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Abstract—With the advent of Semantic Web and the recent
advances in the field of knowledge discovery more effort is
placed not only on constructing or automatically discovering
ontologies but also on determining similarities between ontolo-
gies. The latter is usually achieved by a higher order metric
taking as input two ontologies in an enhanced graph form
and yielding a scalar as a result. This input format allows a
considerable degree of flexibility, as the inherently distributed
nature of graphs allows the construction of elaborate schemes.
Since it is impossible to capture all the essential parameters
of an ontology in a single number and given that ontological
requirements vary across different domains, it follows that a
plethora of such metrics exist. This survey examines the most
representative categories of ways for evaluating the similarity
between ontology pairs with emphasis placed on the domain
of digital culture.

Index Terms—ontologies, semantic graphs, ontology distance,
graph mining, digital culture

1. Introduction

Ontologies or knowledge graphs are data structures
aiming at capturing in a certain field or application the
essence of entities, whether major or minor, and their re-
spective properties and relationships. In a short amount of
time ontologies found numerous applications in fields so
diverse as the Semantic Web, medical informatics, human
genome, political campaigns, user interface and user experi-
ence (UI/UX), affective computing, and e-commerce just to
name a few. Formally an ontology J is a system represented
by the tuple of equation (1):

J
4
= (G,R,A) (1)

In the above triplet G is the ground truth set which contains
the entities of the underlying domain, R the relationship set
which determines the dynamics of that domain, and A is the
attribute set which contains all possible relationship types.

Historically the field of ontology dates back as a central
branch of ancient Greek philosophy [1] [2] [3] [4] [5] with
Parmenides and Aristoteles among others being credited for
proposing early ontologies for theology, natural phenomena,
and animals in the form of extensive taxonomies. This tradi-
tion carried over to modern philosophers such as Martin Hei-
degger [6], Edmund Husserl [7], and Cornelios Castoriadis

[8] who came up with complex concepts and attributes. Now
specialized software exists for handling knowledge graphs
and efficiently extracting non-trivial conclusions from them.
Two significant properties of digital ontologies are [9]:

• Scale: Massive knowledge graphs with tens of even
hundreds of thousands relationships, predicates, and
restrictions between thousands of entities capturing
every aspect of a large number of domains or even
clusters of related domains are not not uncommon.
This is especially true in the case of data-driven on-
tologies generated by a multitude of sensor readings
or other 10V data related applictions.

• Digitization: Partly as a sequence of their scale,
knowledge graphs need to be understood by com-
puters as well as by humans of various capacities
like fact checkers, data analysts, opinion leaders, and
domain experts. To this end, a plethora of represen-
tations has beeen developed for the former case and
various visualization techniques for the latter.

Given the above properties, it is consequently only logi-
cal to ask whether it would be possible to compare any two
ontologies. This question arises from the following three
general reasons, without considering additional application-
specific motivations for performing a comparison [10]:

• An appropriately designed metric can reveal how
well a given ontology captures the essence of the
underlying field. This is essential since different
knowledge graphs may well model the same domain
in a different but not necessarily equivalent way.

• Instead of directly clustering objects coming from a
given domain, ontologies for it can be clustered first
and then objects can in turn be clustered according
to how well they fit to these ontologies, perhaps in
a fuzzy way for additonal flexibility.

• Comparisons between compatible ontologies com-
ing from related or in certain cases even remotely
connected fields may allow for knowledge transfer
across domains. This strategy capitalizes on already
established knowledge for paving the way for break-
throughs in other domains than the original one.

Digital cultural and cultural preservation are prime ap-
plication fields for ontologies since, like almost any human
activity, they are highly structured with a plethora of latent
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higher order patterns [11]. With the recent sharp rise of the
need for high quality cultural products, ontologies tailored
for these domains can serve as the principal building blocks
for successful and scalable cultural analytics such as those
presented among others in [12], [13], [14], [15], and [16].

The primary research contribution of this conference
paper is twofold. First, a critical overview of the distance
metrics designed for ontologies found in the recent scientific
literature is given. From this a set of requirements for knowl-
edge graph similarity metrics as well as general guidelines
for selecting such metrics in various engineering scenarios
are given. Second, a considerable number of literature ref-
erences about ontology applications and ontology alignment
is given so that this conference paper can serve as a starting
point for any research in the field.

The reamaining of this work is structured as follows. In
section 2 the respective bodies of work regarding the topics
of graph mining, Semantic Web, graph signal processing,
persistent data structures, and social network analysis are
summarized. Ontological applications are covered in detail
in section 3. The specifics of ontology metrics is described
in section 4 and recommendations based on it for certain
significant engineering applications are given in 5. The main
points of this work are summarized in section 6. Technical
acronyms are explained the first time they are encountered
in the text. Finally, the notation of this conference paper is
summarized in table 1.

