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Abstract: Cognitive maps are high level representations of the key topological attributes of real or
abstract spatial environments progressively built by a sequence of noisy observations. Currently
such maps play a crucial role in cognitive sciences as it is believed this is how clusters of dedicated
neurons at hippocampus construct internal representations. The latter include physical space and,
perhaps more interestingly, abstract fields comprising of interconnected notions such as natural
languages. In deep learning cognitive graphs are effective tools for simultaneous dimensionality
reduction and visualization with applications among others to edge prediction, ontology alignment,
and transfer learning. Fuzzy cognitive graphs have been proposed for representing maps with
incomplete knowledge or errors caused by noisy or insufficient observations. The primary
contribution of this article is the construction of cognitive map for the sixteen Myers-Briggs personality
types with a tensor distance metric. The latter combines two categories of natural language attributes
extracted from the namesake Kaggle dataset. To the best of our knowledge linguistic attributes are
separated in categories. Moreover, a fuzzy variant of this map is also proposed where a certain
personality may be assigned to up to two types with equal probability. The two maps were evaluated
based on their topological properties, on their clustering quality, and on how well they fared against
the dataset ground truth. The results indicate a superior performance of both maps with the fuzzy
variant being better. Based on the findings recommendations are given for engineers and practitioners.

Keywords: cognitive graphs; self organizing maps; tensor distance metrics; higher order data;
topological error; Myers-Briggs Type Indicator; MBTI

1. Introduction

Self organizing maps (SOMs) or cognitive maps constitute a class of neural network grids
introduced in Reference [1]. In these grids neuron topology is closely related to their functionality.
Moreover, the unsupervised training is patterned after a modified Hebbian rule [2]. These two
fundamental properties allow SOMs to approximate the shape of a high dimensional manifold,
typically represented as a set of selected data points, and subsequently to construct a lower dimensional
and continuous topological map thereof. The latter provides an indirect yet efficient clustering
of the data points presented to the SOM during the training process. In turn, that makes SOMs
important components in many data mining pipelines in dimensionality reduction, clustering,
or visualization roles.

Human character dynamics are the focus of many research fields including psychology,
sociology, and cognitive sciences. The Myers-Briggs Type Indicator (MBTI) is among the most
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well-known classifictions of human personality according to four binary fundamental factors,
resulting in a total of sixteen possible personality types [3]. Understanding the psychological dynamics
of the individual members of a group is instrumental in minimizing or even avoiding non-productive
and time consuming frictions, while at the same time maximizing the group potential through efficient
task delegation, unperturbed and unambiguous communication, and effective conflict resolution.
These skills are crucial among other cases during the formation of startups, even more so when an
accelerator or an incubator are involved, in assemblying workgroups for accomplishing specific
missions, or during mentorship assignments [4]. These cases are indicative of the potential of
such methods.

Despite their increasing significance across a number of fields, the rapid evolution of natural
language processing (NLP) algorithms for estimating human emotional states [5,6], and the
development of sophisticated image processing algorithms for the identification of a wide spectrum
of cognitive tasks [7,8], there are still few algorithms for addressing the topic of inferring personality
dynamics from text as reported in Reference [9]. Additionally, the number of applications based on
tensor metrics are still few, which is the principal motivation of this work.

The primary research objective of this article is twofold. First, a multilinear weighted function is
used is the construction of the topological map as the data point distance metric. Tensors naturally
capture higher order interactions between explanatory variables, in this particular case the fundamental
personality traits of the MBTI model. Second, each data point is represented as a matrix and not
as a vector, which is currently the customary approach. This adds flexibility in at least two ways,
as not only inherently two-dimensional objects can be naturally represented but also one-dimensional
objects can have simultaneously more than one representations, which can be applied in cases where
object representations can be selected adaptively including aspect mining and multilevel clustering.
The tensor-based metric and the matrix representations are naturally combined to yield an SOM
algorithm operating on two-dimensional representations of personality traits indirectly represented
as text attributes. The latter are extracted from short texts from the Kaggle Myers-Briggs dataset.
In addition to the main SOM algorithm, a fuzzy one is developed where membership to at most two
clusters can be possible, provided that a given data point is close enough to both.

The remaining of this article is structured as follows. In Section 2 the recent scientific literature
regarding tensor distance metrics, cognitive maps, and computational cognitive science is briefly
reviewed. Section 3 describes the main points behind the MBTI theory. The SOM architecture is the
focus of Section 4. Section 5 discusses the attributes extracted from the dataset, the proposed tensor
distance metric, and the results of the experiments. Section 6 concludes this work by recapitulating
the findings as well as by exploring future research directions. Tensors are represented with capital
calligraphic letters, matrices with boldface capital letters, vectors with boldface lowercase letters,
and scalars with lowercase letters. When a function requires parameters, they are placed after the
arguments following a semicolon. Technical acronyms are explained the first time they are encountered
in text. Finally, the notation of this article is summarized in Table 1.
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Table 1. Notation of this article.

Symbol Meaning

4
= Definition or equality by definition
{s1, . . . , sn} or {sk}n

k=1 Set with elements s1, . . . , sn
|S| or |{s1, . . . , sn}| Set cardinality
×k Tensor multiplication along the k-th direction
vec (·) Vectorize operation for matrices and tensors
loc (·) Location function for data points
invloc (·) Inverse location relationship for neurons
weight (u) Synaptic weights of neuron u
bias (u) Bias of neuron u
Γ (u) Neighborhood of neuron u
∆ (u) Cover of neuron u
〈p1 || p2〉 Kullback-Leibler divergence between discrete distributions p1 and p2

2. Previous Work

Cognitive maps or self organizing maps constitute a special class of neural networks which
are trained in an unsupervised manner in order to form a low dimensional representation of a
higher dimensional manifold with the added property that important topological relationships are
maintained [1]. This map is progressively constructed by updating the neuron synaptic weights
through a modified Hebbian rule, which eliminates the need for gradient based training methods [10].
Their application to clustering objects in very large databases is thoroughly explored in Reference [11].
Fuzzy cognitive maps are SOMs where clusters are allowed to overlap [12]. Their properties are
examined in Reference [13]. Learning the rules of a fuzzy cognitive map can be done through genetic
algorithms [14,15], optimization algorithms [16,17], or compressed sensing [18]. SOMs have been
applied to clustering massive document collections [19], functional magnetic resonance images (fMRI)
based on attributes extracted from the discrete cosine transform (DCT) [20], prediction of distributed
denial of service (DDoS) attacks in software defined networks (SDN) [21], factory interdependencies
for Industry 4.0 settings [22], task pools for autonomous vehicles [23], and the drivers behind digital
innovation [24]. Moreover SOMs have been employed for a hierarchical clustering scheme for
discovering latent gene expression patterns [25] and gene regulatory networks [26]. Given that
the trained fuzzy cognitive maps can be represented as a fuzzy graph, clustering can be performed
by fuzzy community discovery algorithms [27–29]. In Reference [30] fuzzy graphs have been used
in a technique for estimating the number of clusters and their respective centroids. C-means fuzzy
clustering has been applied to epistasis analysis [31] and image segmentation [32]. An extensive review
for software about SOMs is given in Reference [33].

