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Abstract: Recent advances in big data systems and databases have made it possible to gather raw
unlabeled data at unprecedented rates. However, labeling such data constitutes a costly and timely
process. This is especially true for video data, and in particular for human activity recognition (HAR)
tasks. For this reason, methods for reducing the need of labeled data for HAR applications have drawn
significant attention from the research community. In particular, two popular approaches developed to
address the above issue are data augmentation and domain adaptation. The former attempts to leverage
problem-specific, hand-crafted data synthesizers to augment the training dataset with artificial labeled
data instances. The latter attempts to extract knowledge from distinct but related supervised learning
tasks for which labeled data is more abundant than the problem at hand. Both methods have been
extensively studied and used successfully on various tasks, but a comprehensive comparison of the two
has not been carried out in the context of video data HAR. In this work, we fill this gap by providing
ample experimental results comparing data augmentation and domain adaptation techniques on a
cross-viewpoint, human activity recognition task from pose information.

Keywords: human activity recognition; data augmentation; data adaptation; activities of daily living

1. Introduction

One of the most common and serious problems when trying to train a supervised learning model is
the lack of a sufficient amount of labeled data. When labeled data is scarce, the generalization capabilities
of the produced model are severely affected; the quality of the produced results as well as model evaluation
are degraded. More specifically, for several tasks of practical and research interest within the broader
area of computer vision, for example, image/video classification, the collection of an adequate number of
labelled data is either infeasible or too costly. Moreover, as demonstrated in Reference [1], for several tasks,
the performance of models may only increase logarithmically with increasing volume of available training
data. For these reasons, much research has been recently devoted to the construction of methods that are
robust against insufficient labeled data. In particular, two classes of methods have been widely adopted
to deal with the aforementioned issue, and these are compared in this work within the area of human
activity recognition, namely: data augmentation and domain adaptation. In particular, the contribution of this
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work, is a comprehensive comparison of the effectiveness of data augmentation and domain adaptation
techniques for the tasks of human activity recognition. To the best of our knowledge, this is the first study
providing such experimental results.

Under a data augmentation strategy, typically, one artificially expands the size and/or the diversity of
the data set, using one or a combination of techniques which rely on domain knowledge [2,3]. That is, one
augments the available training data through the construction of “synthetic” data, so as to better represent
the global distribution of data instances. Such techniques may often apply operations such as scene
cropping, noise injection or affine transformations (e.g., translations, rotations etc.) on the available dataset
in order to produce new instances to be used during training [4,5]. Note that such data synthesizers are
typically hard to implement, and are mostly domain-dependent and specific to a particular problem/task.

On the other hand, domain adaptation [6] refers to a broad class of techniques which fall into the
research area of transfer learning. In general, supervised learning techniques rely, fundamentally, on the
assumption that both train and test datasets are drawn from the same distribution. However, some
distributional change between train and test covariates (also known as “covariate-shift”) breaks this
assumption even if the underlying conditional distribution P(Y|X) is the same for train and test sets.
As a result the model will under-perform on the test set and potential prior model evaluation is rendered
useless [7]. Domain adaptation aims to develop techniques for mitigating the covariate shift problem.
In computer vision, such factors as illumination, viewpoint changes and different acquisition devices make
the data collection process prone to covariate-shift and for this reason many research efforts on domain
adaptation have focused on this domain, yielding a plethora of techniques [8].

Both approaches have been widely adopted in the literature yielding state-of-the-art techniques for
various machine learning tasks that suffer from covariate shift, including human activity recognition.
Data augmentation is largely problem dependent and for this reason techniques should be viewed on
a per problem basis. Domain adaptation on the other hand leads to more general methods that can
easily be applied across different problems. In Reference [9], kernel PCA is used to transfer knowledge
between domains in a semi-supervised manner in the context of video action recognition, by extracting
key frames using a shot boundary detection algorithm. Many adversarial neural network techniques have
been utilized for domain adaptation including the works in Reference [10,11] where a fully unsupervised
approach is followed to tackle problems in image classification and natural language processing, and works
like References [12–16] where the standard domain adaptation framework is extended to cover more
challenging knowledge transfer problems within these fields. These works highlight the flexibility of
adversarial techniques for knowledge transfer, since they demonstrate applications in various problems
with little to no adjustments.

Although human activity recognition from video data has been within the scope of much research
for several years, it still consists one of the most challenging computer vision tasks [17]. Its application
areas, range from surveillance and assisted living to human-machine interaction and affective computing.
According to Reference [18], action recognition may be roughly divided into the following tasks: gesture,
action, interaction and group activity recognition. More specifically, gestures are instant activities, involving
at most a couple of body parts. Actions require a larger amount of time to be completed and may involve
more body parts. An interaction is performed between two “actors” or between an actor and an object.
Finally, a group activity may be some combination of the above, typically involving more than two actors.

In turn, recognition tasks may be classified, according to assumptions on data collection viewpoints
as: (a) single-view, where both training and testing sets derive from the same viewpoint; and (b) cross-view,
where different camera viewpoints are used for training and testing [19,20]. Moreover, we are typically
interested in setups that are cross-subject. That is, actors appearing in the training group do not appear
in the test group, or more generally, some actors appearing in the training group do not appear in the
testing group. Respectively, the goal of cross-view setups is to simulate, for example, a real-life case of
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abrupt viewpoint changes, while the cross-subject setup aims to make models trained within a laboratory
environment deployable in a real-life environment.

