M

MNIST is considered first. This is the only case where
we report results for OPQNP, since it is favored over OPQP

in [9], and MNIST is small enough to allow for training. As
suggested in [9], we run 100 iterations for OPQNP using the
implementation provided by the authors.

Recall and distortion results are shown in Figure 3. Ob-
serve how the gain of OPQNP over OPQP is very limited
now that global optimization is performed on the residuals.
This can be explained by the fact that residuals are expected
to follow a rather unimodal distribution, hence closer to the
Gaussian assumption of OPQP. The performance of our
simplified variant I-PCA+RP is very close to I-OPQ. Still,
separately optimizing the residual distribution of each cell
gives LOPQ a significant gain over all methods.
SIFT1M and GIST1M results are shown in Figures 4
and 5 respectively, only now OPQ is limited to OPQP.
As in [9], we use the optimal dimension order for each
dataset for baseline method IVFADC [12], i.e. natural (resp.
structured) order for SIFT1M (resp. GIST1M). In both
cases, LOPQ clearly outperforms all globally optimized ap-
proaches. For SIFT1M its gain at R = 1, 10 is more than

3https://gforge.inria.fr/projects/yael

100 101 102

0.2

0.4

0.6

0.8

1

R

re
ca

ll@
R Method Ē

IVFADC 70.1

I-PCA+RP 13.3

I − OPQP 12.6

I − OPQNP 11.4

LOPQ 8.13

Figure 3. Recall@R on MNIST with K = 64, found to be opti-
mal, and w = 8. Ē = E/n: average distortion per point.

100 101 102 103 104

0.4

0.6

0.8

R

re
ca

ll@
R

IVFADC
I-PCA+RP
I-OPQ
LOPQ

Figure 4. Recall@R on SIFT1M with K = 1024, w = 8.

100 101 102 103 104

0.2

0.4

0.6

0.8

R

re
ca

ll@
R

IVFADC
I-PCA+RP
I-OPQ
LOPQ

Figure 5. Recall@R on GIST1M with K = 1024, w = 16.

8% over I-OPQ, which is close to the baseline. The gain is
lower for GIST1M but still 5% forR = 10. This is where I-
OPQ improves most, in agreement with [9, 8], so LOPQ has
less to improve. This is attributed to GIST1M mostly being
subject to one Gaussian distribution in [8]. I-PCA+RP is
always slightly below I-OPQ.

Figures 6 and 7 plot recall@10 versus bit allocation per
point (through varying m) and soft assignment neighbor-
hood w, respectively. LOPQ enjoys superior performance
in all cases, with the gain increasing with lower bit rates
and more soft assignment. The latter suggests more precise
distance measurements, hence lower distortion.

SYNTH1M (K = 1024, w = 8) MNIST (K = 64, w = 8)

I Common datasets: SIFT1M, GIST1M.

Compared methods (MNIST, SIFT1M, GIST1M). We
compare against three of the methods discussed in sec-
tion 4.3, all using a single index on a coarse quantizer and
PQ-encoded residuals, with any optimization being global.
In particular, IVFADC [12], our I-PCA+RP, and our non-
exhaustive adaptation of OPQ [9], using either OPQP or
OPQNP global optimization. These non-exhaustive variants
are not only faster, but also superior. OPQNP is too slow
to train, so is only shown for MNIST; otherwise I-OPQ
refers to OPQP. We do not consider transform coding [4]
or ITQ [10] since they are outperformed by I-OPQ in [9].
Compared methods (SIFT1B). After some experiments on
a single index comparing mainly to IVFADC and I-OPQ,
we focus on using a multi-index, comparing against Multi-
D-ADC [3] and its recent variant OMulti-D-OADC [8], cur-
rently the state-of-the-art. Both methods PQ-encode the
residuals of the subspace quantizers. Additionally, OMulti-
D-OADC uses OPQNP to globally optimize both the ini-
tial data prior to multi-index construction and the residuals.
We also report results for IVFADC with re-ranking (IV-
FADC+R) [13], Ck-means [15], KLSH-ADC [17], multi-
index hashing (Multi-I-Hashing) [16], and the very recent
joint inverted indexing (Joint-ADC) [19].
Implementation. Results followed by a citation are repro-
duced from the corresponding publication. For the rest we
use our own implementations in Matlab and C++ on a 8-
core machine with 64GB RAM. For k-means and exhaus-
tive nearest neighbor assignment we use yael3.

