
A Graph Neural Network For Assessing The Affective Coherence Of Twitter Graphs

Georgios Drakopoulos
Ionian University

Dept. of Informatics
c16drak@ionio.gr

Ioanna Giannoukou
University of Patras

School of Mgt. Science and Tech.
igian@upatras.gr

Phivos Mylonas
Ionian University

Dept. of Informatics
fmylonas@ionio.gr

Spyros Sioutas
University of Patras

CEID
sioutas@ceid.upatras.gr

Abstract—Graph neural networks (GNNs) is an emerging class
of iterative connectionist models taking full advantage of the
interaction patterns in an underlying domain. Depending on
their configuration GNNs aggregate local state information to
obtain robust estimates of global properties. Since graphs in-
herently represent high dimensional data, GNNs can effectively
perform dimensionality reduction for certain aggregator selec-
tions. One such task is assigning sentiment polarity labels to the
vertices of a large social network based on local ground truth
state vectors containing structural, functional, and affective
attributes. Emotions have been long identified as key factors
in the overall social network resiliency and determining such
labels robustly would be a major indicator of it. As a concrete
example, the proposed methodology has been applied to two
benchmark graphs obtained from political Twitter with topic
sampling regarding the Greek 1821 Independence Revolution
and the US 2020 Presidential Elections. Based on the results
recommendations for researchers and practitioners are offered.

Index Terms—graph neural networks, social graph resiliency,
affective coherency, linked data, high dimensional data

1. Introduction

In the connected era social networks arguably play an in-
strumental role in reflecting and even shaping up to an extent
the public sentiment regarding various social, political, cul-
tural or even historical events [1]. Twitter encourages short
replies and high interaction between its accounts and has
been steadily playing a central role in elections worldwide
such as the 2016 US Republican (or GOP) party elections
and later that year the US presidential elections [2] [3].

Large scale graph resiliency can take many forms de-
pending mainly on the application and the information
available. For instance, for graph signal processing (GSP)
graph topology correlation [4] or a long short term memory
(LSTM) network [5] may be suitable, whereas for long
supply chains the knowledge of flows and capacities in light
of the max-flow-min-cut theorem [6] may be appropriate.
For social networks the overall sentiment polarity has been
proposed as an important coherence factor [7] [8]. To this
end affective models like the emotion wheel [9] or the uni-
versal emotion theory [10] have been progressively adapted

to describe individual online behavior in various contexts.
This appears to be especially true in Twitter where among
others irony, inflammatory comments, apophegmatic retorts,
and bots with affective programming have been reported to
elicit different emotional responses across accounts [11].

Graph neural networks (GNNs) are connectionist models
which can efficiently learn global properties by iteratively
updating local state vectors assigned to vertices or edges.
Compared to other neural network (NN) architectures they
tend to exhibit scalability and robust generalization of local
states. Moreover, existing affective coherency models for
large graphs either lack scalability [12] or do not properly
consider the linked nature of social graphs [13]. This is the
twofold principal motivation behind this work.

The primary research contribution of this conference
paper is an iterative GNN architecture locally aggregating
vertex state vectors comprising of structural, functional, and
affective attributes in order to obtain vertex labels pertaining
to the respective emotional polarity. The latter has been
identified as a key factor for the overall social network
resilience. Two large benchmark graphs obtained from the
political Twitter serve as an illustration point, whereas their
structural and functional properties are extensively studied.
As a secondary objective, based on the results recommen-
dations are given for researchers and practitioners.

The remainder of this work is structured as follows.
In section 2 the recent scientific literature regarding graph
resilience metrics and neural network architectures is briefly
overviewed. The proposed methodology is explained in
detail in section 3. In section 4 the experimental setup is
described and the results of the benchmark social graphs
along with practical recommendations based on the exper-
imental findings are given. Section 5 concludes this work
by recapitulating the main results and outlining possible
future research directions. Random variables are represented
by capital calligraphic, matrices by capital boldface, and
vectors by small boldface letters. Technical acronyms are
explained the first time they are encountered in the text.
Finally, the notation of this work is summarized in table 1.

2. Previous Work

GNNs are a class of iterative connectionist models which
capture the dependencies of an underlying domain and
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TABLE 1. NOTATION OF THIS CONFERENCE PAPER.

Symbol Meaning First in
4
= Equality by definition Eq. (1)
|S| Set or tuple cardinality Eq. (9)
deg (v) Degree of vertex v Eq. (9)
E [X ] Expected value of r.v. X Eq. (13)
Var [X ] Variance of r.v. X Eq. (14)
µ [X ] Skewness of r.v. X Eq. (16)
κ [X ] Kurtosis of r.v. X Eq. (17)
det (M) Determinant of matrix M Eq. (24)
In n× n identity matrix Eq. (28)
On n× n zero matrix Eq. (30)
sgn (x) Sign of scalar x Algo. (1)

construct global property estimators from individual ground
truth state vectors. Higher order GNNs are introduced in
[14], capsule GNNs have been proposed in [15], and few-
short learning scenarios in [16]. Applications include so-
cial recommendation [17] and graph contrasting coding
for learning graph representations [18]. Finally, two recent
comprehensive reviews on the field are [19] and [20].

