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Abstract—Startups arguably contribute to the current business
landscape by developing innovative products and services. The
discovery of business partners and employees with a specific
background which can be verified stands out repeatedly as a
prime obstacle. LinkedIn is a popular platform where profes-
sional milestones, endorsements, recommendations, and skills
are posted. A graph search algorithm with a BFS and a DFS
strategy for seeking trusted candidates in LinkedIn is proposed.
Both strategies rely on a metric for assessing the trustworthi-
ness of an account according to LinkedIn attributes. Also, a
stochastic vertex selection mechanism reminiscent of preferential
attachment guides search. Both strategies were verified against
a large segment of the vivid startup ecosystem of Patras, Hellas.
A higher order probabilistic analysis suggests that BFS is more
suitable. Findings also imply that emphasis should be given to
local networking events, peer interaction, and to tasks allowing
verifiable credit for the respective work.

Index Terms—trust, linked data, graph mining, probabilistic
analysis, higher order statistics, multilayer graphs, LinkedIn API

I. INTRODUCTION

The ongoing worldwide digital transformation relies heavily
on startups for paving the way for ground-breaking innovation.
To this end, incubators, accelerators, and other stakeholders
dedicate considerable effort in startup formation. Among the
most important obstacles, especially during the early formu-
lation stage, is the discovery of trusted business partners
or employees with a specific skillset [1], corroborating the
position that human capital, including trust, is perhaps the most
critical factor in the innovation process [2]. For our purposes
the following definition will be used:

Definition 1 (Trusted candidate): A candidate is considered
to be trusted if and only if his/her accomplishments can be
verified by available online resources.

Definition 1 raises among others the question of how such
a candidate with a certain skillset can be verified in platforms
like LinkedIn. A wholly owned subsidiary of Microsoft for
26.2 billion dollars1 since December 2016, LinkedIn as of
May 2020 has almost 700 million accounts from 150 coun-
tries around the globe. Although it is difficult to be directly
evaluated, in LinkedIn trust can manifest itself in ways which

1https://news.microsoft.com/announcement/microsoft-buys-linkedin
(retrieved 4.jul.2020)

can be translated to metrics. In fact, LinkedIn has taken a
step towards that direction by introducing skill assessments
in September 20192. Thus, navigating the LinkedIn graph
and discovering trusted candidates based on its attributes
constitutes the principal motivation of this work.

The primary research contribution of this conference paper
is a LinkedIn graph search algorithm with a breadth first
search (BFS) and a depth fist search (DFS) mode. Both
variants, programmed in Python 3.8, rely on a stochastic
vertex selection mechanism, akin to preferential attachment
[3], utilizing attributes retrieved by the LinkedIn application
interface (API). They have been tested on a graph representing
a major part of the growing startup ecosystem of Patras, Hellas
with encouraging results. Probabilistic analysis of the number
of steps and the number of steps to the first trusted candidate
suggests that the BFS mode outperforms the DFS one.

The remaining of this work is structured as follows. In
section II the scientific literature regarding graph mining, trust,
and higher order statistics is briefly reviewed. The proposed
algorithms and their basic parameters are given in section III.
Section IV contains the test dataset, the verification process,
the probabilistic analysis, and recommendations based on the
latter. Finally, the main findings as well as a discussion about
possible research directions are given in section V. Technical
acronyms are explained the first time they are encountered in
the text. To avoid confusion, Web site retrieval dates are given
in US military style. Random variables are represented by
capital calligraphic letters. In a function definition parameters
are placed after its arguments following a semicolon. Finally
table I summarizes the notation of this work.

II. PREVIOUS WORK

LinkedIn has been the focus of various studies such as [4].
From a technical perspective, its underlying data infrastructure
[5] and how it handles big data [6] have been analyzed. The
way LinkedIn profiles are shaped across professions is the
focus of [7], whereas [8] examines their role in the informatics
and communications technologies (ICT) sector. Similarities
and differences between profiles in LinkedIn and social media
such as Twitter and Facebook are explored in [9] and in
[10]. Moreover, [11] explains how LinkedIn self-descriptions

2https://blog.linkedin.com/2019/september/17/announcing-skill-
assessments-to-help-you-showcase-your-skills (retrieved 4.jul.2020)978-1-xxxx-xxxx-x/xx/$31.00 ©2020 IEEE



TABLE I
NOTATION OF THIS WORK.