Early recognition approaches relied on hand-crafted features [21], extracted from raw activity visual
data [22]. Such methods were typically validated on datasets comprising of a relatively small number
of action classes, with significant drop in their performance as the number of action classes increases.
Another important drawback of these methods is their lack of robustness to viewpoint changes. Both of
these limitations drove researchers to seek alternate representations and classification methods for the task,
with advances both in hardware and pattern recognition research (especially deep learning) playing a
crucial role towards surpassing them. With respect to hardware, low-cost depth cameras have been made
available, offering an effective means for collecting action data. Moreover, modern graphics processing
units (GPUs) and tensor processing units (TPUs) have allowed researchers to train deep neural network
architectures much faster than before enabling them to process vast amounts of data and produce complex
multi-layered networks, including convolutional (CNNs) [23] and recurrent (RNNs) neural networks [24].

The main benefit of such deep approaches is that they do not require the extraction of hand-crafted
features. Instead, a hierarchical representation of the data, suitable for a given task, is extracted
automatically through optimization. In other words, such models “learn” an appropriate set of features
to perform a particular classification task. The inclusion of the depth modality in recognition schemes
allowed for increased robustness to illumination changes and, when combined with RGB data, it further
allowed the extraction and tracking of human “skeletons”. That is, the extraction and tracking of the
3D positions of a subject’s joints [25]. This enhanced 3D structural scene representation, made available
through the depth modality, enabled deep architectures to learn more discriminative features leading to
more robust classification.

Current state-of-the-art large scale human activity recognition datasets [19,20] are comprised of tens
of thousands of training examples of several actions, recorded from more than one viewpoint. In more
detail, data collection is performed using the same camera model, in the same environment, typically,
under three viewpoints which are often denoted as “middle” (i.e., directly facing the actor), “left” and
“right” (i.e., facing the actor in a given angle towards his left/right, respectively). In this paper we utilize a
3D skeletal representation of data, which constitutes a robust way to generalize cross-subject and other
across-measurement biases such as environmental conditions, but which is still problematic when changes
in viewpoint occur.

We leverage this problem, as a benchmark for our task. In particular, we experiment with the two
approaches we have previously discussed, that is, data augmentation and domain adaptation for creating
view-point robust action recognition models. More specifically, our work is based on previous work [26],
consisting of a generic human activity recognition method targeted at activities of daily living (ADLs) [27].
It relies on 3D skeletal data and CNNs, which are fed with artificial images capturing the motion of skeletal
joints in the spectral domain. The role of data augmentation is to provide artificially generated instances
of activity samples, captured by a given camera, to improve the generalization capability of the trained
model across different viewpoints. Alternatively, we use a semi-supervised adversarial domain adaptation
approach, which is based on the idea that adapted representations can be retrieved automatically to perform
inference on a sparsely labeled dataset, using a model that has been trained on a related labeled dataset.
In particular, these datasets consist of activities captured under different viewpoints. Finally, we perform
extensive experiments where we compare data augmentation and domain adaptation.

The rest of this paper is organized as follows: in Section 2, we present related work, the adopted
generic HAR approach and the proposed approach which consists of two distinct variations, that is,
classification upon viewpoint data augmentation and semi-supervised domain adaptation. Experimental
results and technical details are presented in Section 3, while conclusions are drawn in Section 4, wherein
plans for future works are also presented.
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2. Methodology

In this section, firstly we present the human activity recognition approach we used throughout our
experiments. Then we describe in detail the proposed methodologies for (a) data augmentation and
(b) domain adaptation and how they may be tailored to suit the needs of the aforementioned approach.
We also provide details regarding the network architecture that has been used. We should herein note that
our approach is a segmented activity recognition task [18], that is, each input video sequence contains only
the action to be recognized. This means that any frame before/after the action, that is, not depicting a part
of the action, has been removed.

2.1. Human Activity Recognition

The approach we follow for human activity recognition has been presented in our previous work [26].
It is based on 3D skeletal motion information, resulting from video captured by an RGB and depth camera,
namely the Microsoft Kinect v2 (https://developer.microsoft.com/en-us/windows/kinect). A set of 25
skeletal joints is extracted by the Kinect SDK and tracked in the 3D space and in real-time, while an actor
performs a given activity. Interactions between actors are also being captured using a single camera, since
Kinect supports simultaneous extraction of up to 6 skeletons. For each joint, its x, y and z coordinates
are recorded. An example of an extracted skeleton is illustrated in Figure 1. Note that joints follow a
graph-based representation; nodes correspond to joints, while edges connect neighboring joints.
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footleftfootright
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Figure 1. An extracted human skeleton. Red circles denote the positions on the human body of the 3D
joints that are extracted using the Kinect SDK.

