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The problem of occlusion plays a crucial role in real-life human activity recognition applications. However, most research works either

underestimate it, or base their training solely on datasets shot under laboratory conditions, i.e., without any partly or full occlusion. In

this work we perform a study on the effect of occlusion in the task of human activity recognition and the domains of the recognition

of a) activities of daily living; and b) medical conditions. Throughout our experiments we use a convolutional neural network that

has been trained using a 2D representation of skeleton motion for all available joints, i.e., without using any occluded samples. We

evaluate our approach using two challenging, publicly available human motion datasets upon removing one or more body parts.
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1 INTRODUCTION

Advances in the fields of medicine have allowed people to live longer. More specifically, during the last few years, life

expectancy in Europe has increased from 62 years in 1950 to 77.8 years in 2015 [24]. Globally, there are approx. 727M

individuals aged 65 years or more; this number is expected to double until 2050 [26]. Accordingly, the corresponding

share of population is expected to increase from 9.3% to approx. 16%. Moreover, the vast majority of older adults prefer

their own home, over staying within nursing facilities. In USA, the 77% of age 40 and older population would prefer

to receive care in their home, while only 4% in a nursing home [20]. Also, the costs of nursing homes are increasing,
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therefore in many cases it may not be an affordable option. Therefore, there exists a continuously increasing need for

the development of assistive technologies for in-home living.

Recognition of activities of daily living (ADLs) [14] consist one of the main tasks within the broader research area

of assistive living [23]. Those activities within a healthcare context, commonly refer to daily self-care activities. The

ability/inability of an individual to perform ADLs may be used as some means of measurement of their functional

status. Common (“basic”) ADLs include feeding without help, personal hygiene, homemaking, dressing etc. Moreover

“instrumental” ADLs are not necessary for fundamental functions, yet they are necessary so that the individual could

be able to be independent. Such ADLs include e.g., cleaning, cooking, using the telephone etc. Therefore, within an

assistive living scenario, in order to assess the ability of a person to live independently, it is necessary to verify if/when

a given set of ADLs takes place.

Of course, this recognition requires a set of sensors installed either on the subject’s environment or worn by the user,

thus it consists one of the hottest topics in the area of pervasive computing. The former typically include video/thermal

cameras, microphones, infrared, pressure, magnetic, RFID sensors [5] etc. Their role is to capture motion, speech, sound

events, presence within some space, interaction with objects etc. On the other hand the latter include smartwatches,

smartphones, RFIDs, hand worn and vital monitoring sensors, to capture monitor, presence within a space, vital signs,

gestures etc. [5]. All available measurements are collected and processed so as to recognize a predefined set of ADLs

and draw conclusions regarding the subject’s state. In many scenarios, the recognition of ADLs is combined with the

recognition of several simple “medical” events such as e.g., coughing, chest pain, staggering, falling etc.

Since wearable sensors is [21] are non-invasive, while offering an efficient, low-cost solution, it has been shown

that in many cases elder subjects do not intent to wear them, apart from occasions when it is necessary; also their

usability is below average [12]. Therefore, in many approaches that aim to provide low-cost solutions without the

use of wearables and without overloading the subject’s space with a plethora of sensors, the use of only cameras that

capture the subjects’ motion and aim to accordingly detect appropriate ADLs is preferred. However, it is well-known

that camera-based approaches suffer from viewpoint and illumination changes and also from occlusion.

In previous work [22] we have proposed an approach for human activity recognition (HAR) focusing on ADLs and

using only visual data. Our approach was based on 3D skeletal motion of human joints which was extracted upon

processing of RGB and depth data modalities. We evaluated our approach under different viewpoints and showed that

the recognition of ADLs is still feasible, yet accuracy decreases, as expected. In this work our goal is to assess how

partial occlusion of the subject affects the accuracy of recognition. We simulate occlusion by removing parts of captured

visual data and we evaluate using visual data comprising of ADLs and medical conditions from two publicly available

challenging datasets. Note that we use models that have not been trained with activity instances that have been affected

by occlusion. To the best of our knowledge, our work is the first to perform such an evaluation.

The rest of this work is organized as follows: section 2 presents research works that aim to assess or even tackle the

effect of occlusion in HAR-related scenarios. Then, in section 3 we present the proposed methodology for recognition

and the approach we followed for simulating occlusion. Results of our approach are presented in section 4. Finally,

conclusions are drawn in section 5, wherein plans for future work are also presented.

2 RELATEDWORK

The problem of HAR from video sequences may be divided into two major tasks, as stated by Wang et al. [28]: a)

segmented; and b) continuous recognition. Within the former category it is assumed that the video at hand contains

exactly one action to be recognized, i.e., any poses/motion before/after the activity have been previously removed
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upon a segmentation/trimming process. Within the latter, the goal is to recognize activities within a given video, that

may contain an unlimited number of activities, or even none. Therein, temporal localization of actions is typically a

necessary pre-processing step.

Although several approaches had been proposed during the early years of HAR, they were typically limited to

small numbers of simple actions, while being prone to drop of performance due to e.g., viewpoint changes and/or

illumination changes and/or occlusion. During the last decade, the rise of deep neural network architectures has been

the main cause for growing research within the broader area of HAR. Therein, the main open challenges may include

the representation, the analysis and the recognition of the actions [3], while a plethora of applications have benefited.

The two main deep architectures that have been used in the field of HAR are Convolutional Neural Networks (CNNs)

[17] and Recurrent Neural Networks (RNNs) [7]. Note that when CNNs are used, as within our approach, typically a 2D

image representation of RGB/depth or skeletal sequences is required so as to be used as input. Obviously, when building

such a representation, the goal is to capture spatio-temporal information of motion and reflect it to the color and/or

texture properties of the representation. Of course, in such approaches an intermediate hand-crafted feature extraction

step is typically omitted within the process. Our approach is based on skeletal data, which typically consist of a set

of skeletal joints moving in 3D space over time, i.e., for each joint 3 1-D signals are generated per action. Typically,

the extraction of joints from video requires RGB and depth information. To capture both modalities, one popular

off-the-shelf solution is the Microsoft Kinect v2 sensor, which combines an RGB and a Time-of-Flight camera and

provides a powerful software development kit (SDK) for the extraction of joint motion. We should note that skeletons

are prone to errors; the most important causes are occlusion and viewpoint changes.

During the last few years, a plethora of research works for HAR based on 2D representations of skeletal data have

been presented. Du et al. [6] grouped the set of extracted joints into five groups, i.e., arms, legs and the trunk and created

pseudo-colored image sequences to capture spatio-temporal information; each color component was formed by one of

the spatial coordinates. In another representation proposed by Wang et al. [29], “joint trajectory maps” were created

based on joint trajectories and appropriately setting saturation and brightness. Similarly, “skeleton optical spectra” were

proposed by Hou et al. [9], wherein hue was set based on temporal variation of joint motion. “Joint distance maps” have

been proposed by Li et al. [18], encoding pair-wise joint distances, wherein hue was used to encode distance variations.