Tensor algebra is the next evolutionary step in linear algebra since it deals primarily with the
simultaneous coupling of three or more vector spaces or with vectors of three or more dimensions [34].
Also, tensors can be used in the identification of non-linear systems [35–37]. Tensors and their
factorizations have a wide array of applications to various engineering fields. Computationally
feasible tensor decompositions are proposed in Reference [38], whereas other applications to machine
learning (ML) are the focus of References [39–41]. In Reference [42] a third order tensor represents
spatiosocial Twitter data about the Grand Duchy of Luxembourg and is clustered by a genetic algorithm
to yield coherent districts both geographically and linguistically. Tensor stack networks (TSNs)
are clusters of feedforward neural networks (FFNNs) which can learn not only from their own
errors but also from those of other networks in the cluster [43]. TSNs have been applied to large
vocabulary speech recognition [44] and graph resiliency assessment [45]. Tensor distance metrics
have numerous applications across diverse fields including gene expression [46], dimensionality
reduction [47], and face recognition [48].

Distributed processing systems such as Apache Spark play an increasingly important role in
data mining (DM) and ML pipelines [49]. In Reference [50] the singular value decomposition (SVD)
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performs attribute transformation and selection and boosts the performance of various Spark MLlib
classifiers in Kaggle datasets. A similar role is played by higher order tensor factorizations [51]. Julia is
a high level programming language primarily intended for intense data management and scientific
computing applications [52]. Although interpreted, it offers high performance [53] as it is based on
the low level virtual machine (LLVM) infrastructure engine [54]. The capabilities and the respective
performance of the various ML models of Julia are described in Reference [55] especially over massive
graphics processing unit (GPU) arrays [56]. A numerical optimization package for Julia is described in
Reference [57], methods for parameter estimation for partial differential equations (PDEs) are discussed
in Reference [58], while the potential of a package for the simulation of quantum systems is explained
in Reference [59]. Recently a package for seismic inversion was introduced [60].

Emotions are drivers of human actions as well as major components of human personality.
The Myers-Briggs type indicator (MBTI) as explained among others in Reference [3] and Reference [61]
has been invented in order to create a methodological framework for quantitative personality
analysis [62]. This has been used in applications such as brand loyalty [63]. Also taking into account
the MBTI and their interactions can lead to significant improvements in teaching [64]. In contrast to
emotion models such as Plutchick’s emotion wheel [65] or the universal emotion or big five theory
proposed by Eckman in Reference [66], frameworks like MBTI offer a more general view of human
personality and allow the analysis of interaction between two or more persons. The connection
between cognitive functions and personality type is explored in Reference [4]. An overview of the
MBTI typology is given among others in Reference [67]. Finally, human emotional state can be
estimated in a number of ways. Among the most significant emotional indicators is speech, which
is relatively easy to capture and process since one dimensional signal processing methodologies
are used [68]. Other emotional state indicators include gait [69], facial cues [70], or a combination
thereof [71]. Alternatively, human emotional state can be estimated by brain imaging techniques [72].

The blueprints of a specialized cognitive system aiming at the reconstruction of events and scenes
from memory are given in Reference [73]. The role of augmented- (AR) and virtual reality (VR) for
cognitive training is investigated in Reference [74]. The principles and properties of cognitive tools
are the focus of Reference [75]. A more extensive approach including predictions for future cognitive
systems is that of Reference [76]. Brain-computer interface (BCI) collect biosignals related to brain
activity [77]. A detailed review of BCI signaling is given in Reference [78]. Convolutional neural
network (CNN) architectures in Reference [79] are used to extract temporal information about the
brain through BCIs, while age and gender classification with BCI is proposed in Reference [80].

3. Myers-Briggs Type Indicator

The MBTI taxonomy [3] establishes a framework for classifying the personality of an individual
along the lines of the theory developed earlier by the pioneering psychologist Karl Jung [67]. It is often
now routinely employed by human resources (HR) deparments around the globe in order to determine
ways to maximize total employee engagement as well as to identify possible friction points arising
by different viewpoints and approach to problem solving. At the core of the taxonomy are sixteen
archetypal personalities with unique traits. Each such personality type is derived by evaluating the
following four fundamental criteria [4]:

• Approach to socialization: Introvert (I) vs Extrovert (E). As the name of this variable suggests,
it denotes the degree a person is open to others. Introverts tend to work mentally in isolation and
rely on indirect cues from others. On the contrary, extroverts share their thoughts frequently with
others and ask for explicit feedback.

• Approach to information gathering: Sensing (S) vs Intuition (N). Persons who frequently resort
to sensory related functions observe the outside world, whether the physical or social environment,
in order to collect information about open problems or improve situational awareness belong to
the S group. On the other hand, persons labeled as N rely on a less concrete form of information
representation for reaching insight.
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• Approach to decision making: Thinking (T) vs Feeling (F). This variable indicates the primary
means by which an individual makes a decision. This may be rational thinking with clearly
outlined processes, perhaps in the form of corporate policies of formal problem solving methods
such as 5W or TRIZ, or a more abstract and empathy oriented way based on external influences
and the emotional implications of past decisions.

• Approach to lifestyle: Judging (J) vs Perceiving (P). This psychological function pertains to how a
lifestyle is led. Perceiving persons show more understanding to other lifestyles and may not object
to open ended evolution processes over a long amount of time. On the contrary, judging persons
tend to close open matters as soon as possible and are more likely to apply old solutions to
new problems.

As each of the above variables has two possible values, there is a total of sixteen possible
personality types in the MBTI model as mentioned earlier. These are listed in Table 2. Each of these
personality types is assigned a four-letter acronym which is formed by the corresponding predominant
trait of that character type with respect to each of the four basic variables.

Table 2. Myers-Briggs Type Indicator (MBTI) taxonomy (source: [61]).