TABLE 1. NOTATION OF THIS CONFERENCE PAPER.

Symbol Meaning
4
= Definition or equality by definition
{s1, . . . , sn} Set containing elements s1, . . . , sn
(t1, . . . , tn) Tuple with elements t1, . . . , tn
/s/ String s
|S| Set or tuple cardinality or string length

2. Previous Work

The field of graph mining frequently provides the al-
gorithmic tools for representing and clustering ontologies
represented as graphs [17]. Community structure discovery
or graph partitioning is a significant problem with a plethora
of applications [18]. The discovery process may well rely
on local connectivity patterns such as degrees, triangles, and
squares as shown in [19] and in [20]. Kernel approaches
[21] are also viable approaches to graph clustering. More
recently, increased computational power has allowed the
use of local higher order connectivity properties as ex-
plained in [22]. Graph spectral properties also rely heavily
on structural patterns but in a linear algebraic way [23]
[24]. Alternatively, graph partitioning can be accomplished
with functional properties such as flow simulation [25],
cross-correlation of functional attributes [26], or multiscale
decomposition of graph functions to wavelets [27]. These
properties may be better suited for a given scenario [28],
but structural ones can be applied to virutally any graph. A
summary of the various methodologies is given in [29].

Recently, graph signal processing has stimulated re-
search interest in ontologies [30]. Instead of considering
graphs as combinatorial objects, they are treated as two-
dimensional deterministic or stochastic signals [31]. Prime
examples include graph sampling [32] and graph Laplacian
inverse estimation [33]. A probabilistic framework for graph
signal processing is described in [34]. In [35] a tensor stack
network (TSN) is trained to evaluate the structural resilience
of communication networks. This approach stems from
the linear algebraic representation of graphs through their
respective adjacency matrices [36]. The latter can reveal
properties such as higher order connectivity patterns [37]
and vertex centrality [38]. Alternatively, the graph Laplacian
[39] or quasi-Laplacian [40] can be used to discover similar
properties. Multilayer or multiplex graphs allow the exis-
tence of multiple edges between the same vertices as long
as the edges have distinct labels [41]. Spectral clustering
with convex optimization for multilayer graphs is explored
in [42]. Graph signal processing applications include brain
functional imaging [43] and reconstructing network topol-
ogy from sampled data packet activities [44].

A significant part of the Semantic Web is also built on
ontologies [45]. In [46] various Semantic Web ontologies
are categorized in terms of semantic complexity. A review
of programming languages for the Semantic Web is given
in [47] and also in [48]. Graph theoretic databases [49]
are an integral part of the NoSQL movement along with
document databases such as MongoDB [50], column family
stores like Cassandra [51] [52], and key-value or associative
array databases such as Redis [53]. They are also employed
in Semantic Web applications as shown in the case of Neo4j
[54] and TitanDB [55]. Fuzzy graph queries extend the
capabilities of these ontologies [56]. Moreover, the recent
advent of large distributed processing tools such as Apache
Spark [57], which relies on the Hadoop Distributed File Sys-
tem (HDFS) [58], resulted in a paradigm shift. For instance
the MLlib library [59] of Apache Spark contains numerous
graph processing algorithms [60]. An overview of recent
systems and frameworks for massive graph processing can
be found among others in [61].

Persistent data structures [62] have the remarkable prop-
erty that they can provide efficient access to their past
versions [63]. Amortization for persistent lists is explored
in [64]. A space efficient and persistent data structure for
representing property graphs allowing rollback in graph
databases is described in [65]. Declarative languages like
Haskell [66] are ideal for discovering recursive patterns in
graphs as well as for executing concurrent operations on
them [67]. Hardware design with Haskell is explored in [68],
whereas computation acceleration with multiple graphics
processing units (GPUs) is explored in [69] and in [70].

Social network analysis also relies heavily on graph
mining [71]. Strategies for heterogeneous social networks
are explored in [72]. The detection of polarity shifts in
Twitter conversations through the Hilbert-Huang spectrum
of the affective contents of the tweets in these conversation
is proposed in [73]. Automated ontology discovery in social
networks through machine learning (ML) is described in
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[74]. Natural language processing (NLP) techniques play a
central role in discovering entities, attributes, and relation-
ships in ontologies [75].

3. Applications

Over a short time span an impressive number of knowl-
edge graphs has been developed for a broad array of ap-
plications. This has led not only to a deeper understanding
of them, but also in certain cases in non-trivial knowledge
transfer between them. In turn, this resulted in reinforced
interdisciplinary ties.