Given the 3D skeletal information, we aim to provide a 2D image representation, so that it could
be used with a typical CNN. The first step is to consider that a given joint’s motion within the 3D space
consists of 3 1D signals, corresponding to the x, y and z coordinates over time. Upon concatenation of
these signals, a 2D image is formed. Note that, though the number of rows of the aforementioned image is

https://developer.microsoft.com/en-us/windows/kinect
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fixed for each activity and equal to 75, the number of columns may be different. This, due to the common
fact that different actions could present significantly different temporal durations, for example, consider
intuitively comparing the duration of activities such as “sitting down” and “wear jacket”. Obviously,
the latter should require more time. Moreover, the same action, in the common case it is not performed by
the actors, may require different temporal duration. Also, it should be intuitive that examples belonging
to the same action, when performed repetitively by the same subject should have similar, yet unequal
duration. This temporal variation is typically addressed by interpolation. Therefore, in our approach we
impose a linear interpolation step. More specifically, we choose to se the duration of each action instance
to Ta = 159, so that the aforementioned image which we will refer to as “signal” image has a fixed size of
159× 75 for each activity. An example of a signal image that has been created with the aforementioned
process is illustrated in Figure 2.

The next step is to create the image that will be fed to the CNN. This image will serve as
an intermediate visual representation of the aforementioned skeletal sequences. A plethora of such
representations has been proposed; all sharing the same motivation: to capture both spatial and temporal
information regarding skeletal motion in the 3D space, over time. This information is reflected to the
color and texture properties of the representation. Notable recent works include the one of Du et al. [28]
who created chronologically arranged sequences of pseudocolored images, “joint trajectory maps” of
Wang et al. [29] wherein texture corresponded to motion magnitude, “skeleton optical spectra” of
Hou et al. [30], wherein hue changes corresponded to the temporal variation of motion, “joint distance
maps” of Li et al. [31] who encoded joint distances and distance variations in a pair-wise sense, and finally
of Ke et al. [32] who extracted invariant features by subsets of joints as in Reference [28] and upon
processing, created a 2D representation.

In previous work [26] we have experimented with four of the most popular image transforms
to the spectral domain, that is, Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT),
Fast Fourier Transform (FFT) and Discrete Sine Transform (DST). Our examples showed that best accuracy
was achieved using DST. Therefore, in this work we are limited to experiments using only DST, yet both
data augmentation and domain adaptation, as will be presented in Sections 2.2 and 2.3, respectively, may
be applied to any 2D visual representation of 3D skeletal data. Therefore, DST is applied to each signal
image, creating another 2D image which we will refer to as “activity image”. Upon applying DST we
discard its phase, preserving only its magnitude. We further process this image by normalizing using the
orthonorm. Finally, the result is a 2D image, corresponding to the signal spectrum of the signal image.
An example signal image and the corresponding activity image are illustrated in Figure 2.

(a) (b)

Figure 2. (a) A signal image that has been created by an example of the action “reading”; (b) the activity
image of the signal image of (a), upon applying Discrete Sine Transform (DST). Figure best viewed in color.
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2.2. Data Augmentation

As we have already mentioned in Section 1, data augmentation aims to expand the size and/or
the diversity of a given data set, by constructing some kind of synthetic images, by considering any
properties/limitations of the problem at hand. In the context of HAR, data augmentation has been
previously used with inertial measurements extracted from wearable sensors by Eyobu and Han [33],
who applied local averaging as a down-sampling technique and shuffling. Also, using similar data,
Kalouris et al. [34] applied a set of domain specific transformations, such as rotation, scaling, jittering and
so forth. Hernandez et al. [35] worked with hand points and applied data warping on the magnitude and
the temporal location of motion signals.

However, the aforementioned problem of viewpoint invariance has not been adequately addressed by
intense research efforts. Liu et al. [36] proposed the direct application of geometric transformations to raw
skeletal sequences. They created a 5D joint representation by concatenating 3D space coordinates, time
and joint label. Then, in order to create a 2D image, they projected 2 of the aforementioned 5 dimensions,
while the remaining 3 were mapped to R, G and B color values. Obviously, the resulting images were
pseudo-colored. Moreover, we should emphasize that the proposed data augmentation approach has been
partially inspired by the work of Zhang et al. [16]. Therein, a view adaptive RNN, was used in order to
apply geometric transformations to raw skeletons captured under several views, towards the selection of
more “consistent” viewpoints.

As it has already been mentioned, in this work we consider a multi-camera setup. We assume that
each activity is captured by more than one cameras. Of course, in real-life scenarios, more than one
cameras may be used for example, in an ADL cross-view recognition setup within an assistive living
environment. When the camera setup is a priori known, we are able to align any camera to another by
imposing a geometric transformation which may be decomposed to a set of rotations and translations,
assuming that cameras are of the same type. In our case, the camera setup is known and consists of three
cameras whose distance to the test subject is the same that is, placed at the perimeter of an imaginary circle.
More specifically, one of the camera has been placed so as to directly face the test subject from the front.
Also, the remaining two cameras have been placed at the left and the right of the test subject. Therefore,
we are able to align any two given cameras by the simple rotation transformation [37], denoted by:

Ry(θ) =

 cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ

 . (1)

For the examined case of data augmentation, our goal is to assist the training procedure of the CNN,
by artificially increasing the number of training samples. Note that based on the way signal and activity
images are created, traditional data augmentation strategies such as rotations and crops may not be
applied, since these would severely affect the spectral properties of activity images. Instead, we choose to
use activity samples of skeletal motion and process them so as to provide rotated instances taken by a
given camera, in a way that they are aligned to another camera. Then, we construct signal and activity
images, accordingly and preserve visual properties of activity images.