Symbol Meaning
4
= Definition or equality by definition
{s1, . . . , sn} Set with elements s1, . . . , sn
|S| or |{s1, . . . , sn}| Set cardinality
τ (S1, S2) Tanimoto set similarity coefficient
ν (T, V ;α0) Asymmetric Tversky set similarity index
Γ (v) Neighbourhood of vertex v
S1 \ S2 Asymmetric set difference of S1 minus S2

E [X ] Expected value of random variable X
Var [X ] Variance of random variable X
µ̄3 [X ] Skewness of random variable X
µ̄4 [X ] Kurtosis of random variable X
〈p || q〉 Kullback-Leibler divergence between p and q

intended for friends or employers differentiate from each other.
Also, the role of inaccurate LinkedIn resumes and how they
can be detected are investigated in [12].

Higher order statistics focuses on the study of moments
and cumulants beyond the first and second order ones [13].
Applications include signal processing [14], nonlinear system
identification [15], biomedical image analysis [16] and elec-
troencephalography (EEG) [17] processing, and time series
sensitivity analysis [18]. Moreover, cumulants have a close
connection to tensor stack networks (TSN) [19].

Graph mining, as its name suggests, is the field of extracting
knowledge from graphs [20] and also a major driver be-
hind mining patterns in massive, linked, and (semi)structured
datasets [21]. Structural patterns are related to combinatorial
properties such as triangles [22], cyclic decompositions [23],
low rank approximations [24], and community discovery [25]
[26]. Nonlinear diffusion for the latter is proposed in [27] and
partitioning of skewed graphs in [28]. Functional patterns rely
heavily on the type of operations on graphs such as spatio-
linguistic tweet analysis [29], attention models [30], digital
influence [31], and anomaly discovery [32].

III. ALGORITHMIC APPROACH

A. Patras Startup Ecosystem

At this point the source of the test dataset is described.
Patras, the third largest Hellenic city is located in a strategic
position in Patraikos bay and is the primary commercial and
cultural gate to Central and Western Europe as well as North
Africa. Becasue of this, it has been continuously since late
renaissance a cultural reference and the home of scholars,
artisans, engineers, and one of the oldest Greek universities.

Currently, the startup ecosystem of Patras is considered
one of the most thriving in the country with incubators
such as Orange Grove3, NGOs supporting innovation like
Mindspace4, a science park5, a local IEEE student branch
including a biomed chapter, and three universities. During the
past three years Patras has been visited by the US6, French,

3www.orangegrove.eu
4www.mindspace.gr
5www.psp.org.gr
6https://gr.usembassy.gov/ambassador-pyatt-visits-patras (retrieved

4.jul.2020)

and Dutch ambssadors. Moreover, there have been visits from
high ranking policymakers such as trade and cultural attachés
and state officials. The ecosystem has been recently mentioned
from US Embassy because of a high profile startup buyout7.

At this point it should be emphasized that the proposed
technique can be applied to other enterprise entities. However,
the case of startups has been selected for the following reasons:
• Larger companies have sophisticated human resources

(HR) tools and recruitment methodologies for determin-
ing candidate trustworthiness based on definition 1.

• Locating trusted candidates has been reported as a prime
problem for startups, especially during their early stages.

B. Graph Building And Skill Mapping
LinkedIn profiles contain a plethora of professional infro-

mation including background, skills, previous positions, and
professional career milestones. The proposed algorithms rely
on endorsements and self-descriptions to discover skills as well
as on recommendations to measure candidate trustworthiness.
The values of variables discussed here are given in table IV.

The test dataset is a LinkedIn subgraph consisting of:
• vs vertices, with vsk for the k-th startup page.
• vc vertices, with vcj for the j-th candidate profile.
• u edges representing actual LinkedIn connections.
Through RAKE algorithm [33], an alternative to tf-idf and

TextRank, for each startup the most frequent technologies were
identified. Then the top Nc most common were selected along
with the number of startups listing them as core competencies,
resulting in table II. For the purposes of this text this is the
universe S0 of all possible tehnologies. Therefore, the k-th
startup 1 ≤ k ≤ vs has its own technology set Sk ⊆ S0 with
elements drawn from S0.

TABLE II
FREQUENT STARTUP TECHNOLOGIES.

Technology Startups Technology Startups
Data mining 36 Android 11
Blockchain 22 IoT 11
NoSQL databases 16 GPU computing 7
Relational databases 16 NLP 7
Social media 14 GIS 2

Once the candidate skills were extracted, again through
RAKE, they were uniquely mapped to the technologies of
table II using the computer science ontology proposed in [34].
The number of skills as well as the most frequent skills for
each technology are given in table III. Thus, the j-th candidate
1 ≤ j ≤ vc has its own skill set Cj ⊆ S0.