5.2. Results on MNIST, SIFT1M, GIST1M

MNIST is considered first. This is the only case where
we report results for OPQNP, since it is favored over OPQP

in [9], and MNIST is small enough to allow for training. As
suggested in [9], we run 100 iterations for OPQNP using the
implementation provided by the authors.

Recall and distortion results are shown in Figure 3. Ob-
serve how the gain of OPQNP over OPQP is very limited
now that global optimization is performed on the residuals.
This can be explained by the fact that residuals are expected
to follow a rather unimodal distribution, hence closer to the
Gaussian assumption of OPQP. The performance of our
simplified variant I-PCA+RP is very close to I-OPQ. Still,
separately optimizing the residual distribution of each cell
gives LOPQ a significant gain over all methods.
SIFT1M and GIST1M results are shown in Figures 4
and 5 respectively, only now OPQ is limited to OPQP.
As in [9], we use the optimal dimension order for each
dataset for baseline method IVFADC [12], i.e. natural (resp.
structured) order for SIFT1M (resp. GIST1M). In both
cases, LOPQ clearly outperforms all globally optimized ap-
proaches. For SIFT1M its gain at R = 1, 10 is more than

3https://gforge.inria.fr/projects/yael

100 101 102

0.2

0.4

0.6

0.8

1

R

re
ca

ll@
R Method Ē

IVFADC 70.1

I-PCA+RP 13.3

I − OPQP 12.6

I − OPQNP 11.4

LOPQ 8.13

Figure 3. Recall@R on MNIST with K = 64, found to be opti-
mal, and w = 8. Ē = E/n: average distortion per point.

100 101 102 103 104

0.4

0.6

0.8

R

re
ca

ll@
R

IVFADC
I-PCA+RP
I-OPQ
LOPQ

Figure 4. Recall@R on SIFT1M with K = 1024, w = 8.

100 101 102 103 104

0.2

0.4

0.6

0.8

R

re
ca

ll@
R

IVFADC
I-PCA+RP
I-OPQ
LOPQ

Figure 5. Recall@R on GIST1M with K = 1024, w = 16.

8% over I-OPQ, which is close to the baseline. The gain is
lower for GIST1M but still 5% forR = 10. This is where I-
OPQ improves most, in agreement with [9, 8], so LOPQ has
less to improve. This is attributed to GIST1M mostly being
subject to one Gaussian distribution in [8]. I-PCA+RP is
always slightly below I-OPQ.

Figures 6 and 7 plot recall@10 versus bit allocation per
point (through varying m) and soft assignment neighbor-
hood w, respectively. LOPQ enjoys superior performance
in all cases, with the gain increasing with lower bit rates
and more soft assignment. The latter suggests more precise
distance measurements, hence lower distortion.

Compared methods (MNIST, SIFT1M, GIST1M). We
compare against three of the methods discussed in sec-
tion 4.3, all using a single index on a coarse quantizer and
PQ-encoded residuals, with any optimization being global.
In particular, IVFADC [12], our I-PCA+RP, and our non-
exhaustive adaptation of OPQ [9], using either OPQP or
OPQNP global optimization. These non-exhaustive variants
are not only faster, but also superior. OPQNP is too slow
to train, so is only shown for MNIST; otherwise I-OPQ
refers to OPQP. We do not consider transform coding [4]
or ITQ [10] since they are outperformed by I-OPQ in [9].
Compared methods (SIFT1B). After some experiments on
a single index comparing mainly to IVFADC and I-OPQ,
we focus on using a multi-index, comparing against Multi-
D-ADC [3] and its recent variant OMulti-D-OADC [8], cur-
rently the state-of-the-art. Both methods PQ-encode the
residuals of the subspace quantizers. Additionally, OMulti-
D-OADC uses OPQNP to globally optimize both the ini-
tial data prior to multi-index construction and the residuals.
We also report results for IVFADC with re-ranking (IV-
FADC+R) [13], Ck-means [15], KLSH-ADC [17], multi-
index hashing (Multi-I-Hashing) [16], and the very recent
joint inverted indexing (Joint-ADC) [19].
Implementation. Results followed by a citation are repro-
duced from the corresponding publication. For the rest we
use our own implementations in Matlab and C++ on a 8-
core machine with 64GB RAM. For k-means and exhaus-
tive nearest neighbor assignment we use yael3.