Other recent architectures include recurrent neural net-
works (RNNs) [21]. The primary characteristic is that con-
nections in RNNs form temporal sequences which also serve
an mineable patterns [22]. Applications include affective
document classification [23], human activity recognition
[24], and geometric matrix completion [25].

Convolutional neural networks (CNNs) rely heavily on
local weighted and delayed feedback [26]. Predicting the
physical trajectory of social agents, whether humans or
autonomous vehicles, based on local smoothness constraints
[27] and sound classification based on attributes extracted
by signal processing techniques [28] are two applications.

Tensor stack networks (TSNs) consist of clusters of
feedforward neural networks (FFNNs) where each network
in the cluster receives a synaptic weight update based not
only on its own local error gradient but also on that of
other networks in the cluster [29]. As their name suggests,
tensors are their basic building blocks [30]. TSNs have been
proposed for graph resiliency [31], gesture interpretation
[32], and face recognition [33]. For a TSN toolkit see [34].

Self organizing maps (SOMs) constitute a class of neu-
rons arranged in a low dimensional grid and trained in an
unsupervised manner based on a modified Hebbian rule [35].
SOMs are designed to learn the topology of an underly-
ing higher dimensional manifold [36]. Applications include
clustering large databases [37], learning functional magnetic
resonance images (fMRI) [38], interpreting gene expressions
[39], and denoising industrial images [40].

3. Proposed Method

3.1. Graphs As High Dimensional Data

High dimensional data are frequently generated across a
broad spectrum of fields ranging from digital medicine and
smart city management to finance, e-commerce, space ex-
ploration, and social media. Data dimensionality as well as

variability, including missing fields, depends heavily on the
underlying field. Nonetheless, the fundamental goal remains
essentially the same, namely the description of time-varying
entities from different perspectives and possible at various
levels of granularity as deemed appropriate.

Social networks are no exception to this rule as they
model entities, either individuals or organizations, at Internet
scale. Additionally, social graphs, and any type of graphs for
that matter, can inherently represent high dimensional data
in a recursive and distributed way. Indeed, local information
can be augmented with that of connected entities or with
information obtained from the local digital communities
in order to yield a better sketch of the entity under con-
sideration. Additionally, information from entities can be
combined in a bottom-up manner in order to construct a
description of the community comprising of these entities.

3.2. Graph Resiliency Evaluation

GNNs start only with knowledge of a locally valid
ground truth expressed as a state vector of finite length.
In the most common GNN variants such vectors are only
assigned to vertices, as is the case here. Then GNNs move
gradually from this initial information to a robust global
property estimators through an iterative process, implying
that a termination criterion must be carefully designed to
understand when a steady state is reached. These estimators
eventually depend not only on the state vectors but on the
local connections as well. Concerning the former, the pro-
posed scheme combines the following categories of features:

• Structural: Nearly all interaction including commu-
nication and replies in a conversation occur over a
social graph. The latter is maintained by explicit
follow relationships. Since they are one-way, their
direction is an important information offering higher
granularity compared to two-way relationships like
those in Facebook. Although they do not carry sig-
nificant affective potential, they can denote strong
connection or lack thereof between two accounts.

• Functional: These attributes pertain to the online
activity itself. However, they are indirectly or even
remotely related to the affective status of the respec-
tive account. Thus they are also considered neutral
in terms of affective potential.

• Affective: The affective interaction in Twitter and
its affective aspects are captured by these attributes.
Typically both their sign and magnitude are impor-
tant to fully understand the emotional polarity of
the respective account. In most cases they are easy
to determine as most accounts, especially in Twitter,
are quite expressive –and occasionally vociferous.

The state vector sk associated with each vertex vk ∈
V has the structure shown in equation (1). It comprises of
attributes for each of the above categories. Specifically, the
first two components are structural (r1,k and r2,k), followed
by five functional (f1,k to f5,k), and three more affective
ones (a1,k to a3,k). Although in the general case state vector



components may well be signed, here sk will contain only
non-negative ones. Attributes have been selected based on
recent scientific literature recommendations [8] [2] [11] and
their meaning is explained in table 2.

sk
4
=
[
r1,k r2,k f1,k . . . f5,k a1,k . . . a3,k

]T
(1)

The proposed GNN is seeks to find a label l̂k for each
vk indicating its emotional polarity, which is an estimator
of the inaccessible true polarity label lk. To achieve this
computational goal, not only the local information stored in
a vertex will be exploited, but also the particular connectivity
patterns. In turn this allows the GNN to take full advantage
of neighboring state vectors. Moreover, the connection itself
is treated as additional latent information in the aggregator.