Type Attributes Type Attributes

ISTJ Introversion, Sensing, Thinking, Judging INFJ Introversion, Intuition, Feeling, Judging
ISTP Introversion, Sensing, Thinking, Perceiving INFP Introversion, Intuition, Feeling, Perceiving
ESTP Extraversion, Sensing, Thinking, Perceiving ENFP Extraversion, Intuition, Feeling, Perceiving
ESTJ Extraversion, Sensing, Thinking, Judging ENFJ Extraversion, Intuition, Feeling, Judging
ISFJ Introversion, Sensing, Feeling, Judging INTJ Introversion, Intuition, Thinking, Judging
ISFP Introversion, Sensing, Feeling, Perceiving INTP Introversion, Intuition, Thinking, Perceiving
ESFP Extraversion, Sensing, Feeling, Perceiving ENTP Extraversion, Intuition, Thinking, Perceiving
ESFJ Extraversion, Sensing, Feeling, Judging ENTJ Extraversion, Intuition, Thinking, Judging

The above personality types are not equally encountered. On the contrary, a few types are
more frequently encountered than others. The most common personality type reported is ISFJ with
corresponds to 13.8% of the US population [3]. This corresponds to roughly twice the expected
frequency of 1/16 ≈ 6.25%. On the other hand, the less common MBTI type encountered is INTJ
with a frequency of 1.5% [64]. Among the reasons explaining this variance are educational system,
peer pressure, and adaptation to urban life and its associated socioeconomic conditions. As a sidenote,
it is worth mentioning that emotions are not noise in the system but rather complex motivational
mechanisms whose evolution has been driven, partly at least, by a combination of factors such as the
need for immediate action and cultural norms.

4. Cognitive Maps

Structurally, an SOM is a grid where each point is a neuron uk with adjustable synaptic weights
as well as an optional bias. These weights can be systematically trained to match selected patterns,
such as selected points of a manifold of higher dimensions. The latter is represented by a set V of n
training vectors or input points denoted as vj .Thus:

V
4
=
{

vj
}n

j=1 . (1)

Functionally, each SOM by construction connects two distinct spaces, namely the data space V
and the coordinate space C. The former space contains V, whereas the latter contains the vectors of
the neuron grid coordinates. Thus, SOMs offer dimensionality reduction by mapping points of V to C.
Additionally, C can be considered as way to cluster the original data points.

The representation of the coordinate space plays an instrumental role in SOM functionality.
The following definition describes the structure of C.
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Definition 1 (Neuron location). The location of a neuron uk is the vector containing the coordinates of the
neuron in the grid. The number of components is the dimension of the grid. Thus, for a two dimensional grid:

loc (uk)
4
=
[

xk yk.
]T
∈ C (2)

The set of data points assigned to a particular neuron uk is denoted by:

invloc (uk)
4
=
{

vj | loc
(
vj
)
= uk

}
⊆ V. (3)

There is a key difference between loc (·) and invloc (·). The former is a function as it maps one
data point to a coordinate vector, but the latter is a relationship since it maps a coordinate vector to a
set of data points. The synaptic weight vector wk ∈ V of neuron uk is denoted as follows:

weight (uk)
4
= wk ∈ V . (4)

The synaptic weight set wk for each neuron may also be supplemented with an optional bias bk
which acts as a safeguard against discontinuities in the resulting topological maps by driving inactive
neurons closer to active clusters. To this end, biases are not trained in the classic fashion of an FFNN.
Instead, they depend on the number of iterations where the neuron did not receive a synaptic weight
update. The bias of neuron uk is typically denoted as bias (uk). In contrast to the weight update rule,
the bias update does not depend on the proximity to the data points. Instead, as the role of bias is
to ensure that no unactivated neurons exist [81]. When a bias mechanism is implemented, then the
following two advantages are gained in exchange for a minimal SOM monitoring mechanism:

• All neurons are eventually activated and assigned to clusters, leaving thus no gaps to the
topological map. Thus all available neurons are utilized.

• Moreover, in the long run the number of neuron activations is roughly the same for each neuron.
For sufficiently large number of epochs each neuron is activated with equal probability.

In this article no such mechanism has been implemented.

Definition 2 (Epoch). An epoch is defined as the number of iterations necessary to present each input point
once to the SOM. Therefore, each epoch is a batch consisting of exactly n iterations.

During each epoch the order in which each data point is presented to the SOM may well vary.
Options proposed in the scientific literature include:

• Random order. In each epoch the data points are selected based on a random permutation of
their original order.

• Reverse order. In each epoch the previous order is reversed.

In this article the order of data points remains the same in each epoch.

4.1. Training

The distance function g (·, ·) measures distance in the data space V and, thus, serves as the
distance metric between pairs of synaptic weight vectors, data vectors, and between them. Its selection
is crucial to both the continuity of the final topological map as well as to the shape of the final clusters.
Formally, the distance function is defined as:

g (·, ·) : V × V → R∗ (5)

Choices for the distance metric may include:

• The `1 norm or Manhattan distance.
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• The `2 norm of Euclidean distance.

The training process is the algorithmic way for the SOM to learn the primary topological properties
of the underlying manifold. True to the long tradition of neural networks, training is indirectly reflected
in the change of the synaptic weights of the grid neurons. However, in sharp contrast to other neural
network architectures, gradient based methods are not necessary as only the distance between the data
point and the synaptic weights of neurons is needed. The SOM training is summarized in Algorithm 1.

The distance function mentioned earlier is central in the synaptic weight update and, hence, in the
SOM training process. The latter relies heavily on the Hebbian learning rule. In its original form this
rule states that only the winning neuron u∗ or best matching unit (BMU), namely the neuron whose
synaptic weight vector weight (u∗) is closest to the data point vj currently presented to the network.
Thus, u∗ is defined according to (6):

u∗
4
= argmin

{
g
(
weight (u) , vj

)}
. (6)

The neighborhood of a neuron are all the neurons in the grid which are found at a distance of one
from it. This raises two questions. First what is the pattern and second whether this pattern is allowed
to wrap around the grid limits. Options reported in the bibliography are:

• Square.
• Hexagon.
• Cross.

In this work the pattern is a cross formed by the four adjacent neurons located next to the given
neuron. Moreover, this pattern cannot wrap around.

Definition 3 (Neighborhood). For each neuron u the relationship Γ (u) returns the set of its neighboring neurons.

Γ (u)
4
=
{

u′ | u′ is adjacent to u
}

. (7)

Once the BMU u∗ is selected, its synaptic weights are updated as follows:

weight (u∗) [r]
4
= weight (u∗) [r− 1] + η [r] · (v [r]−weight (u∗) [r− 1]) . (8)

The learning rate η [r] during epoch r is a factor which plays a central role in the stability of the
training process, since as the epochs gradually progress, each activated neuron receives an increasingly
smaller reward in the form of a weight update. This ensures that initially neuron clusters are formed
and during later epochs these clusters are finer tuned but not really moved around. Common options
for the learning rate include:

• Constant rate: This is the simplest case as η [r] has a constant positive value of η0. This imples
η0 should be carefully chosen in order to avoid both a slow synaptic weight convergence and
missing the convergence. In some cases a theoretical value of η0 is given by (9), where λ† is the
maximum eigenvalue of the input autocorrelation matrix:

η0 =
2

λ† . (9)

• Cosine rate: A common option for the learning rate is the cosine decay rate as shown in (10),
which is in general considered flexible and efficient in the sense that the learning rate is initially
large enough so that convergence is quickly achieved but also it becomes slow enough so that no
overshoot will occur.