More specifically, the process of alignment of any two given skeletons that have been captured from
different viewpoints is as follows—each 3D joint is rotated by an angle θ, about the y-axis. This process
complies to the Cartesian 3D coordinate system that has been adopted by Kinect v2, therefore is reflected
to the actual action examples. The angle θ that is required by the rotation transformation is selected based
on two factors: (a) the initial camera position setup; and (b) the pair of cameras that have been used for
training and testing purposes. for example, let us consider two cameras, one placed at the subject’s left
side and another placed at the subject’s right side. Let θL and θR denoting the aforementioned angles,
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respectively. In that case, the required transform that should be applied is Ry(θR − θL) (see Equation (1)).
An example of a raw skeleton that has been rotated by applying all angles that have been used throughout
our study is illustrated in Figure 3.

(a) (b) (c) (d) (e)

Figure 3. A raw skeleton that has been transformed using a simple rotation transformation by an angle θ:
(a) θ = 90◦, (b) θ = 45◦, (c) θ = 0◦ (raw skeleton), (d) θ = −45◦, (e) θ = −90◦. Note that for illustrative
purposes, z-coordinate that corresponds to depth information has been discarded.

2.3. Domain Adaptation

As discussed in the introduction, domain adaptation is a sub-field of transfer learning which aims to
mitigate the covariate-shift problem when training a classifier. To make this more precise, consider, as is
typical in domain adaptation literature [38], a classification problem as a tuple (D, T), where D is called
the domain and T the task. The domain is in turn a tuple (X , P(X)), where X is the space in which the
covariates take values and P(X) is the marginal distribution of the covariates over X . The task is another
tuple (Y , P(Y|X)), where Y is the label space and P(Y|X) is the conditional distribution of labels given
values of the covariates. In standard supervised learning we are typically interested in approximating
Pr(Y|X), that is, obtain a predictor for T. In domain adaptation, the setup usually consists of two problems
(Ds, Ts), (Dt, Tt), respectively called the source and target problems, such that Ts = Tt but Ds 6= Dt.
In this work we focus on homogeneous domain adaptation where we further assume that Xs = Xt,
but P(Xs) 6= P(Xt).

The domain adaptation problem is to utilize (Ds, Ts) or a predictor for Ts so as to obtain a predictor for
Tt or improve a predictor for Tt. This is particularly useful to consider in a transductive learning scenario
where the (unlabeled or sparsely labeled) test set is available during training. In general two general
approaches are followed; the first involves importance sampling techniques, while the second involves
learning a representation for source and target data in which the covariate-shift problem is resolved,
that is, where the distribution of source and target data is the same [38]. Deep learning algorithms
for obtaining such representations have been widely explored yielding many successful methods [39],
especially in the field of computer vision [38]. In particular, adversarial neural networks have proven to be
an effective tool for mitigating the covariate-shift problem and have been successfully employed in multiple
works [10,11,40]. Such methods, are flexible and well suited for the domain adaptation task because they
allow for the automatic extraction of representations, where the distributions of source and target data are
the same, using simple iterative optimization algorithms. In this work we focus on adversarial domain
adaptation techniques for our evaluation of domain adaptation in computer vision tasks.

Adversarial domain adaptation schemes were inspired by the distribution alignment approach
presented in Reference [41], within the context of generative adversarial networks. A general abstract
scheme that breaks down such methods is presented in Reference [10]. Typically, two representation
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extracting networks Ms, Mt are defined, along with a domain discriminator network D and a source
classifier C which discriminates source data instances based on the representation extracted from Ms.
The source networks Ms and C are either jointly trained on source data before the adaptation procedure
or trained along with the Mt and D during adaptation in an alternating manner. In practice, the former
approach is more susceptible to poor local minima for example, mode collapse, while the second approach
is very unstable during training and difficult to converge. For a contrast of the two approaches see for
example, References [10,11] respectively. Experimentally, we found the former approach to be more
practical, with better results in our task.

As such, the training procedure as adopted in the experimental section in this work takes the
following form. Firstly, the source networks are trained in a standard supervised learning manner over
the source data using the categorical cross-entropy loss function. The weight of Ms, C are then fixed.
In turn, we initialize the target representation network Mt with the weights of Ms. This is a standard
step in adversarial domain adaptation literature which helps avoid poor local minima [10]. The domain
discriminator is initialized randomly and must be chosen with more parameters than the classifier network
C in accordance with Reference [42] and the principle that for effective domain adaptation and a particular
representation, it should be harder to discriminate domains than discriminating classes. At each step
during training, a batch of source and target instances is sampled and the corresponding representations
are computed using Ms and Mt. The domain discriminator is the trained in a standard supervised manner
to discriminate between instances from source and target domain. Once D is updated, its weights are
fixed, and the target representation network Mt is trained in a similar manner but using the reversed
D gradients.

This process can be shown to minimize the Jensen-Shannon divergence [43] between the distribution
of source and target instances in latent space, that is, the distributions of the outputs of Ms and Mt, if at
each step the discriminator D is trained to optimality. For this reason, it is a good practice to perform
multiple updates on the parameters of D for each update of parameters of Mt. However care must be
taken since if D can perfectly discriminate between the two domains, there is no gradient feedback to
continue training [44]. For this reason one needs to carefully adjust the number of iterations for D before
each update of Mt. After convergence, the source classifier network C can be used to classify target images
mapped into the latent space by Mt. This is because the covariate shift problem has been mitigated in the
latent space, and by assumption Ts = Tt and hence P(Y|X), which C approximates, is the same for both
domains. Note that alternative schemes have been formulated which lead, for example, in minimizing the
Wasserstein-1 distance between the two distributions, in the context of GANs.