TABLE 2. VERTEX STATE ATTRIBUTES.

Attribute Meaning
r1,k Number of follow relationships
r2,k Number of inverse follow relationships
f1,k Number of tweets
f2,k Number of retweets
f3,k Number of hashtags in tweets and retweets
f4,k Number of mentions
f5,k Number of replies
a1,k Number of positive hashtags
a2,k Number of negative hashtags
a3,k Number of neutral hashtags

The original label l[0]k for each vk is set to the appropriate
value as shown in equation (2). The three individual hashtag
fractions are determined by the natural language processing
(NLP) procedure and of algorithm 1, hence, these starting
labels will be refered to as the NLP labels. Observe that
these labels are first order estimates.

l
[0]
k

4
=


a1,k

a1,k + a2,k
a1,k > a2,k

− a2,k
a1,k + a2,k

a2,k > a1,k

0 a1,k = a2,k

∈ [−1, 1] 4
= I0 (2)

Computing the affective sign of a hashtag h0 requires
determining the sign of the difference between the positive
and the negative words of it as shown in algorithm 1.

Algorithm 1 Assigning affective polarity to hashtags
Require: Hashtag h0 coded as a case-sensitive string
Ensure: Sentiment polarity of h0 is computed

1: set counter c0 to zero
2: for all words w of h0 do
3: if w is positive according to SentimentAnalysis then
4: add one to c0
5: else if w is negative then
6: subtract one from c0
7: end if
8: end for
9: return sgn (c0)

In the j-th iteration labels are updated as in (3):

l
[j]
k = ϕ

(
β0
2
l
[j−1]
k +

β0
2

∑
i

γiδi,kl
[∗]
i

)
(3)

The summation takes place over every neighboring vertex vi
of vk, where the follow direction is ignored. The iteration
index ∗ means that if a label has been updated, then the
new label is used. The local label receives as much weight
as that of the combined beighborhood effect. This prevents
vertices, especially the influential ones, to be overtaken by a
large neighborhood merely because of the size of the latter.

In equation (3) γi is the followers-to-all ratio of (4):

γi
4
=

r2,i
r1,i + r2,i

(4)

Also δi,k is a coefficient denoting online influence as in (5):

δi,k
4
=

1

3

(
f1,i

f1,i + f2,i
+

f4,i
f4,i + f5,i

+
f3,i

f3,i + f3,k

)
(5)

The first fraction denotes the fraction of the original content
vi generates by tweeting to the total content it forwards to
its connections by tweeting and retweeting. Along a similar
line of reasoning, the second fraction measures how many
replies are specifically directed to vi in contrast to casual
mentions. The third fraction connects vi with vk through
pairwise hashtag coherency regardless of affective polarity.

The function ϕ(·) is the hyperbolic tangent of equation
(6). It is strongly non-linear, smooth, and maps R to I0.

ϕ(ϑ;β0)
4
= tanh (ϑ;β0) =

eβ0ϑ − eβ0ϑ

eβ0ϑ + eβ0ϑ
(6)

Notice that scaling by β0 is necessary in order to transform
I0 to a domain where ϕ(·) practically takes all values in I0.
For the purposes of this work β0 = 5 has been selected.

Since the proposed GNN works iteratively, the conver-
gence conditions must be set. The first derivative of the
hyperbolic tangent satisfies the condition of equation (7),
which places a growth rate cap close to the bounds of I0.

ϕ̇(ϑ;β0) = β0
(
1− ϕ2(ϑ;β0)

)
(7)

Also, ϕ(·) satisfies the Brouwer fixed point theorem. The
latter states that if a mapping f : I → I is continuous and
the interval I is closed there is one x∗ ∈ I such that:

x∗ = f(x∗) (8)

The relative steady state difference will track convergence.
It is the number of labels which have changed more than a
threshold η0 between two iterations to the number of labels.
When it is under a threshold η1, the iteration terminates.

Algorithm 2 summarizes the operation of the GNN.



Algorithm 2 The proposed GNN
Require: State vectors as in equation (1)
Ensure: Robust affective polarity labels {lk}

1: obtain intial labels
{
l
[0]
k

}
from algorithm 1

2: repeat
3: for all vertices vk do
4: update local label lk as in equation (3)
5: end for
6: until the relative steady state difference drops under η1
7: return labels {lk}

Crawler

Controller

Tweets

Twitter

Twitter	API

Analytics

Control

Data

Figure 1. Proposed system architecture.

4. Results

4.1. Experimental Setup

This section describes the infrastructure used to obtain
and process the two benchmark graphs. Figure 1 depicts the
components well as the various interactions between them.