Other approaches such as the one of Liu et al. [19] enhanced joint representations with extra information, i.e., time and

joint label. Few approaches such as the one of Ke et al. [11] first extract hand-crafted features and then use them to

generate image representations.

Although occlusion consists one of the major causes of performance drop in HAR, few are the research efforts that

have dealt with assessing its effect or overcoming it. In the work of Iosifidis et al. [10], a multi-camera setup is used for

recognition. For simulation of occlusion, they first trained their algorithm using all available cameras and then tested

using a randomly chosen subset. However, in all cases the remaining cameras are able to capture the whole body of

the subjects. In the work of Gu et al. [8], randomly generated occlusion masks are used in both training and testing.

Each mask covers more than one 2D joints. Liu et al. [15] study two augmentation strategies for modelling the effect of

occlusion. The first discards independent keypoints, while the second discards structured keypoints that compose main

body parts. Note that occluded samples are included in the training process. Similarly, Angelini et al. [2] also included

artificially occluded samples within the training process. In that case, samples were created by randomly removing

body landmarks according to a binary Bernoulli distribution.

Manuscript submitted to ACM



4 I. Giannakos, et al.

head
torso

left 
hand

right 
hand

right 
leg

left 
leg

HEAD

NECK

SHOULDERLEFT

SPINESHOULDER

ELBOWLEFT

WRISTLEFT

HANDLEFT

KNEELEFT

HANDTIPLEFT

THUMBLEFT

FOOTLEFT

ANKLELEFT

SPINEBASE

SHOULDERRIGHT

SPINEMID

ELBOWRIGHT

HIPLEFT

FOOTRIGHT

ANKLERIGHT

KNEERIGHT

HIPRIGHT

HANDTIPRIGHT

WRISTRIGHT

HANDRIGHT

THUMBRIGHT

Fig. 1. Left: The 25 skeletal joints extracted by Microsoft Kinect; Right: the joints divided into five main body parts.

3 METHODOLOGY

3.1 Extraction and Pre-processing of Skeletal Data

For recognition of human activities, our approach is based on the extraction of trajectories of skeletal joints, as they

move within the 3D space, when an action is performed, over time. More specifically, we require the position of

each joint co-ordinate, i.e., 𝑥 (𝑡), 𝑦 (𝑡) and 𝑧 (𝑡). Such skeletal data are typically calculated using RGB and depth video

sequences. A popular approach, which we adopt in this work is to use skeletal sequences extracted by the Microsoft

Kinect SDK [13]. More specifically, we use data that have been captured using the Microsoft Kinect v2 sensor. These

data consist of 25 human joints for each skeleton, which are organized as a graph; each node corresponds to a body

part such as arms, legs, head, neck etc., while edges follow the body structure, appropriately connecting pairs of joints.

An example of a skeleton is illustrated in Fig. 1. Note that for reasons that will clarify in subsection 3.3, in this figure

joints are also shown as being grouped to form meaningful body parts, i.e., arms, legs and the torso.

We consider each joint co-ordinate as an 1-D signal. Therefore, upon using all 25 joints, with 3 coordinates each, 75

such signals result for any given video sequence. Upon observing activities as performed by real human subjects, we

may observe the following: a) duration of activities varies as different activities may require different amounts of time; b)
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(a) back pain (b) blow nose (c) chest pain

(d) falling down (e) fan self (f) headache

(g) nausea vomitting (h) neck pain (i) sneeze/cough

(j) staggering (k) stretch oneself (l) yawn

Fig. 2. Sample pseudo-colored images created for the 12 medical classes of NTU RGB+D dataset. Figure best viewed in color.

when different subjects perform the same activity, their duration also varies; c) the same subject may perform the same

activity with varying duration. Therefore, to address this temporal variability we impose a linear interpolation step,

setting the number of frames within all videos equal to 𝑁 = 150. This frame number has been heuristically defined, upon

a series of initial experiments. Moreover, we assume that our approach falls to the category of segmented recognition,

i.e., we consider the problem of activity localization within a video as “solved,” i.e., we work using pre-segmented video

sequences that contain exactly one activity to be recognized.

3.2 Recognition of Activities

Upon the aforementioned pre-processing of skeletal data and the creation of joint motion sequences, the next step

is to create a visual representation, which could be used for training of a CNN. Similarly to approaches that have

been presented in brief in section 2 and continuing our previous work that has been introduced in [27], we opted for

pseudo-colored images that aim to capture inter-joint distances during an action, using the 3D joint trajectories. More

specifically our approach works as follows:

From each video sequence, we calculate coordinate differences between consecutive frames. To create the pseudo-

colored images, 𝑥 , 𝑦, 𝑧 coordinates correspond to Red (R), Green (G) and Blue (B) color channels, respectively. By 𝑥𝑖 (𝑛)
we denote the 𝑥-position of the 𝑖-th joint and within the 𝑛-th frame. For example, let us consider 𝑅 denote the R channel

of the pseudo-colored image. The value of a given pixel 𝑅(𝑖, 𝑛) is calculated as the difference of the positions of this joint
in the 𝑥−axis for frames 𝑛, 𝑛 + 1, i.e., for consecutive frames. Therefore 𝑅(𝑖, 𝑛) = 𝑥𝑖 (𝑛 + 1) − 𝑥𝑖 (𝑛), where 𝑖 = 1, . . . , 𝑁 .

Similarly, B and G channels are constructed. We argue that the way these pseudo-colored images are formed, both

the temporal and the spatial properties of the skeleton trajectories are preserved. Examples of the created images are

presented in Figs. 2 and 3.

The CNN architecture we used for classification in short is as follows: The first 2D convolutional layer filters the

25×150 input pseudo-colored image with 5 kernels of size 3×3. The first pooling layer uses max-pooling to perform 2×2
subsampling. Then the second convolutional 2D layer filters the resulting image with 10 kernels of size 3×3 followed by
a second polling layer that also uses max-pooling to perform 2×2 subsampling. A third and a fourth convolutional layer

follow with 10 and 15 filter kernels, respectively; the size of each being 3×3. Then, the last max-pooling layer follows,
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(a) eat meal/snack (b) blow nose (c) handshaking

(d) hugging other person (e) make phone call (f) playing phone/tablet

(g) reading (h) sitting down (i) standing up

(j) typing on keyboard (k) wear jacket

Fig. 3. Sample pseudo-colored images created for 11 classes that are related to ADLs of PKU-MMD dataset. Figure best viewed in
color.