η [r]
4
= cos

(
πr
2r0

)
, 0 ≤ r ≤ r0 − 1. (10)
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In (10) the argument stays in the first quadrant, meaning that the η [r] is always positive.
However, the maximum number of epochs r0 should be known in advance. This specific learning
rate has the advantage that initially it is relatively high but gradually drops with a quadratic rate
as seen in Equation (11):

cos ϑ =
+∞

∑
k=0

(−1)k ϑ2k

(2k)!
= 1− ϑ2

2
+

ϑ4

4!
− ϑ6

6!
+ . . . ≈ 1− ϑ2

2
. (11)

To see what this means in practice, let us check when η [r] drops below 0.5:

η [r] ≤ 1
2
⇔ cos

(
πr
2r0

)
≤ cos

(π

3

)
⇒ πr

2r0
≥ π

3
⇔ r ≥ 2r0

3
. (12)

Thus, for only a third of the total available number of iterations the learning rate is above 0.5.
Alternatively, for each iteration where the learning rate is above that threshold there are two
where respectively it is below that, provided that the number of iterations is close to the limit r0.
Another way to see this, the learning rate decays with a rate given by (13):∣∣∣∣∂η [r]

∂r

∣∣∣∣ 4= ∣∣∣∣ ∂

∂r
cos

(
πr
2r0

)∣∣∣∣ = π

2r0

∣∣∣∣sin
(

πr
2r0

)∣∣∣∣ . (13)

• Inverse linear: The learning rate scheme of Equation (14) is historically among the first. It has a
slow decay which translates in the general case to a slow convergence rate, implying that more
epochs are necessary in order for the SOM to achieve a truly satisfactory performance.

η [r; γ0, γ1, γ2]
4
=

γ2

γ1r + γ0
. (14)

Now the learning rate decays with a rate of:∣∣∣∣∂η [r]
∂r

∣∣∣∣ 4= γ2γ1

(γ1r + γ0)
2 = O

(
1
r2

)
. (15)

In order for the learning rate to drop below 0.5 it suffices that:

η [r; γ0, γ1, γ2] ≤
1
2
⇔ r ≥ 2γ2 − γ0

γ1
. (16)

From the above equation it follows that γ1 determines convergence to a great extent.
• Inverse polynomial: Equation (17) generalizes the inverse linear learning rate to a higher

dimension. In this case there is no simple way to predict its behavior, which may well fluctuate
before the dominant term takes over. Also, the polynomial coefficients should be carefully selected
in order to avoid negative values. Moreover, although the value at each iteration can be efficiently
computed, numerical stability may be an issue especially for large values of p or when r is close
to a root. If possible the polynomial should be given in the factor form. Also, ideally polynomials
with roots of even moderate multiplicity should be avoided if r can reach their region as the lower
order derivatives of the polynomial do not vanish locally. To this end algorithmic techniques
such as Horner’s schema [82] should be employed. In this case:

η
[
r;
{

γj
}p+1

j=0 , p
] 4
=

γp+1

∑
p
j=0 γjrj

=
γp+1

γp ∏
p
j=1

(
r− ξ j

) . (17)
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For this option the learning rate decay rate is more complicated compared to the other cases as:

∣∣∣∣∂η [r]
∂r

∣∣∣∣ 4= γp+1

∣∣∣∑p
j=1 jγjrj−1

∣∣∣(
∑

p
j=0 γjrj

)2 = O
(

1
rp+1

)
. (18)

• Inverse logarithmic: A more adaptive choice for the learning rate and an intermediate selection
between the constant and the inverse linear options is the inverse logarithmic as described by
Equation (19). The logarithm base can vary depending on the application and here the Neperian
logarithms will be used. Although all logarithms have essentially the same order of magnitude,
local differences between iterations may well be observed. In this case:

η [r; γ0, γ1, γ2]
4
=

γ2

γ1 ln (1 + r) + γ0
. (19)

As r grows, the logarithm tends to behave approximately like a increasing piecewise constant for
increasingly large intervals of r. Thus, the learning rate adapts to the number of iterations and
does not require a maximum value r0. Equation (20) gives the rate of this learning rate:∣∣∣∣∂η [r]

∂r

∣∣∣∣ =
∣∣∣∣∣− γ2γ1

(1 + r) (γ1 ln (1 + r) + γ0)
2

∣∣∣∣∣ = O
(

1
r ln2 r

)
. (20)

In order for the learning rate to drop below 0.5 it suffices that:

η [r; γ0, γ1, γ2] ≤
1
2
⇔ r ≥ exp

(
2γ2 − γ0

γ1

)
− 1. (21)

Due to the nature of the exponential function all three parameters play their role in determining
the number of epochs.

• Exponential decay: Finally the learning rate diminishes sharper when the scheme of Equation (22)
is chosen, although that depends mainly on the parameter γ1:

η [r; γ0, γ1]
4
= γ0 exp (−γ1r) . (22)

The learning rate in this case decays according to:∣∣∣∣∂η [r]
∂r

∣∣∣∣ 4= γ0γ1 exp (−γ1r) = γ1η [r] . (23)

Therefore the learning rate decays with a rate proportional to its current value, a well
known property of the exponential function, implying this decay is quickly accelerated.
Additionally, in order for the learning rate to drop below 0.5 it suffices that:

η [r; γ0, γ1] ≤
1
2
⇔ r ≥ ln (2γ0)

γ1
. (24)

For each neighboring neuron u to u∗ its synapic weights are also updated as follows:

weight (u) [r]
4
= weight (u) [r− 1] + w (g (u, u∗)) · η [r] · (v [r]−weight (u) [r− 1]) . (25)

The additional weight w (·) depends on the distance between the BMU u∗ and the neuron u.
Equation (25) implies that the synaptic weight of the neighboring neurons also updated, which is a
deviation from the original Hebbian learning rule. This update operation is crucial in formulating



Mathematics 2020, 8, 1898 10 of 25

clusters in the final topological map. Note that the weight depends on the distance of the neuron u
from u∗ as measured by g (·, ·). Common weight functions for V include:

• Constant α0
• Rectangular with rectangle side α0
• Circular with radius ρ0
• Triangular with height h0 and base hb.
• Gaussian with mean µ0 and variance σ2

0

The proximity function h (·, ·) measures the distance of two neurons in the coordinate space C.
Notice that it differs from g (·, ·) since V and C are distinct spaces.

h
(
loc (u) , loc

(
u′
))

: C × C → R∗ (26)

Common proximity functions for C include:

• Rectangular with rectangle size α0.
• Circular with radius ρ0.
• Gaussian with mean µ0 and variance σ2

0

Definition 4 (Cover). The cover of a neuron u with respect to a threshold η0 is defined as that set of neurons
u′ for which the proximity function does not fall under η0.