Concerning trust, it can be derived in two ways:
• Explicitly, by a mention that the candidate can be trusted

or that she/he has a certain skill.
• Implicitly when a certain skill is highly endorsed.

Notice that both ways require assessments from LinkedIn
members. This stems from the fact that trust is a human trait
and as such it is better left to humans than to algorithms.

7https://gr.usembassy.gov/ambassador-pyatts-video-remarks-at-the-8th-
regional-growth-conference-in-patras-july-3-2020 (retrieved 4.jul.2020)



Regarding the explicitly stated trust, suppose that the j-
th candidate has rj recommendations. The i-th of them may
mention that the respective candidate is trustworthy or that
he/she has one or more skills relevant to the technologies of
S0. In the former case, all skills of Cj are marked as trusted
and a counter qi is set to |Cj |, whereas in the latter qi counts
only those skills mentioned. Thus, the explicit trust πej is given
as in (1). The keywords denoting trust were taken from the
online dictionary of the Oxford University Press8.

πej
4
=

1

rj

rj∑
i=1

qi
|Cj |

=
1

rj |Cj |

rj∑
i=1

qi (1)

The implicit trust can be evaluated as follows. Assume that
the i-th skill of the j-th candidate has ni endorsements whose
sum equals tj , ignoring endorsements to skills which were
not mapped to the elements of S0. The number of implictly
trusted skils cj is that when the normalized sum of sorted ni
in descending order first exceeds a threshold η0:∑cj

i=1 ni∑|Cj |
l=1 nl

=

∑cj
i=1 ni
tj

≥ η0, 0 < η0 ≤ 1 (2)

Notice that equation (2) rewards candidates with balanced
profiles. The implicit trust πmj is given in equation (3):

πmj
4
=

cj
|Cj |

(3)

Finally, the trust πj for the j-th candidate is the weighted
sum of (4). ρ0 is a hyperparameter indicating the relative
importance of the explicit trust compared to the implicit one.

πj
4
=

1

1 + ρ0
πmj +

ρ0
1 + ρ0

πej (4)

C. Stochastic Graph Search

The stochastic graph search comes in two flavors, a BFS
and a DFS one described in algorithms 1 and 2 respectively.
Both select at each step the next vertex to visit on a stochastic
basis. To simplify analysis, it will be assumed that the search
only discovers a vcj . The same steps apply when a vsk is found.

Here it should be noted that there are only two differences
of BFS and DFS searches from their textbook counterparts:
• The next vertex is selected based on a probabilistic

mechanism depending on local skillset similarities.
• Once a vertex is visited, a metric determines how well a

candidate matches with a given startup.
Thus, here only these two differences will be explained.

Concerning the first difference, assume that the search is
currently at vcj′ . Then, for each vcj ∈ Γ

(
vcj′
)

and also for each
vci ∈ Γ

(
vcj
)

the Tanimoto coefficient is applied as in (5):

τ (Cj′ , Cj)
4
=
|Cj′ ∩ Cj |
|Cj′ ∪ Cj |

=
|Cj′ ∩ Cj |

|Cj′ |+ |Cj | − |Cj′ ∩ Cj |
(5)

The second form of (5) is more efficient for large sets. Also,
set cardinality estimators such as [35] or [36] can be used.

8https://dictonary.cambridge.org (retrieved 4.jul.2020)

Then, each admissible vertex vcj ∈ Γ
(
vcj′
)

is assigned a
probability as in (6). The latter can be thought of a weighted
version of the preferential attachment mechanism.

prob
{
vcj′ → vcj

}
∝ τ (Cj′ , Cj)∑

vci
τ (Ci, Cj)

, vci ∈ Γ
(
vcj
)

(6)

Regarding the second difference, assume that search is
currently at vcj and that vsk, listing its core competencies in Sk,
is the starting point. The search finds only trusted candidates
for that startup, as different startups are located in different
parts of the graph, meaning that local connectivity steps will
inevitably vary. Once at vcj , its skillset compatibility is assessed
through the asymmetric Tversky index [37]. In contrast to
(5), Sk is the template against which Cj is compared. As
Sk and Cj are not equivalent semantically, the Tversky index
is a logical choice. On the other hand, there is no need to
distinguish between skillsets of candidates.