5.2. Results on MNIST, SIFT1M, GIST1M

MNIST is considered first. This is the only case where
we report results for OPQNP, since it is favored over OPQP

in [9], and MNIST is small enough to allow for training. As
suggested in [9], we run 100 iterations for OPQNP using the
implementation provided by the authors.

Recall and distortion results are shown in Figure 3. Ob-
serve how the gain of OPQNP over OPQP is very limited
now that global optimization is performed on the residuals.
This can be explained by the fact that residuals are expected
to follow a rather unimodal distribution, hence closer to the
Gaussian assumption of OPQP. The performance of our
simplified variant I-PCA+RP is very close to I-OPQ. Still,
separately optimizing the residual distribution of each cell
gives LOPQ a significant gain over all methods.
SIFT1M and GIST1M results are shown in Figures 4
and 5 respectively, only now OPQ is limited to OPQP.
As in [9], we use the optimal dimension order for each
dataset for baseline method IVFADC [12], i.e. natural (resp.
structured) order for SIFT1M (resp. GIST1M). In both
cases, LOPQ clearly outperforms all globally optimized ap-
proaches. For SIFT1M its gain at R = 1, 10 is more than

3https://gforge.inria.fr/projects/yael

100 101 102

0.2

0.4

0.6

0.8

1

R

re
ca

ll@
R Method Ē

IVFADC 70.1

I-PCA+RP 13.3

I − OPQP 12.6

I − OPQNP 11.4

LOPQ 8.13

Figure 3. Recall@R on MNIST with K = 64, found to be opti-
mal, and w = 8. Ē = E/n: average distortion per point.

100 101 102 103 104

0.4

0.6

0.8

R

re
ca

ll@
R

IVFADC
I-PCA+RP
I-OPQ
LOPQ

Figure 4. Recall@R on SIFT1M with K = 1024, w = 8.

100 101 102 103 104

0.2

0.4

0.6

0.8

R

re
ca

ll@
R

IVFADC
I-PCA+RP
I-OPQ
LOPQ

Figure 5. Recall@R on GIST1M with K = 1024, w = 16.

8% over I-OPQ, which is close to the baseline. The gain is
lower for GIST1M but still 5% forR = 10. This is where I-
OPQ improves most, in agreement with [9, 8], so LOPQ has
less to improve. This is attributed to GIST1M mostly being
subject to one Gaussian distribution in [8]. I-PCA+RP is
always slightly below I-OPQ.

Figures 6 and 7 plot recall@10 versus bit allocation per
point (through varying m) and soft assignment neighbor-
hood w, respectively. LOPQ enjoys superior performance
in all cases, with the gain increasing with lower bit rates
and more soft assignment. The latter suggests more precise
distance measurements, hence lower distortion.

SIFT1M (K = 1024, w = 8) GIST1M (K = 1024, w = 16)

16 32 64 128

0.2

0.4

0.6

0.8

bits

re
ca

ll@
1
0

IVFADC
I-PCA+RP
I-OPQ
LOPQ

Figure 6. Recall@10 on SIFT1M versus bit allocation per point,
with K = 1024 and w = 8. For 16, 32, 64 and 128 bits, m is
respectively 2, 4, 8 and 16.

1 2 4 8 16 32 64

0.4

0.5

0.6

0.7

0.8

w

re
ca

ll@
1
0

IVFADC
I-PCA+RP
I-OPQ
LOPQ

Figure 7. Recall@10 on SIFT1M versus w, with K = 1024 and
m = 8.