∆ (u; η0)
4
=
{

u′ | h
(
u, u′

)
≥ η0

}
. (27)

The distinction between the neighborhood Γ (u′) and cover ∆ (u′; η0) of a neuron u′ is crucial
since the former corresponds to the core of a cluster which can be formed around u′ whereas the latter
corresponds to a portion of the periphery of that cluster determined by threshold η0. In most cases it
will hold that Γ (u′) ⊂ ∆ (u′; η0) since the periphery of a cluster is expected to contain more neurons
than merely the core.

Selecting the grid dimensions p0 and q0 is not a trivial task. There are no criteria in the strict sense
of the word, but some rules have been proposed in the literature. Here the following rule is used,
which stems from the information content of set V.

p0 = q0 = b0 dlog ne+ b1. (28)

4.2. Error Metrics

In this subsection the various performance and error metrics employed to monitor the evolution
of an SOM and the correctness of its functionality are explained. They cover various aspects ranging
from cluster topology to neuron activation frequency distribution.

Since topology and its partial preservation plays an important role in the training process of an
SOM, it makes perfect sense to use it as a performance metric. Specifically, the topological error counts
the fraction of data points which have not been assigned to the neighborhood of a neuron.

Definition 5 (Topological error). During epoch r the topological error is defined as the fraction of data vectors
assigned neither to a cluster center nor to its neighboring neurons. Formally, as shown in Equation (29):

e [r]
4
=

∣∣{vj ∈ V | loc
(
vj
)
6∈ C [r]

}∣∣
n

. (29)

Another parameter is the data point density ε0 which acts as an indicator of the average data
points corresponding to each grid point. Thus, each cluster is expected to have been approximately
assigned a number of data points close to the product of the density by the grid points of the cluster.
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Definition 6 (Data point density). The density is defined as the number of data points divided by the nunber
of neurons. In the case of a two dimensional grid this translates to the number of neurons divided by the product
of grid dimensions.

ε0
4
=

n
p0q0

≈ n

b3 dlog ne2
. (30)

Various combinations of neighborhood and weight functions can lead to various cluster shapes.
In theory, there is no restriction to their combination, although smooth cluster shapes are more desirable
in order to ensure a greater degree of continuity of the topological map. To this end, shapes like squares
and triangles are generally avoided in the SOM literary, whereas circles and Gaussian shapes are more
common. Known combinations are listed in Table 3.

Table 3. Cluster shapes (source: authors).

Neighborhood Weight Shape Neighborhood Weight Shape

Square Square Cube Triangular Triangular Pyramid
Square Triangular Pyramid Circular Semicircular Dome
Square Semicircular Dome Gaussian Gaussian 3D Gaussian

Now that all the elements have been explained, the basic SOM training is shown in Algorithm 1.

Algorithm 1 SOM training.

Require: data point selection policy, cognitive map size, and weight initialization policy
Require: termination criterion τ0 and maximum number of iterations policy τ1
Require: distance, proximity, and weight functions, cover, neighborhood, and their parameters
Ensure: the resulting cognitive map is continuous and partially preserves topology

1: initialize map T
2: repeat

3: for all data points vj ∈ V do

4: select a vj based on the selection policy
5: find the winning neuron u∗ as in (6)
6: update weight (u∗) as well as those of ∆ (u∗) based on (8) and (25) respectively
7: end for
8: until τ0 is met or iterations dictated by τ1 are reached
9: return T

5. Results

5.1. Dataset and Data Point Representation

The Myers-Briggs dataset stored in Kaggle contains short texts from a individuals describing their
own characters and describing how they believe others see them, either by mentioning important life
events, direct feedback given to them by peers, or self evaluation. Moreover, for each person there is
the MBTI taxonomy as given by a domain expert which will be used as the ground truth.

To avoid problems associated with class size imbalance, the original dataset was randomly pruned
so that each class had the same number of rows with the smallest class. This resulted in a total of C0

ground truth classes, one for each MBTI personality, each with N0 = 256 rows.
The attributes extracted from these texts are stored as the entries of the wide matrix M shown in

Equation (31). Table 4 explains each feature. Observe that each value is normalized with respect to
the total number of the occurrences in the dataset. This means that for each attribute the respective
minimum and maximum values were found and the numerical value of an attribute was expressed as
a percentage in that scale. Attributes are organized in two groups of Q0 features each where the first
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attribute group is related to how each person writes and the second attribute group pertains to his/her
emotional and thinking processes.

M
4
=

[
m1,1 m1,2 m1,3 m1,4 m1,5 m1,6

m2,1 m2,2 m2,3 m2,4 m2,5 m2,6

]
∈ R2×Q0 . (31)

Table 4. Extracted attributes.

Attribute Position in (31)

Normalized number of words m1,1
Normalized number of characters m1,2
Normalized number of punctuation marks m1,3
Normalized number of question marks m1,4
Normalized number of exclamation points m1,5
Normalized number of occurences of two or more ’.’ m1,6

Normalized number of positive words m2,1
Normalized number of negative words m2,2
Normalized number of self-references m2,3
Normalized number of references to others m2,4
Normalized number of words pertaining to emotion m2,5
Normalized number of words pertaining to reason m2,6

Algorithmic reasons for representing a data point as an attribute matrix instead of a vector include
the following:

• A point or even an entire class may be better represented by more than one vectors.
Thus, these vectors may be concatenated to yield a matrix.

• Higher order relationships between vectors cannot be represented by other vectors.

5.2. Proposed Metrics

Tensors are direct higher order generalizations of matrices and vectors. From a structural
perspective a tensor is a multidimensional array indexed by an array of p integers, where p is termed
the tensor order. Formally:

Definition 7 (Tensor). A p-th order tensor T , where p ∈ Z∗, is a linear mapping coupling p non necessarily
distinct vector spaces Sk, 1 ≤ k ≤ p. If Sk = RIk , then T ∈ RI1×...×Ip .