ν (Sk, Cj ;α0)
4
=

|Sk ∩ Cj |
|Sk ∩ Cj |+ α0|Sk \ Cj |+ (1− α0)|Cj \ Sk|

(7)
In (7) the hyperparameter 0 ≤ α0 ≤ 1 specifies the relative

importance of the second term of the denominator compared
to the third one. Assuming a ratio of β0, then:

α0

1− α0
= β0 ⇔ α0 =

β0
1 + β0

(8)

From equation (8) it follows that as β0 grows, then α0 tends
asymptotically to one. Moreover, the rate of convergence to
that asymptotic limit is progressively getting slower since:

∂α0

∂β0
=

1

(1 + β0)
2

∣∣∣∣∣
β0→+∞

→ 0 (9)

Finally, the metric combining skillset combatibility and trust
is given by their weighted harmonic mean in equation (10).
The harmonic mean is less sensitive to outliers and can handle
zero values in the denominator. As was the case with both
previous hyperparameters, ρ1 determines the relative weight
between skillset compatibility and trust.

J
4
=

1 + ρ1
1

ν (Sk, Cj)
+
ρ1
πj

=
(1 + ρ1)πjν (Sk, Cj)

πj + ρ1ν (Sk, Cj)
(10)

Once J is computed, a number of options is available:
• Keep only vcj with a J score over a threshold.
• Keep a number of vcj scoring above a threshold.
• Keep a window vcj with highest J scores.
• Keep all vcj and rank them after search is over.

In practice, for large graphs there can be a maximum number
of steps. This should not be confused with the above options.

Algorithm 1 is a BFS implementation based on a queue,
namely a first-in first-out (FIFO) array. The latter supports two
primary operations, namely queue where a vertex is placed in
the queue and dequeue where a vertex is extracted from it.

Algorithm 2 is an implementation of a stack, namely a last-
in, first out (LIFO) array. Like a queue, a stack supports two



TABLE III
SKILL MAPPING TO STARTUP TECHNOLOGIES.

Technology Frequent Related Skills Skills
Data mining Spark, Hive, R, MATLAB, data science, pattern recognition, statistics, mathematical modeling 77
Blockchain Smart contracts, electronic contracts, Solidity 12
NoSQL databases BASE, MongoDB, Neo4j, Cassandra, HBase, column store 27
Relational databases SQL, PostgreSQL, tabular data, OLAP cube 39
Social media Twitter, Facebook, social media analytics 33
Android Mobile, mobile development, smart app development 4
IoT internet of devices, embedded software, pervasive computing 25
GPU computing CUDA, NVIDIA, OpenCL, compute kernel 12
NLP natural language processing, regular expressions, stemming, lemmatization 8
GIS spatial data analysis, geographical systems, geocoding 7

Algorithm 1 Trusted Candidate Discovery - BFS version
Require: Hyperparameters α0, ρ0, ρ1
Ensure: Discover a set of trusted candidates

1: start from vsk′ , mark it, enqueue vsk′
2: while queue is not empty do
3: dequeue vcj′
4: for all vcj ∈ Γ

(
vcj′
)

do
5: compute the next vertex as in (5)
6: if vcj is not marked then
7: mark vcj , compute J as in (10), enqueue vcj
8: end if
9: end for

10: end while

operations, namely push and pop. The former inserts a vertex
in the stack, whereas the latter extracts the last vertex inserted.

Algorithm 2 Trusted Candidate Discovery - DFS version
Require: Hyperparameters α0, ρ0, ρ1
Ensure: Discover a set of trusted candidates

1: start from vsk′ , push vsk′
2: while stack is not empty do
3: pop vcj
4: if vertex vcj is not marked then
5: compute J as in (10), mark vcj
6: for all vci ∈ Γ

(
vcj
)

do
7: compute the next vertex as in (5), push vci
8: end for
9: end if

10: end while

IV. RESULTS

A. Test Dataset

LinkedIn offers a publicly available API with extensive
documentation9. It is currently in version 2.0, which is manda-
tory since March 2019 whereas version 1.0 is bound to be
designated as deprecated, and relies on OAuth and TLS 1.2

9https://www.linkedin.com/developers (retrieved 4.jul.2020)

for secure communication. This API includes functionality for
managing group memberships and postings10 among others.

There are several limitations to collecting data. Every UTC
midnight the number of API calls of an application or of a
single member per application are reset11. Additionally, for
security reasons connections beyond the fourth degree of the
application’s owner account cannot be accessed. To overcome
the above limitations, the data have been collected during
April 2020 with a steady rate since bursty or abnormal activity
patterns have been reported to be banned12.