Fig. 4. The convolutional neural network that has been used throughout our experiments.

performing another 2×2 subsampling. Afterwards, a flatten layer transforms the output of the last pooling layer into a

vector, which consists the input to a dense layer upon applying a dropout layer with dropout rate 0.5. Finally, a second

dense layer produces the output of the network. The architecture of the CNN is illustrated in Fig. 4.

3.3 Simulation of Occlusion

In real-life scenarios, occlusion is probably the most important factor that compromises the performance of many HAR

approaches. In the context of assistive living, occlusion may occur mainly due to e.g., furniture or the presence of

more than one people in the same room. As expected, it results to loss of visual information regarding the subject’s

posture and motion, which in many cases may be crucial for the accurate recognition of several activities. Of course,

many activities consist of the motion of one/two or even more body parts, thus partial occlusion may prevent their

recognition.

As we have already mentioned, in this work our primary goal is to assess the effect of occlusion within a HAR

approach. Most public datasets such as the PKU-MMD dataset [16], and the NTU RGB+D [25], which we herein use for

evaluation, have been recorded in laboratory conditions. This means that illumination is controlled, while occlusion is

prevented. Therefore, to create occluded activity samples and similarly to [8] we discard structured skeleton joints, i.e.,

subsets that correspond to a body part. Moreover, we assume that occlusion is not temporary, i.e., one or more parts

remain occluded during the whole duration of the activity. Contrary to [10], the whole skeleton is never “visible.” Also,

contrary to [2; 8; 15] we by no means include any occluded samples within the training process.
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Fig. 5. Example skeleton sequences of the activity stretch oneself from the NTU-RGB+D dataset. First row: skeletons include all 25
joints; Second row: joints corresponding to left arm have been discarded.

As we have already mentioned, we use skeletons extracted by the Kinect v2 camera, which consist of 25 joints. We

group these joints to form 5 body parts, as illustrated in Fig. 1. More specifically, we consider hands, legs and the torso.

Each hand comprises of shoulder, elbow, wrist, hand and hand-tip. Moreover, each leg comprises of hip, knee, ankle and

foot. Finally, the torso comprises of head, neck, spine-shoulder, spine-mid and spine-base.

We use the same trained architecture, described in section 3.2. For testing, we consider the cases where one/two

arms are occluded, one/two legs are occluded and an arm and a leg. Intuitively, when two parts are occluded, the most

expected case is that they both are from the same side. Moreover, our initial experiments indicated that by removing

the torso the accuracy was not significantly affected. Therefore, throughout our experiments, torso is always present,

while one arm, one leg, both arms, both legs or an arm and a leg from the same side may be missing. An example of an

activity with and without occlusion of a body part is illustrated in Fig. 5. In this example it is evident that a single body

part may carry significant information regarding the activity.

4 EXPERIMENTAL EVALUATION

4.1 Datasets

As we have already mentioned, our study has focused both on a) activities that resemble to “activities of daily living”

(ADLs); and b) on “medical conditions.” For training and experimental evaluation we relied on parts of two publicly

available datasets. More specifically, for ADLs we have used the PKU-MMD dataset [16], while for medical conditions the

NTU RGB+D [25] dataset. Both target to continuous multi-modal 3D HAR, providing RGB, depth, infrared and skeletal

joint sequences for each activity. Activities have been captured using the Microsoft Kinect v2 sensor. From PKU-MMD

we have selected 11 classes that are considered to be mostly related to ADLs: eat meal snack, falling, handshaking,

hugging other person, make a phone call answer phone, playing with phone tablet, reading, sitting down, standing up,

typing on a keyboard and wearing a jacket. Also, from NTU RGB+D we have selected the medical-condition-related

category consisting of 12 classes, namely: sneeze/cough, staggering, falling down, headache, chest pain, back pain, neck

pain, nausea/vomiting, fan self, yawn, stretch oneself and blow nose. The number of samples per class for both datasets is

depicted in Table 1.
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Table 1. Samples per class of the datasets used.

PKU-MMD NTU-RGB+D
class training testing class training testing

eat meal/snack 381 42 sneeze/cough 865 83

falling 357 39 staggering 855 92

handshaking 189 21 falling down 856 90

hugging other person 189 21 headache 843 103

make a phone call/answer phone 308 34 chest pain 859 88

playing with phone/tablet 458 50 back pain 846 102

reading 387 42 neck pain 846 101

sitting down 496 55 nausea/vomitting 853 92

standing up 495 54 fan self 845 101

typing on a keyboard 387 42 yawn 860 97

wear jacket 411 45 stretch oneself 862 97

blow nose 864 95

Total: 4058 445 Total: 10254 1141

4.2 Experimental Setup and Network Training

Experiments were performed on a personal workstation with an Intel™i7 5820K 12 core processor on 3.30 GHz and

16GB RAM, using NVIDIA™Geforce GTX 2060 GPU with 8 GB RAM and Ubuntu 18.04 (64 bit). The deep architecture

has been implemented in Python, using Keras 2.2.4 [4] with the Tensorflow 1.12 [1] backend. All data pre-processing

and processing steps have been implemented in Python 3.6 using NumPy, SciPy and OpenCV. For training, we used the

ReLu activation function except from the last dense layer wherein softmax activation function was used. Moreover,

we set the batch size to 32. We used the RMSprop optimizer, set the dropout to 0.5, set the learning rate to 0.001 and

trained for 80 epochs. Moreover, since the duration of each activity was set to 150 frames, upon interpolation, the size

of the input images was 25×149×3.

4.3 Results and Discussion

Firstly we evaluated the proposed methodology under the assumption of no occlusion. Experiments are depicted in

Tables 2 and 3 for PKU-MMD and NTU-RGB+D, respectively. As it may be observed, mean F1 score was 0.95 and 0.67,

respectively. Then, we assessed the contribution of different body parts to the accuracy of classification. Intuitively one

should expect that the majority of the activities we used to evaluate our approach mainly consists of upper body motion

(i.e., left and/or right arm). Upon careful observation of the samples of the datasets, this assumption has been verified.

In case of PKU-MMD, our experiments indicated that all parts were needed to maximize accuracy. When one leg is

omitted, a small performance drop was observed; mean F1 score was 0.91 and 0.90, upon the removal of left and right

leg, respectively. Accordingly, when two legs are omitted, a further small performance drop was observed, compared to

the previous case, i.e., leading to mean F1 score equal to 0.75. However, as it was expected and has been experimentally

verified, the omission of each arm led to a significant performance drop; mean F1 score was equal to 0.70 and 0.61 for

the left and right arm, respectively. Of course, upon removing both arms led to a mean F1 score equal to 0.19 which is
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insufficient for real-life applications. Finally, when one arm and one leg have been simultaneously removed, the mean

F1 scores were 0.66 and 0.58 for the left and the right side, respectively.