Perhaps the most important operation in tensor algebra is tensor multiplication which defines
elementwise the multiplication along the k-th dimension G = X ×k Y between the tensors X of order
p and Y of order q, k ≤ min {p, q} as shown below, provided that both tensors have the same number
of elements Ik along the k-th dimension:

Definition 8 (Tensor multiplication). The tensor multiplication along the k-th dimension denoted by X ×k Y
of two tensors X ∈ RI1×...×Ik−1×Ik×Ik+1×...×Ip and Y ∈ RJ1×...×Jk−1×Ik×Jk+1×...Jq of respective orders p and q
with k ≤ min {p, q} is a tensor G of order p + q− 2 elementwise defined as:

G
[
i1, . . . , ik−1, ik+1, . . . , ip, j1, . . . , jk−1, jk+1, . . . jq

] 4
=

Ik

∑
ik=1
X
[
i1, . . . , ip

]
Y
[
j1, . . . , jq

]
. (32)

For instance, the SVD of an arbitrary data matrix A ∈ RI1×I2 can be recast as:

A = UΣVT = Σ×1 U×2 V, Σ ∈ RIr×Ir . (33)
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As a special case a tensor-vector product X ×k v where X ∈ RI1×...×Ip and v ∈ RI
k is a tensor G of

order p− 1 elementwise defined as:

G
[
i1, . . . , ik−1, ik+1, . . . , ip

] 4
=

Ik

∑
ik=1
X
[
i1, . . . , ip

]
v [ik] . (34)

The Frobenius norm of a tensor T is defined as:

‖T ‖F
4
=

 I1

∑
i1=1

. . .
Ip

∑
ip=1
T
[
i1, . . . , ip

]2 1
2

. (35)

The proposed distance metric for two data points in V with the structure shown in (31) is:

g (M1, M2)
4
= ‖N ×1 (M1 −M2)×2 (M1 −M2)×3 (M1 −M2)‖F . (36)

In Equation (36) the weight tensor N contains the correlation of each attribute as extracted from
the dataset.

For the fuzzy SOM configurations the above distance is computed between each data point and
each cluster center. Then the data point is considered to belong to the two closest clusters. A schematic
of the proposed tensor metric is depicted at Figure 1.

Text

Attribute
matrix	i

Attribute
matrix	j

Weight	tensor

Attribute
Difference

Σ

+

-

Tensor
multiplication

Frobenius
norm

Figure 1. Schematic of the proposed metric (source: authors).

5.3. Experimental Setup

The available options for the various SOM parameters are shown in Table 5.
Given the parameters of Table 5 as a starting point, a number of SOMs were implemented.

Their respective configurations are shown in Table 6. In order to reduce complexity the proximity
function h (·, ·) has been chosen to be also the weight function w (·). Each SOM configuration is a tuple
with the following structure:

(p0, q0, g (·, ·) , h (·, ·) , w (·) , η [·]) . (37)

In Figure 2 the architecture of the ML pipeline which has been used in this article is shown.
Its linear structure as well as the relatively low number of adjustable parameters leads to a low
complexity.

The SOM clustering performance will be evaluated at three distinct levels. From the most general
to the most specific these are:

• Clustering quality: As SOMs perform clustering general metrics can be used, especially since
the dataset contains ground truth classes.

• Topological map: It is possible to construct figure of merits based on the SOM operating
principles. Although they are by definition SOM-specific, they nonetheless provide insight
on how the self-organization of the neurons takes place while adapting to the dataset topology.
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• MBTI permuations: Finally, the dataset itself provides certain insight. Although no specific
formulas can be derived, a qualitative analysis based on findings from the scientific literature.

Table 5. Options for the self organizing map (SOM) parameters (source: authors).

Parameter Options

Synaptic weight initialization Random
Bias mechanism Not implemented
Neighborhood Γ (u) shape Cross

Distance function g (·, ·) Tensor (T), Fuzzy tensor (F), `1 norm (L1), `2 norm (L2)
Proximity function h (·, ·) Gaussian (G), Circular (C), Rectangular (R)
Cover threshold η0 - Equation (27) 0.5
Weight function in C Gaussian, Circular, Rectangular (as above)
Gaussian µ0 = 0, σ2

0 = 8
Circular ρ0 = 4
Rectangular a0 = 4

Learning rate parameter Cosine (S), Inverse linear (L), Inverse quadratic (Q), Exponential (E)
Cosine r0 = 40
Inverse linear γ2 = 1, γ1 = 0.025, γ0 = 1
Exponential γ0 = 1, γ1 = 0.125

Grid size b0 and b1 - Equation (30) b0 ∈ {2, . . . , 8}, b1 = 0
Number of classes C0 16
Number of rows per class N0 256
Number of attributes 2Q0
Number of runs R0 100

Table 6. Indices of SOM configurations (source: authors).

# Configuration # Configuration # Configuration # Configuration

1 (p0, p0, L1, C, C, S) 10 (p0, p0, L2, C, C, S) 19 (p0, p0, T, C, C, S) 28 (p0, p0, F, C, C, S)
2 (p0, p0, L1, R, R, S) 11 (p0, p0, L2, R, R, S) 20 (p0, p0, T, R, R, S) 29 (p0, p0, F, R, R, S)
3 (p0, p0, L1, G, G, S) 12 (p0, p0, L2, G, G, S) 21 (p0, p0, T, G, G, S) 30 (p0, p0, F, G, G, S)
4 (p0, p0, L1, C, C, L) 13 (p0, p0, L2, C, C, L) 22 (p0, p0, T, C, C, L) 31 (p0, p0, F, C, C, L)
5 (p0, p0, L1, R, R, L) 14 (p0, p0, L2, R, R, L) 23 (p0, p0, T, R, R, L) 32 (p0, p0, F, R, R, L)
6 (p0, p0, L1, G, G, L) 15 (p0, p0, L2, G, G, L) 24 (p0, p0, T, G, G, L) 33 (p0, p0, F, G, G, L)
7 (p0, p0, L1, C, C, E) 16 (p0, p0, L2, C, C, E) 25 (p0, p0, T, C, C, E) 34 (p0, p0, F, C, C, E)
8 (p0, p0, L1, R, R, E) 17 (p0, p0, L2, R, R, E) 26 (p0, p0, T, R, R, E) 35 (p0, p0, F, R, R, E)
9 (p0, p0, L1, G, G, E) 18 (p0, p0, L2, G, G, E) 27 (p0, p0, T, G, G, E) 36 (p0, p0, F, G, G, E)

NLP SOMDataset Vectors

Figure 2. Architecture of the proposed pipeline (source: authors).

5.4. Topological Error

Because of the particular nature of the SOM, certain specialized performance metrics have been
developed for it. Perhaps the most important figure of merit of this category is the topological error.
The latter is defined in Equation (29). Figure 3 shows the average topological error as a percentage of
the total number of data points after R0 runs for each distance metric using the cosine rate. The reasons
for the selection of this particular rate will become apparent later in this subsection. The topological
error has been parameterized with respect to the SOM grid size as indexed by the parameter b0.
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Figure 3. Topological error vs b0 (source: authors).