Genes because of their structure, variations in function-
ality, and importance have been modeled multiple times
as in [76] where gene functionality is tied to their geo-
metrical properties expressed as manifolds. In [77] gene
distances based on functional attributes such as the number
of aminoacids are proposed. Moreover, another family of
gene similarity defined over the cross-correlation of gene
expressions is described in [78].

In computer engineering an ontology expressed in re-
source description framework (RDF) for describing com-
puter networks is described in [79]. Additionally, similarity
metrics for ontologies designed to represent Semantic Web
services are described in [80]. Text clustering assisted by
ontologies for text semantics is proposed in [81].

The domains of digital culture and cultural heritage are
paramount in the digital world of today. The increasing
demand for high quality cultural products is a major driver
behind this trend. A JSON ontology for the cultural heritage
of the Greek region of Ionian Islands taking into account
aspects such as artistic trends and linguistic properties is
presented in [82]. A scheme for the effective mining cultural
attributes from text is proposed in [83]. The blueprints
of an ontology based system for matching the needs of
tourists utilizing group packages are given in [84]. Finally,
an ontology for Chinese advertisements in terms of cultural
references is described in [85].

4. Distance Metrics

4.1. Alignment, Representations, And Distances

Aligning two or more ontologies is the process of match-
ing, perhaps with some uncertainty, their respective entities,
relationships, and attributes. It is a necessary step before the
application of any ontology similarity metric if meaningful
results are to be obtained. Due to its importance, many
alignment schemes can be found. It is worth mentioning
that their vast majority depends on the chosen representa-
tion. The most common of them in abstact form are the
RDF triplets [86], graphs [87], and strings [88]. Moreover,
standard data description formats such as those shown in
table 2 can be adapted to represent ontologies.

From a graph theory perspective, ontology alignment
is the art of finding a suitable homomorphism such that
vertices representing the same entities are matched. In this

TABLE 2. DATA DESCRIPTION FORMATS.

Name Data type
JSON Description schema for generic data
JSON-LD Description for graphs and linked data
BSON Binary object descripion scehema
XML Structured and semantic data schema

case, assuming that the entities and the relationships of the
two knowledge graphs are contained respectively in the pair
G1 and G2 and in the pair R1 and R2, then typically a cost
function of the following form is mimimized:

K
4
= g(G1, G2) + λ1g

′(R1, R2)

+ λ2|G1 \G2|+ λ3|R1 \R2| (2)

In equation (2) the hyperparameters λ1, λ2, and λ3 indicate
the relative weight with respect to the first term. The last two
terms penalize longer matchings in case there is no exact
correspondence between the two pairs of sets in the same
way the penalty terms in metrics like the Aikake Information
Criterion (AIC) or the Bayes Infromation Criterion (BIC)
exclude longer probabilistic explanations of a given set
of observations. Moreover, g(·, ·) and g(·, ·)′ are distance
metrics for each set pair.

When a string representation is selected, then an alpha-
bet matching is performed. In this case, both ontologies are
encoded as the strings /w1/ and /w2/ and the cost function
may take the form:

Q
4
= h(/w1/ , /w2/) + µ1|/w1/− /w2/| (3)

In equation (3) µ1 is a hyperparameter serving the same
purpose as before and h(·, ·) is a string similarity metric.

The above can cen be achieved with strategies such
as these proposed in [89], [90], [91], or [92]. Ontology
alignment eliminates or mitigates the following challenges:

• In case there is ambiguity over entity or relationship
matching, then it is minimized according to a pre-
specified criterion which may well include a small
number of hyperparameters.

• When there are multiple equivalent representations
for the same domain, then the shortest one is chosen.

• Missing relationships or entities are penalized.

Maintaining connections for linked data is described in
[93]. Storing RDF triplets to NoSQL databses is considered
in [94]. Uncertain reasoning with these triplets is examined
in [95]. String metrics for ontology comparisons are studied
in [96]. Along a similar line of reasoning with string oper-
ations moves [97]. In [98] the nature of linked data is taken
into consideration in order to yield an alignment scheme.

Precision and recall in a semantic context are defined
in [99] for ontology alignment. Correspondence patterns
are extracted with ML models and the resulting knowledge
graphs are studied in [100]. Discrete particle swarm opti-
mization for massive ontologies alignment is described in
[101]. Concerning cultural heritage ontologies, the align-
ment of RDF triplets describing cultural data is discussed
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in [102]. User validation for ontology alignment is explored
in [103].