The experimental setup is shown in table 3. It contains
any parameters which do not directly influence the execution
of the GNN itself as previously described but still they play
a central role in the results of the experiments.

TABLE 3. EXPERIMENTAL SETUP.

Parameter Value
Label change threshold η0 0.05
Relative steady state threshold η1 0.05
Number of runs R0 1000
Data subset starting size 10% with increments of 10%
Subset selection policy Random

In order to verify the Twitter application the two OAuth
developer keys were obtained for the account running the
application and two more for the application itself.

Although algorithmic bias in social media searches is
not the focus of this work, the best practice guidelines set
forth in [41] and in [42] were integrated into the crawler.

4.2. 1821 Graph

2021 marks an important milestone from the Greek Rev-
olution of Independence of 1821. Although many celebra-
tions are expected to be canceled because of the still raging
COVID-19 pandemic, Twitter activity about the events still
schedules as well as about the anniversary itself has soared.

The synopsis for the 1821 graph is given in table 4. It
shows from top to bottom basic structural, advanced struc-
tural, and functional properties. Among structural properties
higher order ones are of special interest since they are
activity indicators among account groups. Specifically [43]:

• Triangles are of order three for vertices and edges.
They constitute the smallest possible communities.

• Squares are of order four for vertices and edges.
They are loose communities of size four.

• Four-cliques are of order four for vertices and six
for edges. They are tight communities of size four.

TABLE 4. 1821 GRAPH SYNOPSIS.

Property Value
Number of vertices |Vh| 132.317
Number of edges |Eh| 2.225.177
Density ρh / Log-density ρ′h 16.8170 / 1.2393
Completeness ξh / Log-completeness ξ′h 2.54E−4 / 0.6196
Number of triangles Th 446.513
Number of squares Sh 215.387
Number of cliques of size four Ch 102.044
Graph diameter Lh 10
Percentage of vertices reachable at Lh − 1 95.33%
Percentage of vertices reachable at Lh − 2 93.26%
Percentage of vertices reachable at Lh − 3 89.11%
Percentage of vertices reachable at Lh − 4 84.73%
Number of favorites Fh 36.994.815
Number of tweets Wh 17.465.844
Number of buckets Bh dWhe
Sampling interval 8/2020-10/2020

In table 4 the graph density ρh is defined as the ratio of
the number of the edges to the number of vertices. Because
of the Euler graph forumla, density is also an approximation
of the average graph degree as shown in equation (9):

ρh
4
=
|Eh|
|Vh|

=
2

|Vh|
∑
vk∈Vh

deg (vk) (9)

The log-density ρ′h is similarly defined as the ratio of
the respective order of magnitudes of the number of edges
to the number of vertices as shown in equation (10):

ρ′h
4
=

ln |Eh|
ln |Vh|

(10)

The completeness ξh of a graph is defined as the ratio of
the edges of a graph to the edges of a fully connected graph
with the same number of vertices as shown in equation (11):

ξh
4
=
|Eh|(|Vh|

2

) =
2|Eh|

|Vh|(|Vh| − 1)
≈ 2ρh
|Vh|

(11)



Also the log-completeness ξ′h is defined as the order of
magnitude of the edges of a graph to that of the edges of a
fully connected graph with the same number of edges (12):

ξ′h
4
=

ln |Eh|
ln
(|Vh|

2

) =
ln |E|

ln |Vh|+ ln (|Vh| − 1)− ln 2
≈ ρ′h

2
(12)

Based on the entries of table 4 the 1821 benchmark
graph is simultaneously very compact and quite active. Also
it abounds with hashtags, which have an elevated semantic
importance compared to ordinary tweet terms [44].

The hashtag frequency scree plot is shown in figure 2.
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Figure 2. Scree plot for the 1821 graph.

The expected value of the number of hashtags per tweet
Ih as counted by the r.v. H is computed as in equation (13):

Ih
4
= E [H] ≈ 1

Wh

Wh∑
k=1

hk (13)

In the above equation Wh is the total number of tweets in
the graph and hk is the number of the hashtags of the k-
th such tweet. Notice that the rightmost side of equation
(13) is the sample mean, namely an estimator in the strict
signal processing sense of the true stochastic mean of H.
However, since the actual probability theoretic properties of
H are unknown, the sample mean will be used as under
mild assumptions it converges in the mean to E [H].

The variance σ2
h of Var [H] is also approximated by the

sample variance or the natural estimator as shown in (14):

σ2
h

4
= Var [H] ≈

√√√√ 1

Wh − 1

Wh∑
k=1

(hk − Ih)2 (14)

Once Ih and σ2
h are obtained the first question is whether

hashtag frequency distribution is Gaussian as in (15):

fH(h)
4
=

1

σh
√
2π

exp

(
− (h− Ih)2

2σ2
h

)
(15)

This distribution is appealing for the following reasons [45]:

• It has the maximum differential entropy among the
distributions of the same variance. Thus, it explains
many probabilistic scenaria under this constraint.