Upon careful observation of the confusion matrices depicted in Fig. 6, for each occlusion case we should notice the

following, when comparing with the case where all joints had been used:

• Left Arm: upon observance of activity examples in the dataset, actors perform handshaking and making a phone

call mainly using their left hand. When left arm is removed, a significant performance drop is observed mainly

on those activities. Therefore, handshaking is misclassified as hugging other person, sitting down or standing up,

while making a phone call is misclassified as playing with phone/tablet, sitting down or standing up. Moreover, the

performance of eat meal/snack and wear jacket drop, although actors use both hands and misclassified in both

cases as hugging other person or reading

• Right Arm: the loss of accuracy in the case that the right arm is missing from the skeleton is due to the fact that

most of the actors performing actions in the dataset are right handed. In the case of class playing with phone

which is misclassified as making a phone call or sitting down, the loss of accuracy is primarily caused by the

similarity of the actions as well as the similarity in the posture of the rest of the skeleton structure during these

actions. Moreover, reading and typing on a keyboard are both misclassified as sitting down, while the former is

misclassified as handshaking and the latter as falling

• Left & Right Arm: the recognition of all activity classes is primarily based on the hand movements of the actors.

When both arms are removed, the accuracy of all classes is significantly reduced as expected. Exceptions to the

above statement are primarily the activities sitting down, standing up and secondarily falling, wherein the trained

model predicts the activity correctly, regardless of arm movements

• Left Leg: removing the left leg of the actors does not significantly affect the action recognition process because

most of the actions are based on hand-movement features. A small drop of performance is observed in typing on

keyboard

• Right Leg: also in this case, removing the right leg of the actor does not significantly affect the action recognition,

for the aforementioned reason. A small drop of performance is observed in typing on keyboard and make a phone

call/answer phone

• Left & Right Leg: when both legs are removed from the skeleton, the network misclassifies falling as sitting down

primarily because it detects the change of the actor’s head level. Moreover, typing on a keyboard is misclassified

as playing with phone/tablet. A smaller drop of performance is also observed in case of hugging other person

which is misclassified as wear jacket

• Left Arm & Left Leg: the drop of performance compared to the case of left arm, is due to the fact that some

actions that contain leg movements are also affected from the removal of both left limbs. Thus, eat meal/snack is

misclassified as hugging other person or reading, handshaking as hugging other person or sitting down, make a

phone call/answer phone as playing with phone/tablet or standing up and wear jacket as reading or hugging other

person

• Right Arm & Right Leg: the drop of performance compared to the case of right arm, is due to the fact that some

actions that contain leg movements are also affected from the removal of both right limbs. Thus, eat meal/snack is

misclassified as handshaking, falling as sitting down, hugging other person as handshaking, falling, handshaking or

sitting down,make a phone call/answer phone as standing up, playing with phone/tablet asmake a phone call/answer

phone and typing on a keyboard as make a phone call/answer phone and standing up.
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Table 2. Experimental results of the proposed approach for the 11 selected classes of PKU-MMD dataset. P, R, F1 denote Precision,
Recall, F1 score, respectively. By “None” we denote the case wherein all body parts are included. LA, RA, LL, LR denote the occlusion
of left arm, right arm, left leg, right leg, respectively. Classes are denoted as: 10:eat meal/snack, 11:falling, 14:handshaking, 16:hugging
other person, 20:make a phone call/answer phone, 23:playing with phone/tablet, 30:reading, 33:sitting down, 34:standing up, 46:typing
on a keyboard, 48:wear jacket.

PKU-MMD
None LA RA LA & RA LL RL LL & RL LA & LL RA & RL

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
10 0.95 0.95 0.95 0.85 0.52 0.65 0.79 0.49 0.61 0.77 0.14 0.24 0.92 0.91 0.92 0.94 0.89 0.92 0.93 0.85 0.89 0.81 0.52 0.63 0.74 0.35 0.48

11 0.97 0.98 0.97 0.84 0.89 0.86 0.62 0.68 0.65 0.32 0.72 0.45 0.95 0.91 0.93 0.96 0.88 0.92 0.99 0.18 0.30 0.87 0.79 0.83 0.75 0.46 0.57

14 0.96 0.95 0.96 0.85 0.29 0.43 0.44 0.81 0.57 0.82 0.04 0.08 0.93 0.94 0.94 0.83 0.94 0.88 0.85 0.90 0.87 0.67 0.26 0.37 0.32 0.83 0.46

16 0.95 0.96 0.96 0.40 0.92 0.56 0.75 0.53 0.62 0.74 0.10 0.17 0.91 0.93 0.92 0.92 0.91 0.91 0.96 0.63 0.76 0.42 0.91 0.57 0.74 0.41 0.53

20 0.94 0.87 0.90 0.70 0.34 0.45 0.40 0.58 0.48 0.11 0.00 0.01 0.85 0.86 0.86 0.89 0.77 0.83 0.68 0.79 0.73 0.60 0.41 0.48 0.38 0.63 0.48

23 0.90 0.94 0.92 0.82 0.80 0.81 0.94 0.26 0.40 0.00 0.00 0.00 0.86 0.92 0.89 0.79 0.93 0.86 0.64 0.95 0.76 0.76 0.80 0.78 0.84 0.30 0.45

30 0.94 0.96 0.95 0.65 0.74 0.70 0.91 0.42 0.57 1.00 0.02 0.04 0.84 0.94 0.89 0.86 0.91 0.88 0.86 0.79 0.83 0.52 0.73 0.61 0.87 0.35 0.50

33 0.95 0.98 0.96 0.73 0.95 0.83 0.44 0.95 0.61 0.26 0.86 0.40 0.87 0.97 0.92 0.89 0.94 0.92 0.57 0.90 0.70 0.71 0.93 0.80 0.51 0.90 0.65

34 0.99 0.98 0.98 0.79 0.98 0.87 0.80 0.97 0.88 0.33 0.98 0.50 0.98 0.94 0.96 0.97 0.97 0.97 0.94 0.94 0.94 0.81 0.95 0.87 0.71 0.97 0.82

46 0.96 0.90 0.93 0.75 0.76 0.75 0.68 0.43 0.53 0.44 0.09 0.15 0.94 0.72 0.82 0.91 0.75 0.82 0.91 0.40 0.55 0.72 0.65 0.68 0.56 0.52 0.54

48 1.00 1.00 1.00 1.00 0.66 0.80 1.00 0.69 0.82 0.00 0.00 0.00 0.99 0.96 0.97 0.97 0.99 0.98 0.86 0.99 0.92 1.00 0.45 0.62 1.00 0.78 0.88

Mean 0.96 0.95 0.95 0.76 0.71 0.70 0.71 0.62 0.61 0.44 0.27 0.19 0.91 0.91 0.91 0.90 0.90 0.90 0.84 0.76 0.75 0.72 0.67 0.66 0.67 0.59 0.58

Moreover, in case of NTU-RGB+D, although in general drop of performance upon removal of body parts was similar

to what has been observed in PKU-MMD, interestingly, upon removal of legs, mean F1 score was increased to 0.76 and

0.75 for the cases of left and right leg, respectively and was almost equal to the full body case when both legs were

removed, with a mean F1 score equal to 0.66. Apart from that, upon removal of left and of right arm lead to mean F1

scores equal to 0.45 and 0.59, respectively, while removal of both arms lead mean F1 score equal 0.17, similar to the one

of PKU-MMD in the same case. Finally, when one arm and one leg have been simultaneously removed, the mean F1

scores were 0.45 and 0.54 for the left and the right side, respectively.