From this figure it can be inferred that the fuzzy version of the proposed tensor distance metric
achieves the lowest topological error with the original tensor distance metric being a close second for
most of the values of b0. Although `2 clearly outperforms `1, the gap from the tensor based metrics
is considerable. Representing the topologically incorrectly placed data points as a percentage of the
total number of those in the dataset reveals how well the SOM can perform dimensionality reduction.
With respect to the parameter b0 there appears to be a window of b0 ∈ {5, 6, 7} where the topological
error is minimized. Also, it appears that for this particular dataset said window is independent from
the distance metric but this needs to be corroborated from further experiments.

An important metric is the distrubution of epochs before a satisfactory topological error is
reached. In particular, for each distance metric the deterministic mean I0 and variance σ2 are of interest.
Assuming for each such metric there were R0 runs and each run required rk epochs in total, then the
sample mean of the number of epochs is given by Equation (38):

I0
4
=

1
R0

R0

∑
k=1

rk. (38)

Notice that the sample mean of Equation (38) is in fact an estimator of the true stochastic mean of
the number of epochs. By computing the average of R0 samples, the estimation variance is divided
by
√

R0. This is typically enough to ensure convergence based on the weak law of large numbers.
Along a similar line of reasoning, the deterministic variance is similarly defined as in Equation (39).

Readers familiar with estimation theory can see this is the squared natural estimator of order two.

σ2
0
4
=

1
R0 − 1

R0

∑
k=1

(rk − I0)
2 . (39)

Table 7 contains I0 and σ2
0 for each learning parameter rate and each distance metric.

The remaining SOM parameters remained the same throughout these experiments in order to ensure
fairness. Specifically b0 was 5 and the proximity function was the Gaussian kernel.
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Table 7. Mean and variance of the number of epochs (source: authors).

Cosine Inv. linear Exponential

`1 norm I0 = 26.4417/σ2
0 = 12.3873 I0 = 27.500/σ2

0 = 16.8865 I0 = 33.1125/σ2
0 = 14.8873

`2 norm I0 = 22.3334/σ2
0 = 13.0228 I0 = 24.667/σ2

0 = 14.3098 I0 = 31.8333/σ2
0 = 15.5642

Tensor I0 = 18.8731/σ2
0 = 11.6686 I0 = 20.2504/σ2

0 = 12.7633 I0 = 26.0021/σ2
0 = 14.6574

Fuzzy I0 = 14.4457/σ2
0 = 12.1282 I0 = 18.3333/σ2

0 = 12.6645 I0 = 25.3333/σ2
0 = 14.0995

From the entries of Table 7 the following can be deduced:

• In each case the variance is relatively small, implying that there is a strong concentration of the
number of epochs around the respective mean value. In other words, I0 is a reliable estimator of
the true number of epochs of the respective combination of distance metric and learning rate.

• For the same learning rate the fuzzy version of the tensor distance metric consistently requires a
lower number of epochs. It is followed closely by the tensor distance metric, whereas the `2 and
`1 norms are way behind with the former being somewhat better than the latter.

• Conversely, for the same metric the cosine decay rate systematically outperforms the other
two options. The inverse linear decay rate may be a viable alternative, although there is a
significant gap in the number of epochs. The exponential decay rates results in very slow
convergence requiring almost twice the number of epochs compared to the cosine decay rate.

Notice that a lower number of epochs not only translates to quicker total response time, which is
of interest when scalability becomes an issue, but also denotes that the distance metric has captured
the essence of the underlying domain. This means that the SOM through the distance metric can go
beyond the limitation of treating each data point merely as a collection of attributes.

5.5. Clustering Quality

Since SOMs essentially perform clustering, it also makes sense to employ general clustering error
metrics in addition to the specialized SOM ones. Since the dataset contains ground truth classes,
the cross entropy metric H̄ can be used in order to evaluate overall performance by counting the
how many data points have been assigned to the wrong cluster. For the fuzzy version if one of
the two clusters a data point is assigned to is the correct one, it is considered as correctly classified.
In Figure 4 the normalized average cross entropy over R0 runs is shown.
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Normalized average cross entropy vs SOM index

Figure 4. Normalized cross entropy vs SOM index (source: authors).
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In case the ground truth classes were not available, as is the case in many clustering scenarios,
the average distance di,j between each possible distinct pair of clusters Ci and Cj is first computed. It is
defined as the distance over all points assigned to Ci from each point assigned to Cj as shown in (40):

di,j
4
=

1
|Ci|

∣∣Cj
∣∣ ∑

v∈Ci

∑
y∈Cj

g (x, y) . (40)

Then for the SOM configurations of Table 6 the average distance between clusters is defined as
the sum of the distances over all distinct cluster pairs averaged over the number of clusters as shown
in (41):

d̄
4
=

2
C0 (C0 − 1)

C0

∑
i=1

i

∑
j=2

di,j. (41)

In Figure 5 the normalized d̄ averaged over R0 runs is shown. Observe that SOM configurations
which use the proposed tensor metric yield a higher cluster distance, meaning that clusters can be
better separated. This can be attributed to the fact that bounds between clusters can have more flexible
shapes in comparison to the `1 and `2 norms.

0 10 20 30 40
1

1.2

1.4

1.6

1.8

2

SOM index

N
or

m
al

iz
ed

 a
ve

ra
ge

 c
lu

st
er

 d
is

ta
nc

e

Normalized average cluster distance vs SOM index

Figure 5. Normalized average cluster distance vs SOM index (source: authors).

5.6. MBTI Permutations

Another way of evaluating the clustering performance is by examining the natural interpretation
of the resulting cognitive map based on properties of the dataset. Although this method is the least
general since it is confined to the limits of a single dataset, it may lead to insights nonetheless,
especially when followed by high level inspection from domain experts. The approach presented
here stems from the observation that eventually each topolgical map is a permutation of Table 2.
Since topology plays an important role in the continuity of the map and in the overall clustering
quality, the form of the final tableau will be used. Specifically, the best map will be considered the
one whose distribution of data points is the closest to that of the original dataset. To this end the
Kullback-Leibler divergence will be used as shown in Equation (42):

〈p1 || p2〉
4
= ∑

k
p1 [k] log

(
p1 [k]
p2 [k]

)
= ∑

k
p1 [k] log p1 [k]−∑

k
p1 [k] log p2 [k] . (42)
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Notice that in Equation (42) the distributions p1 and p2 are not interchangeable. Instead, p1 acts a
template, whereas p2 as a variant or an approximation thereof. In other words, the Kullback-Leibler
divergence quantifies the difference of substituting p1 with p2. The leftmost part of Equation (42) is
the difference of the cross-entropy between p1 and p2 from the entropy of p1. Also, the index k ranges
over the union of the events of both probabilities.

As stated earlier, the original Kaggle dataset was randomly sampled such that classes are balanced.
Therefore, a proper topological map should have the same number of data points across all clusters.
One way to measure that is to compute the Kullback-Leibler divergence of the distribution of data
points assigned to clusters from the uniform distribution. Tables 8 and 9 show the topological maps
achieving the minimum and the maximum divergence.