• Because of the central limit theorem (CLT), the
Gaussian distribution can effectively model the be-
havior of a large sum of independent r.vs.

Table 5 presents the results from the four normality tests
of [46], which are all negative. A possible explanation for
this could be that the hashtags are not chosen independently
by Twitter accounts but instead there is high dependency
based on hashtag popularity, whether they belong to trend-
ing topics, and replies and mentions from other accounts
[47]. External events tend also to be treated similarly by
sociopolitically aligned accounts and, therefore, there is a
significant hashtag overlap [48]. Moreover, partly because
of the Zipf law of minimum effort [49] or the homophily
phenomeon encountered in social networks [50], accounts
tend to copy the hashtags of aligned opinion leaders [51].

TABLE 5. GAUSSIANITY RESULTS FOR TEST GRAPHS.

Test name 1821 US2020
Kolmogorov-Smirnov No No
Lilliefors No No
Anderson-Darling No No
Shapiro-Wilk No No

Given the negative Gaussianity results of table 5, other
ways to describe H had to he sought. A possible option
lies in the direction of analysis carried out in [43] for
understanding the performance of two graph searches for
discovering trusted candidates for startups in LinkedIn.

First, the skewness µ [H] of H is computed as in (16):

µ [H] 4
= E

(H− E [H]√
Var [H]

)3 (16)

For unimodal distributions with finite variance the skew-
ness sign has the followng interpretation:

• When skewness is zero, the distribution is balanced.
• When it is positive, then the right tail is heavier.
• When it is negative, then the left tail is heavier.

Additionally, the kurtosis of H is computed as in (17):

κ [H] 4
= E

(H− E [H]√
Var [H]

)4 =
E [H− E [H]]4

Var [H]2
(17)

Kurtosis is also related to the mass of the tails of a distribu-
tion. It is an indicator of the frequency of outlier generation
in comparison to the Gaussian distribution.

The results for both benchmark graphs are shown in
table 6. The column labeled Uni. indicates whether the cor-
responding distribution is unimodal, which is instrumental
for interpreting the values of skewness and kurtosis. The
respective mean hashtag value for the US2020 graph is
higher while both benchmark graphs have approximately the



same variance (σh and σg). This means that tweets from the
US2020 graph are expected to have more hashtags on the
average. Moreover, the US2020 graph is more skewed and is
prone to generate more outliers compared to the 1821 graph.
This could be an indication that the former has conversations
with more hashtags and that many of them are infrequent.

TABLE 6. SKEWNESS AND KURTOSIS FOR BENCHMARK GRAPHS.

Graph Uni. Ih/Ig σh/σg µ [H] κ [H]
1821 Yes 131.3333 821.8511 3.6518 3.5542
US2020 Yes 154.5000 813.3334 3.8994 3.9817

Another way to characterize the behavior of H is to
construct the scree distribution, namely the frequency of
its values vs their respective rank. Along a similar line of
reasoning, the log-scree distribution is the logarithm of the
frequency, which is non-zero by definition, vs the respective
rank. For the purposes of this work the log-scree plot will
be used. For the 1821 and the the US 2020 Elections graphs
the respective log-scree plots are shown in figures 2 and 3.

A well-known frequency rank model which can explain
the linear decay rate at the initial steps of the two scree plots
is the power law examined among others in [52]:

fk
4
= α0k

−γ0 , 1 ≤ k ≤ Bh (18)

In the above equation the positive exponent γ0 plays a
central role, similar to the Lyapunov exponent for energy
functions in control theory, as it determines the type of the
power law distribution. Specifically:

• When γ0 ≥ 3, the mean value and variance are finite.
• When 2 ≤ γ0 < 3, only the mean value is finite.
• Otherwise the mean value and variance are infinite.

Moreover, Bh denotes the number of buckets used to
cluster the values of H for the respective frequency ranking.
For the purposes of this work Bh has been selected to be:

Bh
4
=
⌈√

Wh

⌉
(19)

The above selection ensures that each bucket contains a
statistically sufficient number of tweet counts hk [46].

The exponent γ0 can be estimated by taking the loga-
rithm of both sides of (18) linearizing thus the power law:

ln fk = lnα0 − γ0 ln k, 1 ≤ k ≤ Bh (20)

Stacking the Bh equations of (20) yields the system:
ln f1
ln f2

...
ln fBh


︸ ︷︷ ︸

fp

=


1 0
1 − ln 2
...

...
1 − lnBh


︸ ︷︷ ︸

Xp

[
lnα0

γ0

]
︸ ︷︷ ︸

bp

(21)

The least squares (LS) solution for (21) is given by:

b̂p
4
=
(
XT
pXp

)−1
XT
p fp (22)

In the general case in equation (22) the square matrix is
never inverted as it is a costly and potentially numerically
unstable operation. In this case the structure of XT

pXp is:

XT
pXp =

[
Bh −

∑Bh

k=2 ln k

−
∑Bh

k=2 ln k
∑Bh

k=2 ln
2 k

]
(23)

Notice that by construction XT
pXp it is symmetric.