Upon careful observation of the confusion matrices depicted in Fig. 7, for each occlusion case we should notice the

following, when comparing with the case where all joints had been used:

• Left Arm: most of the classes under evaluation in NTU-RGB+D involve arm movements and are performed with

the left arm and/or both arms. By removing the left arm, sneeze/cough, headache, neck pain, fan self, yawn and

blow nose are misclassified as chestpain and back pain, while stretch oneself is misclassified as yawn

• Right Arm: more accurate than the previous case, since very few actions are heavily dependent on this arm of

the actor so as to be distinguished from other classes. However, stretch oneself is misclassified mainly as yawn

• Left & Right Arm: By removing both arms, the model tries to classify the action based on the core body joints and

misclassifies almost all actions as chestpain, thus performance is very low. However, staggering and chestpain do

not exhibit a significant drop of performance

• Left Leg: minimal drop of accuracy is observed, since no actions are solely recognizable by left leg movement

• Right Leg: same case as left leg, i.e., minimal drop of accuracy is observed, since no actions are solely recognizable

by right leg movement.

• Left & Right Leg: most of the classes are not affected by the removal of both legs because the hand movements

are those that influence prediction. However, in case of staggering wherein both legs are equally important for

the classification, the accuracy levels drop, as it is misclassified to the majority of other classes

• Left Arm & Left Leg: performance drop is much similar to the one of Left Arm. This leg does not have a significant

influence in the classification process

• Right Arm & Right Leg: performance drop is much similar to the one of Right Arm. This leg does not have a

significant influence in the classification process
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10 11 14 16 20 23 30 33 34 46 48
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10

11
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0.95 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.01 0.00

0.00 0.98 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00

0.00 0.00 0.95 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.00

0.00 0.01 0.01 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.01 0.00 0.87 0.10 0.00 0.01 0.00 0.01 0.00

0.00 0.00 0.00 0.00 0.03 0.94 0.01 0.00 0.00 0.01 0.00

0.03 0.00 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.01 0.00

0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.98 0.01 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.98 0.00 0.00

0.01 0.00 0.00 0.00 0.00 0.03 0.02 0.03 0.00 0.90 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Normalized confusion matrix

(a) None
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0.52 0.01 0.01 0.16 0.01 0.01 0.22 0.03 0.00 0.03 0.00

0.00 0.89 0.00 0.03 0.00 0.00 0.00 0.07 0.01 0.00 0.00

0.01 0.03 0.29 0.19 0.03 0.04 0.04 0.21 0.11 0.05 0.00

0.00 0.05 0.00 0.92 0.00 0.00 0.00 0.02 0.00 0.00 0.00

0.00 0.04 0.01 0.05 0.34 0.15 0.00 0.11 0.23 0.08 0.00

0.00 0.00 0.00 0.01 0.06 0.80 0.01 0.02 0.02 0.07 0.00

0.06 0.00 0.00 0.11 0.01 0.01 0.74 0.01 0.00 0.06 0.00

0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.95 0.02 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.98 0.00 0.00

0.02 0.03 0.00 0.02 0.01 0.04 0.01 0.07 0.03 0.76 0.00

0.01 0.00 0.00 0.18 0.00 0.00 0.12 0.02 0.00 0.00 0.66

Normalized confusion matrix

(b) Left Arm
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0.49 0.01 0.20 0.02 0.00 0.00 0.01 0.22 0.00 0.04 0.00

0.00 0.68 0.01 0.01 0.00 0.00 0.00 0.30 0.01 0.00 0.00

0.00 0.03 0.81 0.00 0.01 0.00 0.00 0.12 0.01 0.00 0.00

0.01 0.21 0.05 0.53 0.00 0.00 0.00 0.17 0.02 0.00 0.00

0.00 0.07 0.03 0.02 0.58 0.01 0.00 0.11 0.16 0.01 0.00

0.00 0.03 0.04 0.00 0.49 0.26 0.00 0.10 0.06 0.02 0.00

0.09 0.04 0.13 0.01 0.01 0.00 0.42 0.18 0.00 0.11 0.00

0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.95 0.03 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.97 0.00 0.00

0.01 0.10 0.07 0.00 0.07 0.01 0.00 0.27 0.04 0.43 0.00

0.02 0.00 0.01 0.03 0.00 0.00 0.03 0.21 0.00 0.01 0.69

Normalized confusion matrix

(c) Right Arm
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0.14 0.17 0.00 0.00 0.00 0.00 0.00 0.54 0.12 0.02 0.00

0.00 0.72 0.00 0.00 0.00 0.00 0.00 0.23 0.05 0.00 0.00

0.00 0.20 0.04 0.01 0.00 0.00 0.00 0.37 0.37 0.00 0.00

0.00 0.55 0.00 0.10 0.00 0.00 0.00 0.10 0.25 0.00 0.00

0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.12 0.69 0.00 0.00

0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.13 0.79 0.00 0.00

0.03 0.22 0.00 0.00 0.00 0.00 0.02 0.55 0.09 0.09 0.00

0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.86 0.11 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.98 0.00 0.00

0.01 0.30 0.00 0.00 0.01 0.00 0.00 0.33 0.25 0.09 0.00

0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.89 0.06 0.00 0.00

Normalized confusion matrix

(d) Left Arm & Right Arm
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0.91 0.00 0.01 0.01 0.00 0.00 0.06 0.00 0.00 0.00 0.00

0.00 0.91 0.00 0.01 0.00 0.00 0.00 0.08 0.00 0.00 0.00

0.01 0.00 0.94 0.00 0.02 0.01 0.01 0.00 0.00 0.00 0.00

0.00 0.01 0.01 0.93 0.01 0.00 0.00 0.00 0.00 0.00 0.01

0.00 0.00 0.01 0.00 0.86 0.10 0.01 0.01 0.00 0.01 0.00

0.00 0.00 0.00 0.00 0.04 0.92 0.01 0.00 0.01 0.02 0.00

0.03 0.00 0.00 0.00 0.01 0.00 0.94 0.00 0.00 0.00 0.00

0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.97 0.01 0.00 0.00

0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.05 0.94 0.00 0.00

0.03 0.00 0.01 0.02 0.04 0.09 0.06 0.03 0.00 0.72 0.00

0.00 0.00 0.00 0.01 0.00 0.00 0.03 0.00 0.00 0.00 0.96

Normalized confusion matrix

(e) Left Leg
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0.89 0.00 0.01 0.00 0.00 0.00 0.06 0.00 0.00 0.02 0.00