The method described above can be utilized without access to any target data labels. However, having
such labeled target data can help improve the performance of the target classifier as it may help guide the
adaptation procedure and aid in avoiding poor local minima. In particular, a method for incorporating
target label knowledge into standard adversarial domain adaptation schemes is explored in Reference [40].
Essentially, the loss function for training Mt combines a standard supervised learning term and a domain
confusion term. For the former the network C ◦Mt is trained with the parameters of C kept constant,
while for the latter a similar procedure as the one described above is employed.

The described approach, formulated in further detail in Reference [40], needs careful hyper-parameter
tuning. In particular, the design choices including standard network topology, batch size, learning rates
e.t.c., require careful tuning because training occurs as an interplay between multiple networks whose
training capacity affects the training of the other networks. In addition, one needs to tune the tradeoff
parameter between the domain confusion term and the supervision signal term in the objective function.
Large values of the parameter may lead to overfitting while lower values may hinder training. In addition,
as mentioned above, it is important to tune the number of training iterations of the domain discriminator
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network per training iteration of the target representation network. Typically, grid search should be
applied but we note that tuning these parameters may introduce a substantial computational overhead.

2.4. Classification

In this section we present the deployed CNN architecture used throughout the experimental section of
this work (Figure 4). In brief, three convolutional layers are used to obtain high-level features, followed by
two fully connected layers performing the classification. Max-pooling layers are used to sub-sample each
convolution result. To help improve the generalization capabilities of our model, in this work we follow a
popular approach and apply the dropout regularization technique [45], in which at each training stage
several nodes are “dropped out” of the network. This helps to avoid complex co-adaptations between
neurons which lead to overfitting. In addition, we use a validation set to monitor the validation loss and
we utilize the early stopping technique. In more detail, the first convolutional layer filters the 159 × 75
input activity image with 32 kernels of size 3 × 3, the second convolution uses 64 kernels of size 3 × 3
over the input 76 × 34 image and the third convolutional layer filters the 36 × 15 resulting image with 128
kernels of size 3 × 3. At each stage, 2 × 2 “max-pooling” is applied. The aforementioned architecture has
been selected through validation set tuning based on two factors: (a) the need to build sufficiently rich
representations to allow for effective classification; and (b) the restriction of the number of parameters
so as to allow flexibility, for example, for easy deployment of the model in low-cost platforms or mobile
devices to perform inference on the edge, in real-life applications of the herein proposed approaches.

Figure 4. A visual illustration of the Convolutional Neural Network (CNN) architecture of Reference [26],
that has been adopted in order to recognize actions using as input the activity images.

3. Experiments

In this section, firstly we present the dataset that we have chosen for the experimental evaluation
of the proposed approach. Then, we present the evaluation protocols that we have followed for the data
augmentation and the domain adaptation approach, followed by the presentation and the discussion of the
corresponding results and comparisons with baseline approaches. Finally, we present the implementation
details regarding hardware and software used.

3.1. Dataset

For the experimental evaluation of our approach we used the PKU-MMD dataset [20]. PKU-MMD
consists a large-scale benchmark dataset that focuses on human action understanding. It contains approx.
20 K action instances from 51 action categories, spanning into 5.4 M video frames and performed by
66 human subjects. A multi-camera setup was used throughout the recording sessions. More specifically,
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data from 3 Microsoft Kinect v2 cameras have been collected. For each action instance, PKU-MMD provides
the four following modalities: (a) raw RGB video sequences, each depicting one or more actors while
performing an action/interaction under a given viewpoint; (b) depth sequences, that is, the z-dimension
corresponding to the scene depth at each pixel of an RGB sequence; (c) infrared radiation sequences, that
is, modulated infrared light captured simultaneously to the RGB sequences; and (d) positions in the 3D
space of the extracted human skeleton joints, varying over time. Recordings from 3 camera views are
available; each action is simultaneously captured by all cameras. Note that the users were asked to perform
the actions within a pre-determined area of 180 cm length and 120 cm width, so as their distance to the
cameras would remain as fixed as possible. Also, they were asked to face towards one of the cameras (not
necessarily the middle one). At the following, we shall use the following naming convention for the three
camera views: L (left), M (middle) and R (right). As illustrated in Figure 5, the 3 cameras are placed at the
perimeter of an imaginary circle, while the following fixed angles are used for their positioning: −45◦, 0◦

and +45◦. Also, the cameras have been placed on the same height level, which also remains fixed and
equal to 120 cm for all activities. Also, since videos contain several sequential actions, inter-video temporal
boundaries are available.

As we have already mentioned, our study aims to assess whether and how the proposed data
augmentation strategies may be used to assist human activity recognition. Our use case is an ambient
assistive living scenario, where the goal is the recognition of ADLs. Therefore, we selected 11 out of
the 51 classes of PKU-MMD, which we believe are the most close to ADLs or events in such a scenario.
The selected classes are: eat meal snack, falling, handshaking, hugging other person, make a phone call answer
phone, playing with phone tablet, reading, sitting down, standing up, typing on a keyboard and wear jacket.
Note that we worked only using the skeletal data, that is, we discarded RGB, depth and infrared
information. Indicative activity images for the 11 classes that will be used throughout our experimental
evaluation are illustrated in Figure 6.