Method R = 1 R = 10 R = 100

Ck-means [15] – – 0.649
IVFADC 0.106 0.379 0.748
IVFADC [13] 0.088 0.372 0.733
I-OPQ 0.114 0.399 0.777
Multi-D-ADC [3] 0.165 0.517 0.860

LOR+PQ 0.183 0.565 0.889
LOPQ 0.199 0.586 0.909

Table 1. Recall@{1, 10, 100} on SIFT1B with 64-bit codes, K =
213 = 8192 and w = 64. For Multi-D-ADC, K = 214 and
T = 100K. Rows including citations reproduce authors’ results.

5.3. Results on SIFT1B

64-bit code (m = 8) results are shown in Table 1, includ-
ing I-OPQ, Ck-means [15], Multi-D-ADC [3] and IVFADC
without re-ranking, since re-ranking does not improve per-
formance at this bit rate [13]. All methods are using a single
index except Multi-D-ADC that uses a multi-index and Ck-
means that is exhaustive. For IVFADC we both reproduce
results of [13] and report on our re-implementation. To il-
lustrate the individual gain from locally optimized rotation
and sub-quantizers, we also include our sub-optimal variant
LOR+PQ as discussed in section 4.1. Both LOR+PQ and
LOPQ are clearly superior to all methods, with a gain of
18% over I-OPQ and 7% over Multi-D-ADC for recall@10,
although the latter is using a multi-index.

T Method R = 1 10 100

Multi-I-Hashing [16] – – 0.420
KLSH-ADC [17] – – 0.894
Joint-ADC [19] – – 0.938

20K
IVFADC+R [13] 0.262 0.701 0.962
LOPQ+R 0.350 0.820 0.978

10K
Multi-D-ADC [3] 0.304 0.665 0.740
OMulti-D-OADC [8] 0.345 0.725 0.794
Multi-LOPQ 0.430 0.761 0.782

30K
Multi-D-ADC [3] 0.328 0.757 0.885
OMulti-D-OADC [8] 0.366 0.807 0.913
Multi-LOPQ 0.463 0.865 0.905

100K
Multi-D-ADC [3] 0.334 0.793 0.959
OMulti-D-OADC [8] 0.373 0.841 0.973
Multi-LOPQ 0.476 0.919 0.973

Table 2. Recall@{1, 10, 100} on SIFT1B with 128-bit codes and
K = 213 = 8192 (resp. K = 214) for single index (resp. multi-
index). For IVFADC+R and LOPQ+R, m′ = 8, w = 64. Results
for Joint-ADC and KLSH-ADC are taken from [19]. Rows includ-
ing citations reproduce authors’ results.

128-bit code results are presented in Table 2 and Figure 8,
with our solutions including a single index with re-ranking
(LOPQ+R) and a multi-index (Multi-LOPQ). Of the re-
ranking methods, LOPQ+R has a clear advantage over IV-
FADC+R, where we adopt m = m′ = 8 since this option
is shown to be superior in [13]. All remaining methods use
m = 16. Multi-I-Hashing [16], KLSH-ADC [16] and Joint-
ADC [19] are all inferior at R = 100, although the latter
two require 4 times more space.

The current state-of-the-art results come with the use of
a multi-index, also boasting lower query times. The recent
highly optimized OMulti-D-OADC [8] outperforms Multi-
D-ADC [3]. However, the performance of our product
optimization Multi-LOPQ is unprecedented, setting a new
state-of-the-art on SIFT1B at 128-bit codes and enjoying
nearly 10% gain over OMulti-D-OADC on the most impor-
tant measure of precision (recall@1). Multi-index cells are
very fine, hence residuals are lower and local optimization
yields lower distortion, although constrained.

5.4. Overhead analysis

Both space and time overhead is constant in data size n.