0.00 0.88 0.00 0.01 0.00 0.00 0.00 0.10 0.00 0.00 0.00

0.00 0.00 0.94 0.00 0.02 0.02 0.00 0.00 0.00 0.01 0.00

0.00 0.01 0.04 0.91 0.00 0.00 0.01 0.00 0.00 0.00 0.01

0.00 0.00 0.01 0.01 0.77 0.15 0.03 0.01 0.00 0.02 0.00

0.00 0.00 0.00 0.00 0.03 0.93 0.01 0.00 0.00 0.01 0.00

0.03 0.00 0.00 0.01 0.00 0.00 0.91 0.00 0.00 0.02 0.02

0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.94 0.02 0.00 0.00

0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.97 0.00 0.00

0.01 0.00 0.02 0.00 0.02 0.14 0.03 0.02 0.00 0.75 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99

Normalized confusion matrix

(f) Right Leg
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0.85 0.00 0.01 0.00 0.01 0.01 0.07 0.01 0.00 0.01 0.03

0.00 0.18 0.00 0.01 0.01 0.00 0.00 0.80 0.00 0.01 0.00

0.00 0.00 0.90 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.07 0.63 0.02 0.00 0.04 0.06 0.00 0.01 0.16

0.01 0.00 0.01 0.00 0.79 0.18 0.01 0.00 0.00 0.01 0.00

0.00 0.00 0.00 0.00 0.04 0.95 0.01 0.00 0.00 0.00 0.00

0.03 0.00 0.00 0.00 0.03 0.06 0.79 0.00 0.00 0.01 0.07

0.00 0.00 0.01 0.00 0.02 0.01 0.00 0.90 0.05 0.01 0.00

0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.04 0.94 0.00 0.00

0.02 0.00 0.01 0.00 0.12 0.38 0.02 0.04 0.01 0.40 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.99

Normalized confusion matrix

(g) Left Leg & Right Leg
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0.52 0.00 0.02 0.14 0.02 0.02 0.23 0.03 0.00 0.03 0.00

0.00 0.79 0.00 0.04 0.01 0.00 0.00 0.16 0.01 0.00 0.00

0.01 0.02 0.26 0.15 0.07 0.04 0.08 0.20 0.10 0.07 0.00

0.01 0.04 0.01 0.91 0.00 0.00 0.00 0.01 0.00 0.00 0.00

0.01 0.04 0.01 0.04 0.41 0.15 0.01 0.07 0.16 0.11 0.00

0.00 0.01 0.01 0.01 0.08 0.80 0.01 0.02 0.02 0.05 0.00

0.05 0.00 0.01 0.10 0.03 0.03 0.73 0.00 0.00 0.03 0.00

0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.93 0.05 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.95 0.00 0.00

0.03 0.01 0.00 0.03 0.03 0.09 0.04 0.07 0.03 0.65 0.00

0.02 0.00 0.00 0.19 0.01 0.00 0.33 0.00 0.00 0.00 0.45

Normalized confusion matrix

(h) Left Arm & Left Leg

10 11 14 16 20 23 30 33 34 46 48
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0.35 0.00 0.38 0.01 0.00 0.00 0.02 0.13 0.00 0.09 0.00

0.00 0.46 0.00 0.01 0.00 0.00 0.00 0.51 0.02 0.01 0.00

0.00 0.03 0.83 0.00 0.02 0.00 0.00 0.10 0.01 0.00 0.00

0.01 0.13 0.20 0.41 0.01 0.00 0.00 0.14 0.09 0.00 0.00

0.00 0.03 0.05 0.02 0.63 0.02 0.00 0.07 0.16 0.02 0.00

0.00 0.00 0.04 0.00 0.53 0.30 0.00 0.05 0.05 0.03 0.00

0.08 0.01 0.20 0.01 0.04 0.00 0.35 0.09 0.01 0.21 0.00

0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.90 0.09 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.97 0.00 0.00

0.00 0.01 0.09 0.00 0.12 0.05 0.00 0.09 0.12 0.52 0.00

0.03 0.00 0.02 0.02 0.00 0.00 0.03 0.08 0.00 0.03 0.78

Normalized confusion matrix

(i) Right Arm & Right Leg

Fig. 6. Normalized confusion matrices for recognition in the PKU-MMD data set (a) without removing any body part, (b)–(i) upon
removing the body part(s) denoted in the caption of the corresponding subfigure. Classed depicted in matrices are: 10:eat meal/snack,
11:falling, 14:handshaking, 16:hugging other person, 20:make a phone call/answer phone, 23:playing with phone/tablet, 30:reading,
33:sitting down, 34:standing up, 46:typing on a keyboard, 48:wear jacket.
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0.61 0.06 0.00 0.04 0.06 0.05 0.04 0.08 0.02 0.02 0.00 0.02

0.00 0.96 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.00

0.00 0.01 0.95 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00

0.06 0.00 0.00 0.51 0.05 0.05 0.23 0.02 0.03 0.01 0.00 0.03

0.03 0.01 0.01 0.04 0.56 0.20 0.01 0.10 0.02 0.00 0.00 0.02

0.04 0.00 0.00 0.00 0.13 0.69 0.05 0.01 0.00 0.00 0.02 0.06

0.04 0.00 0.00 0.18 0.05 0.09 0.47 0.01 0.08 0.03 0.00 0.04

0.09 0.05 0.01 0.00 0.03 0.00 0.01 0.78 0.01 0.01 0.00 0.00

0.00 0.00 0.00 0.01 0.01 0.06 0.04 0.01 0.86 0.01 0.00 0.00

0.03 0.00 0.00 0.02 0.03 0.05 0.03 0.01 0.02 0.54 0.02 0.25

0.02 0.00 0.00 0.03 0.03 0.02 0.02 0.00 0.03 0.06 0.78 0.02

0.03 0.01 0.00 0.12 0.05 0.04 0.06 0.00 0.05 0.25 0.01 0.38

Normalized confusion matrix

(a) None
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0.27 0.06 0.00 0.00 0.40 0.18 0.02 0.01 0.00 0.01 0.00 0.04

0.00 0.97 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.05 0.85 0.00 0.02 0.01 0.00 0.07 0.00 0.00 0.00 0.00