45o 45o

Capture Area

Camera #1
(Left)

Camera #3
(Right)

Camera #2
(Middle)

Subject

Figure 5. The camera setup that has been used for the creation of the PKU-MMD dataset. Cameras #1, #2,
#3 correspond to L, M, R, respectively (see Section 3.1).
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Figure 6. Examples of activity images from 11 classes for the DST transform. (a) eat meal/snack; (b) falling;
(c) handshaking; (d) hugging other person; (e) make a phone call/answer phone; (f) playing with
phone/tablet; (g) reading; (h) sitting down; (i) standing up; (j) typing on a keyboard; (k) wear jacket.
Figure best viewed in color.

3.2. Implementation Details

All experiments that will be presented in this section have been performed using a personal
workstation running Ubuntu 18.04 (64 bit) with the following specifications: IntelTMi7 5820K 12 core
processor @ 3.30 GHz, equipped with 16 GB RAM and an NVIDIATMGeforce GTX 2060 GPU with 8 GB
RAM. The deep CNN architecture has been implemented in Python, using Keras 2.2.4 [46] with the
Tensorflow 1.12 [47] backend. All data pre-processing and processing steps have been implemented
in Python 3.6 using NumPy (http://www.numpy.org/), SciPy (https://www.scipy.org/) and OpenCV
(https://opencv.org/).

3.3. Evaluation and Results

Typical evaluation protocols followed in similar research works, benefit from datasets such as the
aforementioned one [20], providing several types of benchmarks. The most obvious one is to conduct
experiments per camera position (single view). In this case, both training and testing sets derive from
the same viewpoint for example, samples from L camera view are used both for training and testing.
The second case requires different camera viewpoints for training and testing. Note that more than one
camera viewpoints may be used for training or testing, for example, samples from L camera view are
used for training while samples from R camera view are used for testing. The goal of such experiments is
to test the robustness of a given approach in terms of typical geometric transformations (i.e., a rotation).
This may be regarded as a simulation of a real-life case of abrupt viewpoint changes, typically occurring
when subjects are not limited to a relatively small area or are not required to face directly a given camera.
In real-life situations this is expected to happen when a system is trained for example, within a laboratory
environment and is deployed into a real-life environment. Therefore, in this work we are limited to
experiments where training and testing sets derive from different viewpoints.

3.3.1. Data Augmentation

The evaluation protocol we have used for the case of augmentation is as follows: based on the
camera setting of the PKU-MMD data, and the coordinate system used by the Microsoft Kinect v2
camera, we applied rotation transformations on signal images (to be more specific, on the x, y and z
coordinates of skeleton data), as discussed in Section 2.2. More specifically, we performed rotations using
θ ∈ {±45◦,±90◦}. We should herein highlight that L signal images, when rotations of −45◦ and −90◦

are applied, align to M, R, respectively. Similarly M signal images when rotations of 45◦ and −45◦ are
applied align to L, R, respectively, while R signal images when rotations of 45◦, 90◦ are applied align to
M, L, respectively. Obviously, the aforementioned process results to a multiplication of the number of

http://www.numpy.org/
https://www.scipy.org/
https://opencv.org/
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available images by a factor of 5. We may now use this augmented data set instead of the original one for
training, aiming to achieve a significant increase in the classification performance of our model. In other
words, our goal could be alternatively stated as follows: under a given camera viewpoint, provide more
reliable recognition of human actions upon training with an augmented data set; the latter comprises of all
aligned images that resulted from the aforementioned rotation transformations. Experimental results of
data augmentation are presented in Tables 1 and 2.

3.3.2. Domain Adaptation

Moreover, the evaluation protocol we have used for the case of domain adaptation is as follows:
one of the camera views is selected as source data, while another on as target data. At the following,
we shall use the typical notation X → Y, which denotes adaptation between source X and target Y.
For the sake of the presentation, the same notation shall be used also in the augmentation case, denoting
training set X and testing set Y. Therefore, we evaluate our approach for all possible combinations, that
is, L → R, L → M, R → M, R → L, M → L and M → R. Also, considering the semi-supervised setting
that we have presented in Section 2.3, in this case it is required to use a small, labeled subset of the target
data; these examples serve as labeled target instances and are utilized during training both for providing
a supervision signal and for unsupervised adversarial training. Of course, this subset is excluded when
calculating validation accuracy both in this case and also in the case of augmentation. In every combination,
the percentage of the labeled target data varies between 0%, 1%, 5% and 10%, while a source model (S) is
trained in a standard supervised way on the source domain. Experimental results of domain adaptation
are presented in Tables 1 and 2.