Space overhead on top of IVFADC (resp. Multi-D-ADC)
refers to local rotation matrices and sub-quantizer cen-
troids per cell. For rotation matrices, this is Kd2 (resp.
2K(d/2)2) for single index (resp. multi-index). In prac-
tice, this overhead is around 500MB on SIFT1B. For sub-
quantizer centroids, overhead is Kdk in all cases. In prac-
tice, this is 2GB on SIFT1B for Multi-LOPQ withK = 214.
Given that the index space for SIFT1B with 128-bit codes

16 32 64 128

0.2

0.4

0.6

0.8

bits

re
ca

ll@
1
0

IVFADC
I-PCA+RP
I-OPQ
LOPQ

Figure 6. Recall@10 on SIFT1M versus bit allocation per point,
with K = 1024 and w = 8. For 16, 32, 64 and 128 bits, m is
respectively 2, 4, 8 and 16.

1 2 4 8 16 32 64

0.4

0.5

0.6

0.7

0.8

w

re
ca

ll@
1
0

IVFADC
I-PCA+RP
I-OPQ
LOPQ

Figure 7. Recall@10 on SIFT1M versus w, with K = 1024 and
m = 8.

Method R = 1 R = 10 R = 100

Ck-means [15] – – 0.649
IVFADC 0.106 0.379 0.748
IVFADC [13] 0.088 0.372 0.733
I-OPQ 0.114 0.399 0.777
Multi-D-ADC [3] 0.165 0.517 0.860

LOR+PQ 0.183 0.565 0.889
LOPQ 0.199 0.586 0.909

Table 1. Recall@{1, 10, 100} on SIFT1B with 64-bit codes, K =
213 = 8192 and w = 64. For Multi-D-ADC, K = 214 and
T = 100K. Rows including citations reproduce authors’ results.

5.3. Results on SIFT1B

64-bit code (m = 8) results are shown in Table 1, includ-
ing I-OPQ, Ck-means [15], Multi-D-ADC [3] and IVFADC
without re-ranking, since re-ranking does not improve per-
formance at this bit rate [13]. All methods are using a single
index except Multi-D-ADC that uses a multi-index and Ck-
means that is exhaustive. For IVFADC we both reproduce
results of [13] and report on our re-implementation. To il-
lustrate the individual gain from locally optimized rotation
and sub-quantizers, we also include our sub-optimal variant
LOR+PQ as discussed in section 4.1. Both LOR+PQ and
LOPQ are clearly superior to all methods, with a gain of
18% over I-OPQ and 7% over Multi-D-ADC for recall@10,
although the latter is using a multi-index.

T Method R = 1 10 100

Multi-I-Hashing [16] – – 0.420
KLSH-ADC [17] – – 0.894
Joint-ADC [19] – – 0.938

20K
IVFADC+R [13] 0.262 0.701 0.962
LOPQ+R 0.350 0.820 0.978

10K
Multi-D-ADC [3] 0.304 0.665 0.740
OMulti-D-OADC [8] 0.345 0.725 0.794
Multi-LOPQ 0.430 0.761 0.782

30K
Multi-D-ADC [3] 0.328 0.757 0.885
OMulti-D-OADC [8] 0.366 0.807 0.913
Multi-LOPQ 0.463 0.865 0.905

100K
Multi-D-ADC [3] 0.334 0.793 0.959
OMulti-D-OADC [8] 0.373 0.841 0.973
Multi-LOPQ 0.476 0.919 0.973

Table 2. Recall@{1, 10, 100} on SIFT1B with 128-bit codes and
K = 213 = 8192 (resp. K = 214) for single index (resp. multi-
index). For IVFADC+R and LOPQ+R, m′ = 8, w = 64. Results
for Joint-ADC and KLSH-ADC are taken from [19]. Rows includ-
ing citations reproduce authors’ results.

128-bit code results are presented in Table 2 and Figure 8,
with our solutions including a single index with re-ranking
(LOPQ+R) and a multi-index (Multi-LOPQ). Of the re-
ranking methods, LOPQ+R has a clear advantage over IV-
FADC+R, where we adopt m = m′ = 8 since this option
is shown to be superior in [13]. All remaining methods use
m = 16. Multi-I-Hashing [16], KLSH-ADC [16] and Joint-
ADC [19] are all inferior at R = 100, although the latter
two require 4 times more space.