Since the resulting LS system is 2 × 2, it suffices
to compute two determinants. The determinant of XT

pXp

which determines whether the linear system is undefined is:

det
(
XT
pXp

)
= Bh

Bh∑
k=2

ln2 k −

(
Bh∑
k=2

ln k

)2
(24)

Matrix Yp is defined as:

Yp
4
=

[
Bh

∑Bh

k=1 ln fk
−
∑Bh

k=2 ln k −
∑Bh

k=2 ln k ln fk

]
(25)

Observe that in equation (25) the matrix Yp is derived
from Xp by substituing its second column, namely the
column corresponding to the second parameter γ0, with
vector XT

p fp. The determinant of Yp is given in (26):

det (Yp) =

(
Bh∑
k=2

ln k

)(
Bh∑
k=1

ln fk

)
−Bh

(
Bh∑
k=2

ln k ln fk

)
(26)

Using determinant properties, the exponent γ0 is:

γ0
4
=

det (Yp)

det
(
XT
pXp

) (27)

A similar result holds for the first parameter lnα0.
The mean square error (MSE) Jp between the actual and

the projected frequencies is defined as in equation (28):

Jp
4
=

1

Bh

∥∥∥fp −Xpb̂p

∥∥∥2
2
=

1

Bh
‖(IBh

−Hp)fp‖22 (28)

In equation (28) the projection matrix Hp is defined as:

Hp
4
=Xp

(
XT
pXp

)−1
XT
p ∈ RBh×Bh (29)

Notice that Hp is a Bh × Bh orthogonal projection
operator and so is IBh

−Hp but to a perpendicular space. To
see that observe that two successive projections, one with
IBh
−Hp and one with Hp, always results in the zero matrix

as shown in (30). The same holds if projections are swapped.

(IBh
−Hp)Hp = Hp −H2

p = Hp −Hp = OBh
(30)

In light of this, in equation (28) the MSE Jp is essentially
the part of the measurements which cannot be projected on
the subspace spanned by the columns of Hp.

Another frequency rank model explaining both the initial
almost linear decay and the subsequent sharp cutoff for
higher ranks of figures 2 and 3 is that of equation (18) [53]:

fk
4
= α0k

−γ0 exp

(
− k

γ1

)
, 1 ≤ k ≤ Bh (31)



Taking the natural logarithm of both sides of (31) yields:

ln fk = lnα0 − γ0 ln k −
k

γ1
, 1 ≤ k ≤ Bh (32)

Stacking the equations now results in the system (33):
ln f1
ln f2

...
ln fBh


︸ ︷︷ ︸

fc

=


1 0 −1
1 − ln 2 −2
...

...
...

1 − lnBh −Bh


︸ ︷︷ ︸

Xc

lnα0

γ0
1

γ1


︸ ︷︷ ︸

bc

(33)

Along a similar line of reasoning the LS solution of the
linear system (33) is that of equation (34):

b̂c =
(
XT
c Xc

)−1
XT
c fc (34)

Now the 3 × 3 coefficient matrix XT
c Xc of the linear

system with the normal equations has the structure of (35):

XT
c Xc

4
=

 Bh −
∑Bh

k=2 ln k −
∑Bh

k=1 k

−
∑Bh

k=2 ln k
∑Bh

k=2 ln
2 k

∑Bh

k=2 k ln k

−
∑Bh

k=1 k
∑Bh

k=2 k ln k
∑Bh

k=1 k
2


(35)

Matrix Y0
c of equation (36) is derived from the coef-

ficient matrix of equation (35) by substituting the second
column with vector XT

c fc as in (36):

Y0
c

4
=

 Bh
∑Bh

k=1 ln fk −
∑Bh

k=1 k

−
∑Bh

k=2 ln k −
∑Bh

k=2 ln k ln fk
∑Bh

k=2 k ln k

−
∑Bh

k=1 k −
∑Bh

k=2 k ln fk
∑Bh

k=1 k
2


(36)

The LS estimation of the exponent γ0 using determinant
properties can be computed as in equation (37):

γ0 =
det
(
Y0
c

)
det (XT

c Xc)
(37)

Along a similar line of reasoning matrix Y1
c is con-

structed by substituting the third column of matrix XT
c Xc

with the vector XT
c fc as shown in equation (38):

Y1
c

4
=

 Bh −
∑Bh

k=2 ln k
∑Bh

k=1 ln fk
−
∑Bh

k=2 ln k
∑Bh

k=2 ln
2 k −

∑Bh

k=2 ln k ln fk
−
∑Bh

k=1 k
∑Bh

k=2 k ln k −
∑Bh

k=2 k ln fk


(38)

The LS estimation of the time constant γ1 which eventu-
ally controls the exponential cut-off is computed as in (39):

γ1 =
det
(
XT
c Xc

)
det (Y1

c )
(39)

Observe that in equation (39) the determinant of matrix
XT
c Xc is on the nominator as the system of equation (33)

is designed to compute the reciprocal of γ1.
The determinant of 3 × 3 matrices can be efficiently

computed with the Sarrus rule [54], which is a special case
of Leibniz formula, or with Laplace expansions.