Because of the intense interdisciplinary interest in on-
tologies, a number of taxonomies have been already pro-
posed in the relevant scientific literature like these in [104]
and in [105]. Semantically enriched distances between pairs
of knowledge graphs are presented in [106] as well as
in [107]. Learning strategies for training ML models to
gradually learn personal ontologies are descibed in [108],
while ML models for hierarchical ontologies are proposed
in [109]. A matrix learning approach is given in detail in
[110]. A thorough and overall review of ontology distances
across various domains is given in [111]. Also, many of the
above strategies are collected and described in detail among
others in [112] and in [113].

4.2. Metric Requirements

Given that ontologies are increasingly becoming more
detailed and complex, primarily in terms of relationships
and attributes, it makes sense to find distance metrics which
not only are scalable but they also discover efficiently higher
order patterns. In brief, any procedure for constructing
meaningful massive knowledge graphs out of domains with
possible uncertainty, should meet at least the following list
of requirements:

• When there are multiple or composite types of rela-
tionships between the ground truth entities or when
the ontology is gradually constructed in a data-driven
context, then an adaptive algorithmic scheme which
takes into account a recent window of representation
errors such as the one proposed in [114] should
be used. Although modeling is done locally, in the
long term it is an efficient process when large data
volumes are involved.

• For alternative representations the distance between
them should be bounded, meaning that the order of
data arrival should play little role in the eventual
ontology formulation.

• Concerning the case where uncertainty is involved in
the relationships, it should be coded as probabilities
which are part of the resulting ontology.

5. Recommendations

The analysis of the preceding sections lead to certain
recommendations for selecting ontology distance metrics.
It should come as no surprise that in the emerging era
of 10V data many ontologies are constructed in a data-
driven manner from abstractions generated from massive
information content coming from multiple sources such as
internet of things (IoT) micronetworks, finance and business
[115], smart city sensor arrays, computational biology mod-
els [116], or digital health mobile applications [117]. As a
general rule, corroborated in part by the arguments found in
the scientific literature, the following should hold:

• The efficiency-accuracy tradeoff should be either fa-
vor the former or, even better, be dynamic depending
on local data properties.

• Emphasis should be placed on robustness in the
sense that frequently arising patterns should be taken
more into consideration.

6. Conclusions And Future Work

This conference paper focuses on similarity metrics for
ontologies with an emphasis on the cultural heritage and
digital culture domains. Specifically, it sets forth a set of
requirements for the class of metrics taking pairs knowledge
graphs and mapping them to a single scalar. Moreover,
based on the extensive review of the recent scientific liter-
ature regarding ontology distance metrics a set of practical
recommendations for various engineering scenarios in the
emerging era of 10V data is given.

Concerning future work directions in the field of knowl-
edge graphs the following can be said. Computing aspects
should include the development of space efficient repre-
sentations for massive ontologies with a large number of
sparse relationships, perhaphs based on existing know-how
of sparse tensor representations. Moreover, the full or partial
discovery of missing attributes, entities, or relationships
with link prediction or estimation theory techniques should
be investigated. Alternatively, crowdsourcing techniques or
information extracted from social networks can be used for
that purpose. Since ontologies intersect even in part with
various sectors of human activity, a third line of research
should be the development of sophisticated systems for
facilitating the input of mutiple domain experts, perhaps
with visualization of complex notions. As human input can
very well be fuzzy or contain contradictions, various robust
algorithmic techniques for discovering and resolving these
should be also pursued.

Acknowledgment

This research has been co-financed by the European
Union and Greek national funds through the Competi-
tiveness, Entrepreneurship, and Innovation Operation Pro-
gramme under the call “Research – Create – Innovate”
project title “Development of technologies and methods
for cultural inventory data interoperability”, project code
T1EDK01728, MIS code 5030954.

References

[1] G. E. Lloyd, “Humanity between gods and beasts? Ontologies in
question,” Journal of the Royal Anthropological Institute, vol. 17,
no. 4, pp. 829–845, 2011.

[2] D. Van der Schyff, “On being and becoming: Ancient Greek ethics
and ontology in the twenty-first century,” Ph.D. dissertation, SFU,
2010.

[3] C. Poster, “Being and becoming: Rhetorical ontology in early Greek
thought,” Philosophy & Rhetoric, pp. 1–14, 1996.

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on October 17,2020 at 18:32:27 UTC from IEEE Xplore.  Restrictions apply. 
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signal processing on graphs: Sampling theory,” IEEE transactions
on signal processing, vol. 63, no. 24, pp. 6510–6523, 2015.

[33] E. Pavez and A. Ortega, “Generalized Laplacian precision matrix
estimation for graph signal processing,” in ICASSP. IEEE, 2016,
pp. 6350–6354.
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