The current state-of-the-art results come with the use of
a multi-index, also boasting lower query times. The recent
highly optimized OMulti-D-OADC [8] outperforms Multi-
D-ADC [3]. However, the performance of our product
optimization Multi-LOPQ is unprecedented, setting a new
state-of-the-art on SIFT1B at 128-bit codes and enjoying
nearly 10% gain over OMulti-D-OADC on the most impor-
tant measure of precision (recall@1). Multi-index cells are
very fine, hence residuals are lower and local optimization
yields lower distortion, although constrained.

5.4. Overhead analysis

Both space and time overhead is constant in data size n.

Space overhead on top of IVFADC (resp. Multi-D-ADC)
refers to local rotation matrices and sub-quantizer cen-
troids per cell. For rotation matrices, this is Kd2 (resp.
2K(d/2)2) for single index (resp. multi-index). In prac-
tice, this overhead is around 500MB on SIFT1B. For sub-
quantizer centroids, overhead is Kdk in all cases. In prac-
tice, this is 2GB on SIFT1B for Multi-LOPQ withK = 214.
Given that the index space for SIFT1B with 128-bit codes

SIFT1M - bit allocation (K = 1024, w = 8) SIFT1M - soft assignment (K = 1024, m = 8)

I Billion-scale experiments: SIFT1B

16 32 64 128

0.2

0.4

0.6

0.8

bits

re
ca

ll@
1
0

IVFADC
I-PCA+RP
I-OPQ
LOPQ

Figure 6. Recall@10 on SIFT1M versus bit allocation per point,
with K = 1024 and w = 8. For 16, 32, 64 and 128 bits, m is
respectively 2, 4, 8 and 16.

1 2 4 8 16 32 64

0.4

0.5

0.6

0.7

0.8

w

re
ca

ll@
1
0

IVFADC
I-PCA+RP
I-OPQ
LOPQ

Figure 7. Recall@10 on SIFT1M versus w, with K = 1024 and
m = 8.

Method R = 1 R = 10 R = 100

Ck-means [15] – – 0.649
IVFADC 0.106 0.379 0.748
IVFADC [13] 0.088 0.372 0.733
I-OPQ 0.114 0.399 0.777
Multi-D-ADC [3] 0.165 0.517 0.860

LOR+PQ 0.183 0.565 0.889
LOPQ 0.199 0.586 0.909

Table 1. Recall@{1, 10, 100} on SIFT1B with 64-bit codes, K =
213 = 8192 and w = 64. For Multi-D-ADC, K = 214 and
T = 100K. Rows including citations reproduce authors’ results.

5.3. Results on SIFT1B

64-bit code (m = 8) results are shown in Table 1, includ-
ing I-OPQ, Ck-means [15], Multi-D-ADC [3] and IVFADC
without re-ranking, since re-ranking does not improve per-
formance at this bit rate [13]. All methods are using a single
index except Multi-D-ADC that uses a multi-index and Ck-
means that is exhaustive. For IVFADC we both reproduce
results of [13] and report on our re-implementation. To il-
lustrate the individual gain from locally optimized rotation
and sub-quantizers, we also include our sub-optimal variant
LOR+PQ as discussed in section 4.1. Both LOR+PQ and
LOPQ are clearly superior to all methods, with a gain of
18% over I-OPQ and 7% over Multi-D-ADC for recall@10,
although the latter is using a multi-index.

T Method R = 1 10 100

Multi-I-Hashing [16] – – 0.420
KLSH-ADC [17] – – 0.894
Joint-ADC [19] – – 0.938

20K
IVFADC+R [13] 0.262 0.701 0.962
LOPQ+R 0.350 0.820 0.978

10K
Multi-D-ADC [3] 0.304 0.665 0.740
OMulti-D-OADC [8] 0.345 0.725 0.794
Multi-LOPQ 0.430 0.761 0.782

30K
Multi-D-ADC [3] 0.328 0.757 0.885
OMulti-D-OADC [8] 0.366 0.807 0.913
Multi-LOPQ 0.463 0.865 0.905

100K
Multi-D-ADC [3] 0.334 0.793 0.959
OMulti-D-OADC [8] 0.373 0.841 0.973
Multi-LOPQ 0.476 0.919 0.973

Table 2. Recall@{1, 10, 100} on SIFT1B with 128-bit codes and
K = 213 = 8192 (resp. K = 214) for single index (resp. multi-
index). For IVFADC+R and LOPQ+R, m′ = 8, w = 64. Results
for Joint-ADC and KLSH-ADC are taken from [19]. Rows includ-
ing citations reproduce authors’ results.