0.03 0.01 0.00 0.24 0.22 0.25 0.12 0.00 0.00 0.02 0.00 0.11

0.02 0.01 0.00 0.01 0.68 0.23 0.01 0.02 0.00 0.01 0.00 0.02

0.01 0.01 0.00 0.01 0.17 0.75 0.02 0.00 0.00 0.01 0.00 0.01

0.03 0.01 0.00 0.06 0.23 0.27 0.33 0.00 0.00 0.01 0.00 0.05

0.04 0.11 0.01 0.00 0.28 0.04 0.01 0.51 0.00 0.00 0.00 0.00

0.05 0.03 0.00 0.03 0.22 0.39 0.08 0.01 0.09 0.03 0.01 0.06

0.01 0.01 0.00 0.00 0.26 0.37 0.01 0.00 0.01 0.17 0.00 0.16

0.07 0.03 0.00 0.02 0.04 0.12 0.06 0.01 0.00 0.26 0.30 0.11

0.01 0.01 0.00 0.02 0.30 0.30 0.01 0.00 0.00 0.06 0.00 0.29

Normalized confusion matrix

(b) Left Arm

41 42 43 44 45 46 47 48 49 10
3

10
4

10
5

Predicted label

41

42

43

44

45

46

47

48

49

103

104

105

Tr
ue

 la
be

l

0.62 0.01 0.00 0.03 0.17 0.04 0.02 0.03 0.01 0.01 0.00 0.05

0.00 0.91 0.00 0.00 0.05 0.01 0.01 0.01 0.00 0.00 0.00 0.00

0.00 0.06 0.85 0.00 0.03 0.01 0.00 0.04 0.00 0.00 0.00 0.00

0.07 0.00 0.00 0.46 0.12 0.07 0.10 0.01 0.04 0.06 0.00 0.07

0.04 0.01 0.00 0.01 0.82 0.07 0.01 0.01 0.01 0.00 0.00 0.02

0.02 0.01 0.00 0.01 0.33 0.55 0.02 0.01 0.02 0.01 0.00 0.02

0.04 0.00 0.00 0.10 0.17 0.11 0.43 0.01 0.06 0.04 0.00 0.05

0.10 0.03 0.00 0.00 0.16 0.02 0.00 0.67 0.00 0.00 0.00 0.00

0.01 0.00 0.00 0.02 0.06 0.02 0.05 0.00 0.81 0.01 0.00 0.01

0.03 0.00 0.00 0.02 0.13 0.06 0.01 0.01 0.01 0.62 0.00 0.11

0.08 0.01 0.00 0.02 0.04 0.05 0.06 0.01 0.10 0.45 0.06 0.13

0.07 0.00 0.00 0.04 0.17 0.06 0.01 0.00 0.01 0.23 0.00 0.40

Normalized confusion matrix

(c) Right Arm
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0.07 0.03 0.00 0.00 0.78 0.08 0.00 0.00 0.00 0.00 0.00 0.02

0.00 0.75 0.00 0.00 0.18 0.04 0.00 0.01 0.00 0.00 0.00 0.00

0.00 0.07 0.14 0.00 0.68 0.00 0.00 0.09 0.00 0.00 0.00 0.00

0.01 0.00 0.00 0.00 0.67 0.25 0.01 0.00 0.00 0.01 0.00 0.05

0.02 0.00 0.00 0.00 0.87 0.08 0.01 0.00 0.00 0.00 0.00 0.02

0.01 0.00 0.00 0.00 0.63 0.29 0.01 0.00 0.00 0.01 0.00 0.05

0.02 0.00 0.00 0.00 0.66 0.24 0.03 0.00 0.00 0.00 0.00 0.04

0.02 0.13 0.00 0.00 0.70 0.02 0.01 0.13 0.00 0.00 0.00 0.00

0.02 0.01 0.00 0.01 0.58 0.29 0.02 0.00 0.00 0.01 0.00 0.06

0.00 0.01 0.00 0.00 0.58 0.25 0.00 0.00 0.00 0.02 0.00 0.13

0.04 0.03 0.00 0.00 0.45 0.33 0.01 0.00 0.00 0.01 0.00 0.12

0.00 0.01 0.00 0.00 0.64 0.14 0.01 0.00 0.00 0.01 0.00 0.18

Normalized confusion matrix

(d) Left & Right Arm
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0.62 0.00 0.00 0.05 0.05 0.05 0.05 0.07 0.04 0.02 0.00 0.05

0.00 0.92 0.01 0.00 0.01 0.02 0.00 0.03 0.00 0.00 0.00 0.00

0.00 0.00 0.97 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00

0.02 0.00 0.00 0.63 0.02 0.06 0.16 0.00 0.05 0.02 0.00 0.03

0.01 0.00 0.00 0.03 0.69 0.17 0.02 0.05 0.02 0.00 0.00 0.02
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0.02 0.00 0.00 0.13 0.02 0.08 0.64 0.01 0.06 0.01 0.00 0.02

0.03 0.00 0.01 0.01 0.03 0.02 0.01 0.89 0.01 0.00 0.00 0.00

0.00 0.00 0.00 0.01 0.00 0.03 0.01 0.00 0.92 0.01 0.00 0.00

0.03 0.00 0.00 0.02 0.03 0.06 0.02 0.01 0.03 0.67 0.02 0.12

0.01 0.00 0.00 0.01 0.01 0.03 0.01 0.00 0.03 0.02 0.89 0.01
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Normalized confusion matrix
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0.03 0.00 0.00 0.62 0.02 0.04 0.16 0.01 0.03 0.03 0.01 0.04

0.03 0.00 0.00 0.02 0.72 0.11 0.03 0.04 0.01 0.01 0.00 0.02

0.01 0.00 0.00 0.02 0.09 0.82 0.03 0.01 0.01 0.01 0.00 0.01

0.02 0.00 0.00 0.13 0.02 0.05 0.67 0.00 0.04 0.03 0.00 0.03

0.05 0.01 0.00 0.00 0.03 0.01 0.01 0.87 0.01 0.00 0.00 0.00

0.00 0.00 0.00 0.01 0.01 0.03 0.03 0.00 0.89 0.02 0.01 0.00
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0.02 0.00 0.00 0.02 0.65 0.18 0.02 0.05 0.03 0.00 0.00 0.02

0.01 0.00 0.00 0.01 0.08 0.83 0.03 0.00 0.04 0.00 0.00 0.00
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(g) Left & Right Leg