Table IV contains a synopsis of the dataset properties and
the values of any variables mentioned in our analysis.

TABLE IV
TEST DATASET SYNOPSIS.

Property name Numerical value
Vertices vs (startups) 47
Vertices vc (candidates) 6391
Edges u (max number of edges) 1512388 (20720703)
Triangles (max number of triangles) 314003 (1.48e+ 10)
Squares (max number of squares) 109863 (1.78e+ 13)
Connected components 1
Density δ0 / Log-density δ′0 234.9518 / 1.6224
Completeness δ1 / Log-completeness δ′1 0.0729 / 1.7617
Graph diameter L0 10
Fraction of vertices with distance 6 15.66%
Fraction of vertices with distance 7 12.33%
Fraction of vertices with distance 8 7.81%
Fraction of vertices with distance 9 4.68%
Fraction of vertices with distance L0 = 10 1.15%
Total number of technologies Ns 10
Mean of skills per profile (after mapping) 7.13
Hyperparameter α0 2/3
Hyperparameter ρ0 1
Hyperparameter ρ1 Varies (see table V)
Number of search runs R0 100
Maximum number of vertex visits V0 2000
Variable τ for estimating Chernoff bounds Uniform in [1, vs]
Runs of Chernoff bounds 1000

From table IV it can be deduced that the test graph is very
connected. This can be attributed to the following reasons:

10https://docs.microsoft.com/en-us/linkedin/compliance/integrations/groups/group-
memberships (retrieved 4.jul.2020)

11https://docs.microsoft.com/en-us/linkedin/shared/api-guide/concepts/rate-
limits?context=linkedin/context (retrieved 4.jul.2020)

12https://www.linkedin.com/help/linkedin/82934/account-content-
restricted-or-removed (retrieved 4.jul.2020)



• The average degree (see equation (11)) is high. This can
be explained as LinkedIn is designed for networking.

• The majority of pairwise vertex distances is low.
• The number of triangles and squares is high. Although

much lower than the theoretical maximum, the average
number of triangles and connections per candidate are
very close, indicating considerable local density.

Triangles are unique in the sense that they are third order
patterns for both vertices and edges and also cliques of size
three. On the other hand, squares, and higher order shapes for
that matter, are fourth order patterns for vertices and edges but
do not constitute a clique of size four which is a fourth order
for vertices but a sixth order one for edges.

Density δ0 is the ratio of the total number of edges to the
total number of edges as shown in equation (11), which is an
approximation to the average vertex degree.

δ0
4
=
vs + vc
u

≈ vc
u

(11)

Log-density δ′0 is another metric of graph connectivity,
defined as the ratio of the order of magnitude of the number
of edges to the order of magnitude of the number of vertices
as shown in equation (12):

δ′0
4
=

ln (vs + vc)

lnu
≈ ln vc

lnu
(12)

Completeness δ1 measures how many edges a given graph
has compared to the total number of edges a complete graph
with the same number of vertices as seen in equation (13):

δ1
4
=

u(
vc+vs

2

) ≈ u(
vc
2

) ≈ 2

vcδ0
(13)

Log-completeness δ′1 defined in equation (14) follows the
same line of reasoning as log-density:

δ′1
4
=

lnu

ln
(
vc+vs

2

) ≈ lnu

ln
(
vc
2

) ≈ 1

2δ′0
(14)

The exact values of δ0, δ′0, δ1, and δ′1 have been computed.
The above metrics besides assessing graph connectivity are
also inherently tied to the evaluation of the total graph worth
in structural terms similarly to Metcalf’s law, which is histor-
ically among the earliest such efforts [38].

Since the proposed algorithms are stochastic, for each
startup vsk both searches were each run R0 times and the mean
values were kept. The upper limit of the vertices which could
be visited was V0, however the actual limit for each run was
much lower as will be discussed in the next subsection.

B. Candidate Trust Verification

To evaluate the ability of the proposed algorithms we rely
on the observation that startups trust their current employees.
Therefore, the accuracy shall be assessed in terms of the
fraction of existing employees found. Specifically, if vsk has
ek employees, then both algorithms run until they 3ek + 1
candidates are found and then accuracy is computed. This is
much lower than V0, which acts as a failsafe mechanism.

Accuracy can be computed in two similar but not identical
ways. The first is Io of equation (15) which is defined as the
ratio of the sum of the employees found e′k for each vsk to the
sum of the actual number of startup employees in the dataset:

Io
4
=

∑vs
k=1 e

′
k∑vs

k=1 ek
(15)

However, it can yield a somewhat loose bound since it can
absorb a few low scores in the overall sum in the numerator.