3.3.3. Comparisons to Other Approaches

We should herein note that to the best of our knowledge, our approach is the first that (a) applies data
augmentation in raw skeletal data; and (b) applies an adversarial domain adaptation strategy. Therefore,
in order to compare the aforementioned strategies, we used the following baselines: (a) the standard
(source) model S; (b) a model with random initial weights, that is, Trand; and (c) a model with initial
weights taken from S, that is, TwS . This last approach represents a widely utilized class of transfer
learning techniques known as fine tuning methods [38]. Results of baseline approaches are presented
in Tables 1 and 2.
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Table 1. Experimental results. Figures represent average accuracy percentages over ten runs. In each
setup best accuracy achieved is indicated with bold. For each viewpoint adaptation scenario, for example,
“Left to Middle” (indicated L→ M) the four numbers (0, 1, 5 and 10) indicate the percentage of target data
instances which are labelled. S is the source model, built by a simple cross-view experiment. Trand and
TwS denote models whose initial weights have been taken randomly and from S, respectively. Note that
with no labeled data in the target domain (i.e., 0) these models cannot be trained and hence these columns
are omitted.

Baselines

Data Augmentation

Domain Adaptation

S TwS Trand 0 1 5 10
0 1 5 10 0 1 5 10

L→ M 0.85 - 0.85 0.86 0.92 - 0.61 0.73 0.77 0.93 0.84 0.86 0.89 0.92

L→ R 0.41 - 0.60 0.70 0.75 - 0.51 0.61 0.71 0.85 0.50 0.63 0.78 0.82

M→ L 0.83 - 0.83 0.87 0.90 - 0.51 0.68 0.79 0.85 0.83 0.84 0.87 0.91

M→ R 0.78 - 0.80 0.85 0.90 - 0.51 0.70 0.76 0.90 0.83 0.83 0.86 0.91

R→ L 0.44 - 0.60 0.76 0.81 - 0.51 0.65 0.77 0.69 0.53 0.65 0.80 0.86

R→ M 0.85 - 0.85 0.86 0.91 - 0.61 0.70 0.77 0.88 0.85 0.85 0.88 0.92

mean 0.69 - 0.76 0.82 0.87 - 0.54 0.68 0.76 0.85 0.73 0.78 0.85 0.89

Table 2. Experimental results. Figures represent average F1 scores over ten runs. In each setup best F1
score achieved is indicated with bold. As in Table 1, for each viewpoint adaptation scenario, for example,
“Left to Middle” (indicated L→ M) the four numbers (0, 1, 5 and 10) indicate the percentage of target data
instances which are labelled. S is the source model, built by a simple cross-view experiment. Trand and
TwS denote models whose initial weights have been taken randomly and from S, respectively. Note that
with no labeled data in the target domain (i.e., 0) these models cannot be trained and hence these columns
are omitted.

Baselines

Data Augmentation

Domain Adaptation

S TwS Trand 0 1 5 10
0 1 5 10 0 1 5 10

L→ M 0.85 - 0.90 0.90 0.85 - 0.61 0.71 0.78 0.92 0.81 0.77 0.86 0.88

L→ R 0.42 - 0.67 0.81 0.82 - 0.49 0.53 0.57 0.82 0.51 0.55 0.727 0.79

M→ L 0.84 - 0.81 0.88 0.93 - 0.48 0.57 0.64 0.83 0.81 0.86 0.85 0.94

M→ R 0.79 - 0.80 0.83 0.90 - 0.47 0.65 0.71 0.90 0.80 0.81 0.83 0.92

R→ L 0.45 - 0.78 0.77 0.82 - 0.47 0.53 0.57 0.65 0.52 0.67 0.80 0.88

R→ M 0.86 - 0.84 0.88 0.92 - 0.55 0.64 0.77 0.86 0.86 0.71 0.86 0.88

mean 0.71 - 0.80 0.85 0.87 - 0.51 0.59 0.67 0.83 0.72 0.73 0.83 0.88

3.4. Discussion

The results of this study have indicated that both of the reviewed techniques offer substantial
improvement to the generalization capabilities of HAR classifiers in the cross-view scenario. In particular,
comparing these methods with Trand model results, which corresponds to vanilla supervised learning
without any cross domain knowledge transfer and when labelled data are scarce, we observe a significant
performance boosts. Moreover, the source domain S often outperforms the Trand model (when the
viewpoint change is mild, for example, L → M) highlighting the potential benefit of cross-domain
data when training viewpoint robust classifiers. The benefit of utilizing data augmentation and domain
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adaptation is made much more apparent in more extended viewpoint changes (e.g., L→ R as opposed
to L → M), where simply using a source model trained on a viewpoint different than the test set gives
poor performance.

We further observe that data augmentation typically performs much better than domain adaptation
when no target labels are available. In particular, the accuracy of models trained with data augmentation
techniques are much less dependent on the underlying cross-view adaptation than the corresponding
domain adaptation results. Domain adaptation yields almost no improvement for easy viewpoint changes
while it yields satisfying improvement for harder viewpoint changes, albeit much less significant than the
ones achieved through augmentation. In the semi-supervised setting the domain adaptation approach
substantially benefits from the presence of a supervision signal which guides the adaptation process.
The performance of adapted models in this setting is much more consistent between different cross-view
adaptation instances and on average outperforms the plain data augmentation approach.