128-bit code results are presented in Table 2 and Figure 8,
with our solutions including a single index with re-ranking
(LOPQ+R) and a multi-index (Multi-LOPQ). Of the re-
ranking methods, LOPQ+R has a clear advantage over IV-
FADC+R, where we adopt m = m′ = 8 since this option
is shown to be superior in [13]. All remaining methods use
m = 16. Multi-I-Hashing [16], KLSH-ADC [16] and Joint-
ADC [19] are all inferior at R = 100, although the latter
two require 4 times more space.

The current state-of-the-art results come with the use of
a multi-index, also boasting lower query times. The recent
highly optimized OMulti-D-OADC [8] outperforms Multi-
D-ADC [3]. However, the performance of our product
optimization Multi-LOPQ is unprecedented, setting a new
state-of-the-art on SIFT1B at 128-bit codes and enjoying
nearly 10% gain over OMulti-D-OADC on the most impor-
tant measure of precision (recall@1). Multi-index cells are
very fine, hence residuals are lower and local optimization
yields lower distortion, although constrained.

5.4. Overhead analysis

Both space and time overhead is constant in data size n.

Space overhead on top of IVFADC (resp. Multi-D-ADC)
refers to local rotation matrices and sub-quantizer cen-
troids per cell. For rotation matrices, this is Kd2 (resp.
2K(d/2)2) for single index (resp. multi-index). In prac-
tice, this overhead is around 500MB on SIFT1B. For sub-
quantizer centroids, overhead is Kdk in all cases. In prac-
tice, this is 2GB on SIFT1B for Multi-LOPQ withK = 214.
Given that the index space for SIFT1B with 128-bit codes

SIFT1B with 128-bit codes and K = 213 = 8192
(resp. K = 214) for single index (resp. multi-index).
For IVFADC+R and LOPQ+R, m′ = 8, w = 64.

16 32 64 128

0.2

0.4

0.6

0.8

bits

re
ca

ll@
1
0

IVFADC
I-PCA+RP
I-OPQ
LOPQ

Figure 6. Recall@10 on SIFT1M versus bit allocation per point,
with K = 1024 and w = 8. For 16, 32, 64 and 128 bits, m is
respectively 2, 4, 8 and 16.

1 2 4 8 16 32 64

0.4

0.5

0.6

0.7

0.8

w

re
ca

ll@
1
0

IVFADC
I-PCA+RP
I-OPQ
LOPQ

Figure 7. Recall@10 on SIFT1M versus w, with K = 1024 and
m = 8.

Method R = 1 R = 10 R = 100

Ck-means [15] – – 0.649
IVFADC 0.106 0.379 0.748
IVFADC [13] 0.088 0.372 0.733
I-OPQ 0.114 0.399 0.777
Multi-D-ADC [3] 0.165 0.517 0.860

LOR+PQ 0.183 0.565 0.889
LOPQ 0.199 0.586 0.909

Table 1. Recall@{1, 10, 100} on SIFT1B with 64-bit codes, K =
213 = 8192 and w = 64. For Multi-D-ADC, K = 214 and
T = 100K. Rows including citations reproduce authors’ results.

5.3. Results on SIFT1B

64-bit code (m = 8) results are shown in Table 1, includ-
ing I-OPQ, Ck-means [15], Multi-D-ADC [3] and IVFADC
without re-ranking, since re-ranking does not improve per-
formance at this bit rate [13]. All methods are using a single
index except Multi-D-ADC that uses a multi-index and Ck-
means that is exhaustive. For IVFADC we both reproduce
results of [13] and report on our re-implementation. To il-
lustrate the individual gain from locally optimized rotation
and sub-quantizers, we also include our sub-optimal variant
LOR+PQ as discussed in section 4.1. Both LOR+PQ and
LOPQ are clearly superior to all methods, with a gain of
18% over I-OPQ and 7% over Multi-D-ADC for recall@10,
although the latter is using a multi-index.