An alternative yielding tighter bounds and allowing a prob-
abilistic analysis is the accuracy indicator Ia defined as the
average ratio of e′k to ek as shown in equation (16):

Ia
4
=

1

vs

vs∑
k=1

e′k
ek
≈ E

[
e′k
ek

]
= E [E ] (16)

This can be considered as the sample mean approximation
of the stochastic mean of the random variable (r.v.) E contain-
ing true accuracy with each ratio being an observation of it.
The stochastic variance of E can be estimated using the the
sample variance, under mild conditions of ergodicity:

Var [E ] ≈ σ2
a

4
=

1

vs − 1

vs∑
k=1

(
e′k
ek
− Ia

)2
(17)

Variance indicates whether there is a considerable concen-
tration of E around Ia, acting as a reliability metric for the
latter. A large concentration around Ia would be desirable, im-
plying the graph search algorithms achieve satisfactory scores
consistently. On the other hand, a high value of Var [E ] means
that E fluctuates, revealing an erratic scoring performance.

TABLE V
ACCURACY AND VARIANCE FOR BFS AND DFS STRATEGIES.

ρ1 Ia (B/D) σ2
a (B/D) Io (B/D)

0.1 0.8621 / 0.8617 0.1844 / 0.1932 0.8133 / 0.7902
0.2 0.8680 / 0.8612 0.1803 / 0.2184 0.8134 / 0.7811
0.5 0.8739 / 0.8696 0.1599 / 0.1732 0.8142 / 0.8024

1 0.8377 / 0.8354 0.1809 / 0.2033 0.7889 / 0.7422
2 0.8146 / 0.8045 0.2216 / 0.2453 0.7785 / 0.7316
5 0.7803 / 0.7734 0.2567 / 0.2630 0.7533 / 0.7199

10 0.7723 / 0.7698 0.2633 / 0.2811 0.7312 / 0.7127

Values for Ia, σ2
a, and Io in relation to the hyperparameter

ρ1 of equation (10) are shown in table V. Recall that the
relative weight of trust is inversely proportional to ρ1. Observe
that Ia is high whereas σ2

a is low, indicating a high confidence.
Io is is roughly the same with Ia. It is interesting that Ia is
high for most values of ρ1, indicating a balance in the way
the matching metric works. In fact, the best values of Ia come
when ρ1 equals 0.5. However, when ρ1 drops, then so does
Ia, indicating that both algorithms discover trusted candidates.
Also, BFS performs better than DFS in every case.

C. Total Number Of Steps Distribution

Another performance metric for algorithms 1 and 2 is their
total number of steps, expressed in edge crossings. For the
purposes of our analysis, let HB and HD denote the r.vs
counting them for the BFS and the DFS strategy respectively.



Since the analysis will the same irrespective of the search
strategy, let also H denote a generic r.v. standing in for both.

The first step is to determine the mean E [H] and variance
Var [H]. As in the previous subsection, they will be respec-
tively approximated by their sample counterparts Ih and σ2

h.
Notice that a low value of both denotes not only that realistic
expectations for finding trusted candidates can be had from
the local startup ecosystem, but they are statistically valid.

Given Ih and σ2
h from a modeling perspective a first thought

is to create a Gaussian model for the set of scores for H:

f
(
x; Ih, σ

2
h

) 4
=

1

σh
√

2π
exp

(
− (x− Ih)

2

σ2
h

)
(18)

Equation (18) is appealing for the following reasons:
• It has the maximum differential entropy among all distri-

butions with the same expected value and variance [39].
• Its conjugate distribution is also the Gaussian, rendering

the computation of a Bayesian estimator easy [40].
However, the results of normality tests taken from [41]

argue against this hypothesis. To avoid cluttering, table VII
has results only for the ρ1 for the best Ih. The situation
is the same for the rest of the values. Given that only the
Gaussian distribution can be completely described by its mean
and variance, a higher order analysis is therefore necessary.