Table 8. Clustering attaining the minimum divergence (source: authors).

ISTJ ISFJ INFJ INTJ
ISTP ISFP INFP INTP
ESTP ESFP ENFP ENTP
ESTJ ESFJ ENFJ ENTJ

It comes as no surprise that the topological map achieving the least divergence is in fact the
original Briggs-Mayers map, namely Table 2. Notice that in this map each personality differs only by
one trait from its neighboring ones. This is reminiscent of the Gray numbering scheme. Perhaps this
structure leads to robustness and to higher overall clustering quality. On the contrary, the map with
the largest divergence looks more like a random permutation of Table 2. Moreover, the number of
traits a type differs from its neighboring ones varies.

Table 9. Clustering attaining the maximum divergence (source: authors).

ENFJ ISFP ENFJ ESFP
ISTJ INTP ESTJ ISFJ
INTJ INFJ ENTP ISTP
ESFJ ENTJ ESTP ISFP

For each SOM configuration and for each of the R0 runs, each with a different subset of the
original dataset, the resulting cognitive map the Kullback-Leibler divergence as described above was
recorded. Then for each SOM configuration the average was computed and then each such average was
normalized by dividing them with the minimum of them. This provides an insight on the clustering
robustness of each map. In Figure 6 the normalized divergences averaged over R0 runs are shown.

From Figure 6 it follows that the tensor-based SOM configurations have an almost uniform low
Kullback-Leibler divergence from the uniform distribution. Therefore, they achieve better clustering
of at least most of the R0 available subsets.
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Figure 6. Normalized divergence vs SOM index (source: authors).

5.7. Complexity

The complexity of the proposed method in comparison to that of the norm based methods will
be examined here. Figure 7 shows the normalized number of floating point operations for each of
the SOM configurations of Table 6 over R0 iterations. Every operation count has been divided by the
minimum one in order to reveal the difference the order of magnitude.
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Figure 7. Normalized number of floating point operations vs SOM index (source: authors).

Figure 8 shows the average total execution time for each SOM configuration of Table 6 over R0

iterations. A similar normalization with that described earlier took place here. Specifically, for each
SOM configuration the total execution time averaged over all R0 subsets of the original dataset was
computed. Then, each such average was divided by the minimum one, yielding thus a measure of
their relative performance.
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Figure 8. Normalized total execution time vs SOM index (source: authors).

From Figures 7 and 8 it can be deduced that the added cost in floating point operations necessary
for the tensor metrics is partially absorbed by the lower number of iterations. Thus, despite their
increased nominal complexity, tensor based metrics remain competitive at least in terms of the total
execution time.

5.8. Discussion

Based on the results presented earlier, the following can be said about the proposed methodology:

• The cosine decay rate outperforms the inverse linear and the exponential ones. This can be
explained by the adaptive nature of the cosine as well as by the fact that the exponential function
decays too fast and before convergence is truly achieved.

• Partitioning clusters in Gaussian regions results in lower error in every test case. This is explained
by the less sharp shape of these regions compared to cubes or domes. Moreover, with the tensor
distance metrics, which can in the general case approximate more smooth shapes, the cluster
boundaries can better adapt to the topological properties of the dataset.

• The fuzzy version of the tensor distance metric results in better performance, even a slight one,
in all cases. The reason for this may be the additional flexibility since personalities sharing traits
from two categories can belong to both up to an extent. On the contrary, all the other distance
metrics assign a particular personality to a single cluster.

• The complexity of the tensor metrics in terms of the number of floating point operations involved
is clearly more than that of either the `1 and the `2 norm. However, because of the lower number
of iterations that difference is not evident in the total execution time.

The most evident limitations of the proposed methodology, based on the preceding analysis,
are the following:

• The interpretability of the resulting cognitive map is limited by the texts of the original dataset,
which in turn are answers to specific questions. Adding more cognitive dimensions to these texts
would improve personality clustering quality.

• Although the MBTI map is small, for each cognitive map there is a large number of equivalent
permutations. Finding them is a critical step before any subsequent analysis takes place.

• The curent version of the proposed methodology does not utilize neuron bias.
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Several approaches have been reported in the cognitive science domain regarding the MBTI
taxonomy. It should be noted that the results presented here regarding the distribution of the MBTI
permutations are similar to those reported in Reference [83]. Moreover, the computational results agree
with the principles for cognitive tools set forth in Reference [75].

Regarding complexity, the number of iterations required to construct the topological maps for
similar map sizes are close to those reported in Reference [33]. Also the iterations obtained here are in
the same order of magnitude with those of Reference [32], where fuzzy C-means is used for image
partitioning, which is a comparable method the SOMs.

5.9. Recommendations

Once the algorithmic tools are available for clustering personalities based on text derived attributes
according to the MBTI taxonomy, the following points should be taken into consideration:

• Text, despite being an invaluable source of information about human traits, is not the only one.
It is highly advisable that a cross check with other methods utilizing other modalities should take
place.

• In case where the personalities of two or more group members are evaluated, it is advisable that
their compatibility is checked against the group tasks in order to discover potential conflict points
or communication points as early as possible.

6. Conclusions and Future Work

This article focuses on a data mining pipeline for a cognitive application. At its starting stage
natural language processing extracts keywords from plain text taken from the Kaggle Myers-Briggs
open dataset. Each personality is represented as a wide attribute matrix. At the heart of the pipeline
lies a self organizing map which is progressively trained with various combinations of learning rates,
neighborhood functions, weight functions, and distance metrics to construct a cognitive map for
the sixteen different personality types possible under the Myers-Briggs Type Indicator. The latter is
a widespread taxonomy of human personalities based on four primary factors which is frequently
used to describe team dynamics and exploit the full potential of interplay among diverse individuals.
The novelty of this work comes from separating the linguistic attributes to categories depending on
their semantics and using a tensor distance metric to exploit their interplay. Particular emphasis is
placed on two aspects of the cognitive map. First, a multilinear distance metric is compared to the `1

and the `2 norms, both common options in similar scenarios. Second, a fuzzy version of this metric has
been developed, allowing pairwise cluster overlap. The outcome of the experiments suggest that doing
so leads to lower error metrics. The latter can be attributed to the added flexibility for personalities
sharing traits from up to two archetypal personality types.

The work presented here can be extended in a number of ways. Regarding the algorithmic part,
more specialized tensor distance metrics can be developed for various fields. For instance, in a social
network analysis application the distance between two accounts can include connectivity patterns
or semantic information extracted from the hashtags of the respective tweets. Moreover, clustering
robustness should be investigated. The question of unbalanced classes should be addressed, either for
the original dataset or in a more general context.
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