T Method R = 1 10 100

Multi-I-Hashing [16] – – 0.420
KLSH-ADC [17] – – 0.894
Joint-ADC [19] – – 0.938

20K
IVFADC+R [13] 0.262 0.701 0.962
LOPQ+R 0.350 0.820 0.978

10K
Multi-D-ADC [3] 0.304 0.665 0.740
OMulti-D-OADC [8] 0.345 0.725 0.794
Multi-LOPQ 0.430 0.761 0.782

30K
Multi-D-ADC [3] 0.328 0.757 0.885
OMulti-D-OADC [8] 0.366 0.807 0.913
Multi-LOPQ 0.463 0.865 0.905

100K
Multi-D-ADC [3] 0.334 0.793 0.959
OMulti-D-OADC [8] 0.373 0.841 0.973
Multi-LOPQ 0.476 0.919 0.973

Table 2. Recall@{1, 10, 100} on SIFT1B with 128-bit codes and
K = 213 = 8192 (resp. K = 214) for single index (resp. multi-
index). For IVFADC+R and LOPQ+R, m′ = 8, w = 64. Results
for Joint-ADC and KLSH-ADC are taken from [19]. Rows includ-
ing citations reproduce authors’ results.

128-bit code results are presented in Table 2 and Figure 8,
with our solutions including a single index with re-ranking
(LOPQ+R) and a multi-index (Multi-LOPQ). Of the re-
ranking methods, LOPQ+R has a clear advantage over IV-
FADC+R, where we adopt m = m′ = 8 since this option
is shown to be superior in [13]. All remaining methods use
m = 16. Multi-I-Hashing [16], KLSH-ADC [16] and Joint-
ADC [19] are all inferior at R = 100, although the latter
two require 4 times more space.

The current state-of-the-art results come with the use of
a multi-index, also boasting lower query times. The recent
highly optimized OMulti-D-OADC [8] outperforms Multi-
D-ADC [3]. However, the performance of our product
optimization Multi-LOPQ is unprecedented, setting a new
state-of-the-art on SIFT1B at 128-bit codes and enjoying
nearly 10% gain over OMulti-D-OADC on the most impor-
tant measure of precision (recall@1). Multi-index cells are
very fine, hence residuals are lower and local optimization
yields lower distortion, although constrained.

5.4. Overhead analysis

Both space and time overhead is constant in data size n.

Space overhead on top of IVFADC (resp. Multi-D-ADC)
refers to local rotation matrices and sub-quantizer cen-
troids per cell. For rotation matrices, this is Kd2 (resp.
2K(d/2)2) for single index (resp. multi-index). In prac-
tice, this overhead is around 500MB on SIFT1B. For sub-
quantizer centroids, overhead is Kdk in all cases. In prac-
tice, this is 2GB on SIFT1B for Multi-LOPQ withK = 214.
Given that the index space for SIFT1B with 128-bit codes

SIFT1B with 64-bit codes, K = 213 = 8192 and
w = 64. For Multi-D-ADC, K = 214 and T = 100K.

I Overhead on top of IVFADC (resp. Multi-D-ADC):

I Space: Kd2 (resp. 2K(d/2)2) for rotation matrices, i.e. around 500MB on SIFT1B and Kdk

for sub-quantizers, i.e. 2GB on top of 21GB for SIFT1B.

I Query time: The time needed to rotate the query for each soft-assigned cell (row/column).

Average overhead on SIFT1B for Multi-LOPQ is 0.776, 1.92, 4.04ms respectively for T = 10K,

30K, 100K.

Project page: http://image.ntua.gr/iva/research/lopq/ Contact: {ykalant, iavr}@image.ntua.gr

http://image.ntua.gr/iva/research/lopq/