At this point it is worth asking whether the number of steps
can be bound. One answer comes from Markov inequality of
equation (19), which works only for positive r.vs and requires
only knowledge of the mean giving a first order bound:

prob {H ≥ λ0} ≤
Ih
λ0
, λ0 > 0 (19)

A second order and also a power law bound can be obtained
by the Chebyshev inequality of equation (20):

prob {|H − Ih| ≥ λ1σh} ≤
1

λ21
, λ1 > 0 (20)

Chernoff bounds (21) are based on Markov inequality
with the added assumption that a sum r.v. is composed of
indepedent r.vs. They take advantage of the fact that H is a
sum of vs independent r.vs to obtain exponential bounds:

prob {H ≥ λ2} ≤ min
τ>0

[
exp (−τλ2) E

[
vs∏
l=1

exp (τHl)

]]
(21)

Figure 1 shows the bounds obtained by the three inequali-
ties. The Chenroff bound is always lower, whereas BFS yields
lower bounds than DFS because of the lower Ih and σ2

h.
The skewness µ̄3 [H] of H is its third central normalized

moment as shown in equation (22):

µ̄3 [H]
4
= E

(H− E [H]√
Var [H]

)3 =
κ3

κ
3/2
2

(22)

When µ̄3 [H] is finite its sign is an indication of the shape of
the distribution of H, if the latter is unimodal. Specifically:
• When µ̄3 [H] is zero, then the distribution is symmetric.
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Fig. 1. Step Bounds For BFS And DFS Strategies (ρ1 = 0.5).

• When µ̄3 [H] is positive, then the left tail is heavier.
• When µ̄3 [H] is negative, then the right tail is heavier.
In equation (22) the n-th cumulant κn is defined as the n-th

coeccifient of the Taylor expansion of:

K(y)
4
= ln E

[
eyH

]
=

+∞∑
n=0

κn
yn

n!
(23)

Thus, the cumulant κn can be computed as in equation (24),
on the condition that the series in (23) converges:

κn
4
=

∂nK(y)

∂yn

∣∣∣∣
y=0

(24)

The tail weight of the distribution of H can be assesed by
its kurtosis, defined as in equation (25):

µ̄4 [H]
4
= E

(H− E [H]√
Var [H]

)4 =
E
[
(H− E [H])

4
]

Var [H]
2 (25)

Table VI shows that BFS yields systematically a lower
number of total steps with higher confidence. Moreover, the
skewness and kurtosis corroborate that the bulk of the BFS
distribution is concentrated around a lower number of steps.
Note that the square root σh of Var [H] is shown.

D. Trusted Candidate Distance Distribution

Since the metric of equation (10) is deterministic, it makes
sense to see how far, in terms of edges, trusted candidates are
located and how hyperparameter ρ1 influences their distance
distribution. The metric has been applied to all candidate
vertices for each hyperparameter value and the mean was
taken over all startups. Figure 2 shows only three of them
(to avoid cluttering) for the cases r = 1, r = 3, and r = 7
in log scale. Index r is explained in table VIII. This not only
separates better the curves but also reveals a pattern: Notice
that for approximately the same values of the hyperparameter
ρ1 reported for table V the bulk of trusted candidates is
concentrated in low distances. Outside this zone they tend to



TABLE VI
STATISTICS FOR THE TOTAL NUMBER OF STEPS DISTRIBUTION.

Statistics/ρ1 0.1 0.2 0.5 1 2 5 10
Ih (B/D) 638.10/852.41 613.27/834.67 591.11/816.95 607.44/829.17 619.35/838.65 652.26/870.03 683.33/895.12
σh (B/D) 51.88/67.62 50.11/66.98 49.09/65.32 51.78/68.97 59.94/72.51 65.55/76.98 72.09/83.70

µ̄3 [H] (B/D) 0.30/0.15 0.31/0.18 0.33/0.21 0.31/0.16 0.28/0.07 0.25/−0.09 0.17/−0.15
µ̄4 [H] (B/D) 2.14/2.21 1.92/2.09 1.89/1.91 1.88/2.19 1.90/2.25 2.13/2.31 2.22/2.55

TABLE VII
GAUSSIANITY RESULTS FOR TOTAL NUMBER OF STEPS (ρ1 = 0.5).

Test name BFS/DFS Test name BFS/DFS
Kolmogorov-Smirnoff No/No Anderson-Darling No/No
Lielliefors No/No Shapiro-Wilk No/No

become more uniform. To assess this, table VIII has the values
of the binary Kullback-Leibler divergence of (26) of distance
distributions from the uniform distribution q:〈

p(r) || q
〉

4
=

L0∑
l=1

p
(r)
l log2 p

(r)
l + log2 L0 (26)

Thus, when the relative trust weight is high there is a structure
in the location of the candidates. Otherwise, their location
disperses to completely random locations across the graph.
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Fig. 2. Candidate distance distribution (log scale) vs distance.