Now the projection operator Hc which spans the space
of projected measurements is defined as in equation (40):

Hc
4
=Xc

(
XT
c Xc

)−1
XT
c (40)

The MSE Jc is now computed as in equation (41):

Jc
4
=

1

Bh
‖fc −Hcfc‖22 =

1

Bh
‖(IBh

−Hc)fc‖22 (41)

The LS solutions of models of equations (18) and (31)
have been computed using the actual hashtag frequency
measurements for both benchmark graphs as collected from
topic sampling. The results are shown in table 7.

TABLE 7. RESULTS FOR THE LS SOLUTIONS.

Graph Model γ0 γ1 MSE
1821 Power law 2.6511 - 167.4500
1821 Cutoff 2.488 3545.66 143.3333
US2020 Power law 2.8617 - 170.5000
US2020 Cutoff 2.6322 3633.33 145.9811

The exponents γ0 indicate a relatively graceful reduc-
tion. Moreover, the power law yields higher values as the
LS fitting yields a straight line with a steeper curve. With
the addition of the exponential fall, that line becomes less
steep. In any case, the fractional exponents indicate fractal
patterns in the distribution of hashtag frequencies such as
self-similarity and heavy tail. The latter is confirmed from
the skewness and kurtosis results. Concerning the γ1 time
constant, it has similar values for both graphs, which is
approximately one quarter of Bh. The last is consistent with
the fact that in figures 2 and 3 the cutoffs appear after four
time constants. Also, for both benchmarks the cutoff model
of (31) attains lower error from the real frequencies.

The models of equations (18) and (31) are not the only
ones proposed for hashtag frequency distribution. Another
model is the DGX [55] which has been proposed for the
degree distribution of large scale free graphs shown in (42):

fk
4
=
A(µ0, σ0)

k
exp

(
− (ln k − µ0)

2

2σ2
0

)
(42)

In equation (42) the normalization factor A equals:

A(µ0, σ)
4
=

(
+∞∑
k=1

1

k
exp

(
− (ln k − µ0)

2

2σ2
0

))−1
(43)

The DGX model combines the decay rate of the power
law with the smoothness and location dependency of the
Gaussian kernel. However, estimating the parameters µ0 and
σ2
0 leads to a system of non-linear differential equations.

4.3. US 2020 Elections Graph

The 2020 US Presidential Elections were conducted in a
rather unique political climate with Twitter playing a central
role in the respective campaigns of both parties.

The synopsis for the US 2020 Elections graph is given
in table 8, which has the same format with table 4. Observe
that both benchmark graphs have similar properties.



TABLE 8. US 2020 ELECTIONS GRAPH SYNOPSIS.

Property Value
Number of vertices Vg 147.881
Number of edges Eg 2.447.224
Density ρg / Log-density ρ′g 16.5486 / 1.2357
Completeness ξg / Log-completeness ξ′g 2.38E−4 / 0.6173
Number of triangles Tg 489.773
Number of squares Sg 218.633
Number of cliques of size four Cg 125.806
Graph diameter Lg 11
Percentage of vertices reachable at Lg − 1 98.17%
Percentage of vertices reachable at Lg − 2 96.44%
Percentage of vertices reachable at Lg − 3 91.22%
Percentage of vertices reachable at Lg − 4 87.47%
Number of favorites Fg 42.114.509
Number of tweets Wg 22.773.674
Number of buckets Bg

⌈√
Wg
⌉
≈ Bh

Sampling interval 8/2020-10/2020

The hashtag frequency scree plot for the US Elections
2020 is shown in figure 3. Observe that it is relatively
smoother compared to that of the 1821 graph. This can be
attributed to the somewhat richer variety of hashtags as well
as to their more frequent use compared to the latter.
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Figure 3. Scree plot for the US2020 graph.

4.4. Performance

Figure 4 shows the number of iterations for both bench-
mark graphs vs the subset size percentage. It appears that
the US2020 requires systematically more iterations to con-
verge. This may be an indication of convoluted interactions
between accounts. In both cases scaling is linear for small
subsets but this arguably changes for larger ones.