Although in the semi-supervised setting domain adaptation provides the best accuracy out of
the examined methods, the associated hyper-parameter tuning may become an important issue when
deploying such methods for real-life applications, generating a substantial computational overhead.
In particular, we observed significant sensitivity to learning rates, the trade-off parameter between the
domain confusion and the supervision signal term in the adversarial objective function and the number of
updates on the domain discriminator weights per update of the target representation network updates. On
the other hand, producing synthetic data to capture the effect of changing the viewpoint is relatively cheap
and may be preferred for many practical HAR tasks. Moreover, the percentage of labeled data played a
crucial role in domain adaptation results. In cases where target domain labelled data is less abundant,
an augmentation approach for cross view activity recognition is observed to be a more appropriate
choice altogether.

4. Conclusions and Future Work

In this work we addressed the problem of lack of a sufficient amount of labeled data that are necessary
when training a model that would be used for human activity recognition. In particular, in many real-life
applications, the data collection and annotation process may be a very costly and/or slow process.
To overcome this limitation, two popular approaches are (a) data augmentation, that is, techniques aiming
to the creation of synthetic data for the expansion of the size and/or the diversity of the data set; and (b)
domain adaptation, that is, techniques aiming to mitigate the covariate shift problem given that training
and evaluation sets derive from the same distribution. Herein, we experimented with a viewpoint data
augmentation approach, aiming to allow models to demonstrate increased accuracy when viewpoint in
evaluation data is different than the one in the available training data. We also experimented with an
adversarial domain adaptation approach, under the assumption that part of the testing data were labeled
and excluded from evaluation.

Our study was based on previous work regarding classification of human activity in videos, based on
3D skeletal motion data. We used a 2D image representation of these data, which relies on spectral images
that have been obtained through the application of DST on raw data. Note that both data augmentation
and domain adaptation approaches that we propose are agnostic to the way this representation is formed.
Since the experimental setup comprised of three cameras, that is, three different viewpoints our goal was
to transfer knowledge from one viewpoint to another. In other words, we have trained a model using
samples captured under a single viewpoint (source model). Evaluation used only samples from a different
viewpoint. Since the angle is significantly different, a drop of performance is expected, making them
impractical for real-life applications. However, the application of both transfer approaches enabled a
significant increase of performance in this cross-view scenario. We evaluated the proposed approach using
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a popular action recognition dataset as a source, focusing on a subset of 11 actions which we believe are
the most close to real-life ADLs.

Our experiments showed that when target data are fully unlabelled, data augmentation offers a huge
increase over the source model. However, a small amount of labeled data makes domain adaptation
approach to exhibit clearly improved performance overall, making it practical for real-life applications.
For example, consider an assistive living scenario, where a single camera is used to monitor the behaviour
of a human subject. Typically, in such scenarios the space where subjects act are not strictly limited.
Therefore, the viewpoint may significantly change. Now, consider an activity recognition model that
has been pre-trained in laboratory conditions. In case that the subject is able to participate in a data
collection process, it should be more effective to adopt a domain adaptation approach. Of course, if this
is not possible, then data augmentation is able to offer an adequate alternative, while it is able to be
immediately applied.

Regarding the limitations of the proposed approach, we should note the following: Firstly, since
it is based on skeleton data, those should be available, either using some specific hardware such as the
Microsoft Kinect and its API, or some skeleton extraction library such as OpenPose [48]. Although the
latter may be used without some specialised video capturing hardware, it is by far more computationally
expensive; its use for real-time applications may be impractical without using a modern GPU. Of course,
reliable skeleton extraction is prone to illumination/viewpoint changes and occlusion. Next steps, that
is, creation of signal and activity images are “instant”. Regarding model training and for the deep
architecture that has been described in Section 2.4, training using the configuration described in Section 3.2
typically requires less than an hour, while the trained model requires 1.2 msec using a GPU and 8.3
msec without using a GPU for classification of an action sample. In implementing data augmentation,
the number of training samples is increased by a factor of 5, which in turn may increase training times
by approx. a factor of 2. On the other hand, the domain adaptation approach that has been adopted
in the context of this work introduces a significant training overhead. Firstly, the adversarial training
process consumes a lot of memory compared to standard supervised learning and if this cannot be covered
by the underlying computation unit (e.g., GPU, CPU/RAM) training time may significantly increase as
hard disk swap is utilized. Moreover, the training process is prone to instability and for this reason small
learning rates and many iterations are required for convergence. We should emphasize that in real-life
applications, a segmentation step should be imposed before the creation of activity images causing a
further delay. Finally, we should note that as far as this work is concerned, both data augmentation and
domain adaptation approaches are agnostic to the limitations of video/skeleton capturing and of the
formulation of activity images.

In the future, we plan to apply the proposed approach on methods for creating the signal image,
possibly with the use of other types of sensor measurements such as wearable accelerometers, gyroscopes
and so on and investigate on image processing methods for transforming the signal image to the activity
image. Furthermore, we will exploit other types of visual modalities in the process, such as RGB and depth
data and we will evaluate our proposed approach on several public datasets. In addition, we are currently
investigating procedures for combining data augmentation and domain adaptation techniques. Finally,
we will apply our techniques in a real-life assistive living environment and we our willing to extend our
approach to open set domain adaptation for applications where the target dataset contains previously
unseen (in the source domain) classes.
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ADDA Adversarial Discriminative Domain Adaptation
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CNN Convolutional Neural Network
DCT Discrete Cosine Transform
DFT Discrete Fourier Transform
DST Discrete Sine Transform
FFT Fast Fourier Transform
GAN Generative Adversarial Network
GPU Graphics Processing Unit
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