E. Steps To First Trusted Candidate Distribution

Another evaluation metric for the proposed algorithms is the
number of steps required to reach the first trusted candidate.
The analysis of the r.v. F counting the mean over all startups
is identical to that for the r.v. H of the total number of steps,
so only the results and the conclusions will be given here.

As seen from table IX BFS requires fewer steps in general
with a higher level of confidence. The skewness shows that the
majority of the values are on the left side of the distribution,
whereas kurtosis suggests that DFS has a heavier tail than
BFS. Also note that again the square root σf of Var [F ] is
shown so that it should be on the same scale with If .

F. Comments And Recommendations

Following [2] the findings can be explained by small world
phenomena in the Patras startup ecosystem. This can be
attributed to the many networking opportunities and to the
systematic LinkedIn use as denoted by the high vc to vs ratio.
Since trusted candidates are usually in the professional vicinity
of the startup owners, local events should be attended.

The fact that for small relative trust weights candidate
choices appear to be random implies that trust operates as a
filter. Thus, candidates should seek opportunities to take credit
for their work or engage in tasks allowing verifiable credit.
Another way is frequent peer interaction, as this will lead to
more endorsements and thus to indirect skill recognition.

Observe that all metrics take their best value when ρ1 equals
0.5 or in that zone. This is clear indication that in the search
for trusted candidates the balance between trust and skillset
compatibility should favor the former but not by much.

V. CONCLUSIONS AND FUTURE WORK

This conference paper focuses on discovering trusted can-
didates for startups in LinkedIn graph with a BFS and a
DFS strategy. Both have a vertex selection mechanism relying
on skillset similarity and a match metric based on trust
computed from LinkedIn attributes. The proposed algorithms
were verified by on the startup growing ecosystem of Patras,
Hellas. Higher order probabilistic analysis suggests the supe-
riority of the BFS variant. The latter has been explained and
recommendations were given based on these results.

This work can be extended in a number of ways. First, a
conceptual tree for skills can be developed so that distance
metrics like Leacock-Chodorow can be used. A higher order
trust system based on attributes such as endorsements from
coworkers or highly skilled members can improve our local
approximation. Probabilistic analysis can include the distribu-
tion of steps between the discovery of two trusted candidates.
The analysis as conducted here stands and can be carried over
to other types of graph search algorithms as well.
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C. Amato, and S. Sikström, “Self-descriptions on LinkedIn: Recruitment
or friendship identity?” PsyCh journal, vol. 7, no. 3, pp. 152–153, 2018.

[12] J. Guillory and J. T. Hancock, “The effect of LinkedIn on deception in
resumes,” Cyberpsychology, behavior, and social networking, vol. 15,
no. 3, pp. 135–140, 2012.

[13] Y. He, R. Wang, X. Wang, J. Zhou, and Y. Yan, “Novel adaptive filtering
algorithms based on higher-order statistics and geometric algebra,” IEEE
Access, vol. 8, pp. 73 767–73 779, 2020.

[14] U. Libal and K. H. Johansson, “Yule-Walker equations using higher
order statistics for nonlinear autoregressive model,” in SPSympo. IEEE,
2019, pp. 227–231.

[15] D. Rönnow and P. Händel, “Nonlinear distortion noise and linear
attenuation in MIMO systems - Theory and application to multiband
transmitters,” IEEE Transactions on Signal Processing, vol. 67, no. 20,
pp. 5203–5212, 2019.

[16] U. R. Acharya et al., “Automatic detection of ischemic stroke using
higher order spectra features in brain MRI images,” Cognitive systems
research, vol. 58, pp. 134–142, 2019.

[17] S. A. Khoshnevis and R. Sankar, “Applications of higher order statistics
in electroencephalography signal processing: A comprehensive survey,”
IEEE Reviews in biomedical engineering, vol. 13, pp. 169–183, 2019.

[18] J. Craske, “Adjoint sensitivity analysis of chaotic systems using cumu-
lant truncation,” Chaos, Solitons & Fractals, vol. 119, pp. 243–254,
2019.

[19] G. Drakopoulos and P. Mylonas, “Evaluating graph resilience with tensor
stack networks: A keras implementation,” NCAA, vol. 32, no. 9, pp.
4161–4176, 2020.

[20] D. J. Cook and L. B. Holder, Mining graph data. John Wiley & Sons,
2006.

[21] J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of massive data
sets. Cambridge University Press, 2020.

[22] T. Schank and D. Wagner, “Finding, counting and listing all triangles
in large graphs, an experimental study,” in International workshop on
experimental and efficient algorithms. Springer, 2005, pp. 606–609.
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