Figure 5 shows the GNN convergence rate for the two
benchmark graphs as measured by the relative steady state
difference. It can be seen that for the 1821 graph con-
vergence is quicker and perhaps the process could have
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Figure 4. Number of iterations vs subset size.

terminated earlier. On the contrary, convergence is slow for
the US2020 graph after an initial stage of little progress.
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Figure 5. Relative steady steady difference vs iteration.

The overall polarity assessment can be be defined as the
The fraction of labels which have changed sign after

the application of GNN in the 1821 (left) and the US2020
(right) graphs are shown in table 9. For the former graph it
follows that the first order affective polarity classification of
algorithm 1 was reasonably successful in identifying positive
hashtags as only a third of the accounts initially labeled as
positive flipped sign. However, it did not fare that well in
the negative case since almost half of the accounts marked
as negative changed sign. This can be perhaps explained
by its general resiliency with some accounts complaining
about individual aspects of the planned events but not about
their meaning or about the anniversary itself. The entries



are similar for the US2020 graph where somewhat more
accounts flipped signs for both cases.

TABLE 9. FRACTIONS OF SIGN FLIPS (1821/US2020).

Positive Negative Positive Negative
Positive-GNN 67.33% 32.67% 64.28% 33.72%
Negative-GNN 49.11% 50.89% 45.15% 54.85%

Table 10 shows the total sentiment polarity for the two
benchmark graphs. The 1821 graph is more resilient in the
sense that there are significantly more accounts with an
overall positive stance. The situation is also clear for the
US2020 graph but with much less margin.

TABLE 10. SOCIAL GRAPH RESILIENCE.

Positive Negative
1821 75.92% 24.08%
US2020 62.18% 37.82%

Given these results, the difference between the NLP and
the GNN can perhaps be explained in a much broader sense
as follows. Heated Twitter conversations are reported to con-
tain considerable amounts of ironic tweets [56] [57]. Such
tweets are not to be taken at face value as their true content
hides in the subtext. Therefore, relying on processing them
with NLP techniques which are based on syntax alone is
unlikely to reveal irony in many cases. On the contrary,
GNNs by aggregating locally information about an account
yield a more accurate estimation of its real intentions.

4.5. Recommendations

Based on the above results, the following recommenda-
tions can be made for researchers and practitioners:

• Higher order methods such as GNNs are more likely
to achieve better results.

• The computational complexity of the GNN is not
prohibitive for social graphs of the size presented
here. Still, for Internet scale graphs distributed im-
plementations should be considered.

• Learning and extracting latent non-trivial knowledge
from skewed data is achieved by the GNNs.

5. Conclusions And Future Work

The focus of this conference paper is the assessment
of the resilience of large Twitter social graphs based on
combination structural, functional, and affective attributes
with graph neural networks. Results from two benchmark
graphs with similar characteristics have resulted in different
results concerning resilience. The higher order of GNNs can
mine high dimensional data and discover latent patterns.

Regarding future research directions, the GNN scal-
ing capabilities should be further investigated. Additionally,
refined aggregation models factoring friendship direction
should be developed. Also, weight schemes involving local
influence matrix should be examined.
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[11] B. Mønsted, P. Sapieżyński, E. Ferrara, and S. Lehmann, “Evidence
of complex contagion of information in social media: An experiment
using Twitter bots,” PLoS one, vol. 12, no. 9, 2017.

[12] L. F. Barrett and A. B. Satpute, “Large-scale brain networks in
affective and social neuroscience: towards an integrative functional
architecture of the brain,” Current opinion in neurobiology, vol. 23,
no. 3, pp. 361–372, 2013.

[13] S. J. Blair, Y. Bi, and M. D. Mulvenna, “Aggregated topic models
for increasing social media topic coherence,” Applied Intelligence,
vol. 50, no. 1, pp. 138–156, 2020.

[14] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen,
G. Rattan, and M. Grohe, “Weisfeiler and Leman go neural: Higher-
order graph neural networks,” in AAAI, vol. 33, 2019, pp. 4602–4609.

[15] Z. Xinyi and L. Chen, “Capsule graph neural network,” in Interna-
tional conference on learning representations, 2018.

[16] J. Kim, T. Kim, S. Kim, and C. D. Yoo, “Edge-labeling graph neural
network for few-shot learning,” in CVPR, 2019, pp. 11–20.

[17] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin,
“Graph neural networks for social recommendation,” in The WWW
conference, 2019, pp. 417–426.



[18] J. Qiu, Q. Chen, Y. Dong, J. Zhang, H. Yang, M. Ding, K. Wang,
and J. Tang, “Gcc: Graph contrastive coding for graph neural network
pre-training,” in KDD, 2020, pp. 1150–1160.

[19] J. Zhou et al., “Graph neural networks: A review of methods and
applications,” 2018.

[20] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, 2020.

[21] T. Mikolov, S. Kombrink, L. Burget, J. Černockỳ, and S. Khudanpur,
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