41 42 43 44 45 46 47 48 49 10
3

10
4

10
5

Predicted label

41

42

43

44

45

46

47

48

49

103

104

105

Tr
ue

 la
be

l

0.27 0.02 0.00 0.00 0.39 0.24 0.02 0.02 0.00 0.01 0.00 0.03

0.00 0.92 0.00 0.00 0.01 0.04 0.00 0.02 0.00 0.00 0.00 0.00

0.00 0.02 0.90 0.00 0.01 0.01 0.00 0.05 0.00 0.00 0.00 0.00

0.03 0.00 0.00 0.24 0.19 0.30 0.13 0.00 0.00 0.02 0.00 0.08

0.02 0.00 0.00 0.01 0.60 0.31 0.02 0.03 0.00 0.00 0.00 0.01

0.01 0.00 0.00 0.01 0.14 0.78 0.02 0.01 0.00 0.01 0.00 0.01

0.02 0.00 0.00 0.07 0.22 0.30 0.32 0.00 0.00 0.01 0.00 0.05

0.04 0.03 0.01 0.00 0.26 0.08 0.01 0.58 0.00 0.00 0.00 0.00

0.04 0.01 0.00 0.03 0.21 0.44 0.08 0.01 0.11 0.02 0.01 0.04

0.01 0.01 0.00 0.01 0.28 0.41 0.01 0.00 0.00 0.15 0.00 0.12

0.05 0.03 0.00 0.02 0.04 0.13 0.06 0.01 0.01 0.24 0.32 0.11

0.01 0.01 0.00 0.01 0.31 0.35 0.01 0.00 0.00 0.05 0.00 0.24

Normalized confusion matrix

(h) Left Arm & Left Leg
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0.07 0.00 0.00 0.01 0.05 0.04 0.08 0.00 0.10 0.48 0.05 0.10
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Normalized confusion matrix

(i) Right Arm & Right Leg

Fig. 7. Normalized confusion matrices for recognition in the NTU-RGB+D data set (a) without removing any body part, (b)–(i) upon
removing the body part(s) denoted in the caption of the corresponding subfigure. Classed depicted in matrices are: 41:sneeze/cough,
42:staggering, 43:falling down, 44:headache, 45:chest pain, 46:back pain, 47:neck pain, 48: nausea/vomiting, 49: fan self, 103:yawn,
104:stretch oneself, 105: blow nose.
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Table 3. Experimental results of the proposed approach for the 12 selected classes of NTU RGB+D dataset. P, R, F1 denote Precision,
Recall, F1 score, respectively. By “None” we denote the case wherein all body parts are included. LA, RA, LL, LR denote the occlusion of
left arm, right arm, left leg, right leg, respectively. Classes are denoted as: 41:sneeze/cough, 42:staggering, 43:falling down, 44:headache,
45:chest pain, 46:back pain, 47:neck pain, 48: nausea/vomiting, 49: fan self, 103:yawn, 104:stretch oneself, 105: blow nose.

NTU RGB+D
None LA RA LA&RA LL RL LL&RL LA&LL RA&RL

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
41 0.62 0.61 0.62 0.50 0.27 0.35 0.57 0.62 0.60 0.37 0.07 0.12 0.79 0.62 0.69 0.72 0.66 0.69 0.70 0.59 0.64 0.55 0.27 0.36 0.52 0.61 0.56

42 0.87 0.96 0.91 0.75 0.97 0.85 0.87 0.91 0.89 0.71 0.75 0.73 0.98 0.92 0.95 0.97 0.77 0.86 1.00 0.08 0.15 0.87 0.92 0.90 0.94 0.69 0.79

43 0.98 0.95 0.97 0.98 0.85 0.91 0.99 0.85 0.92 0.96 0.14 0.25 0.98 0.97 0.98 0.98 0.92 0.95 0.95 0.90 0.93 0.98 0.90 0.94 0.99 0.69 0.81

44 0.52 0.51 0.51 0.61 0.24 0.35 0.64 0.46 0.53 0.29 0.00 0.01 0.66 0.63 0.64 0.67 0.62 0.65 0.65 0.56 0.60 0.59 0.24 0.34 0.62 0.40 0.48

45 0.58 0.56 0.57 0.24 0.68 0.35 0.36 0.82 0.50 0.12 0.87 0.21 0.71 0.69 0.70 0.69 0.72 0.70 0.66 0.65 0.66 0.22 0.60 0.33 0.33 0.77 0.46

46 0.51 0.69 0.59 0.26 0.75 0.38 0.52 0.55 0.53 0.11 0.29 0.19 0.58 0.87 0.70 0.64 0.82 0.72 0.52 0.83 0.64 0.23 0.78 0.36 0.51 0.50 0.51

47 0.49 0.47 0.48 0.50 0.33 0.40 0.59 0.43 0.50 0.33 0.03 0.06 0.66 0.64 0.65 0.62 0.67 0.65 0.59 0.62 0.61 0.48 0.32 0.38 0.51 0.46 0.48

48 0.74 0.78 0.76 0.80 0.51 0.62 0.84 0.67 0.74 0.51 0.13 0.21 0.83 0.89 0.86 0.79 0.87 0.83 0.66 0.86 0.75 0.79 0.58 0.67 0.64 0.68 0.66

49 0.74 0.86 0.79 0.91 0.09 0.16 0.76 0.81 0.78 0.20 0.00 0.00 0.76 0.92 0.84 0.82 0.89 0.86 0.62 0.92 0.74 0.86 0.11 0.20 0.76 0.80 0.78

103 0.61 0.54 0.57 0.29 0.17 0.21 0.43 0.62 0.51 0.26 0.02 0.04 0.68 0.67 0.68 0.60 0.71 0.65 0.63 0.67 0.65 0.29 0.15 0.20 0.40 0.63 0.49

104 0.94 0.78 0.86 0.93 0.30 0.46 0.95 0.06 0.11 0.00 0.00 0.00 0.96 0.89 0.92 0.94 0.87 0.90 0.80 0.86 0.83 0.92 0.32 0.48 0.90 0.05 0.10

105 0.45 0.38 0.41 0.34 0.29 0.31 0.46 0.40 0.43 0.27 0.18 0.22 0.64 0.44 0.52 0.58 0.41 0.48 0.56 0.39 0.46 0.34 0.24 0.28 0.43 0.35 0.38

Mean 0.67 0.67 0.67 0.59 0.45 0.45 0.67 0.60 0.59 0.34 0.21 0.17 0.77 0.76 0.76 0.75 0.74 0.75 0.70 0.66 0.64 0.59 0.45 0.45 0.63 0.55 0.54

5 CONCLUSIONS AND FUTUREWORK

In this paper we presented a study on the effect of occlusion in the context of a human activity recognition methodology.

Our study focused on the recognition of activities of daily living and medical conditions and used two publicly available

datasets. As baseline approach we used a convolutional neural network, whose input was a 2D representation of

skeletal motion. Our goal was to assess how partial occlusion of the subject affected the accuracy of recognition and

experimented with artificial occlusion of body parts, i.e., we removed the corresponding joints from the aforementioned

representation from the entire activity. For activity recognition, we used the model that had been trained with the

whole skeleton.

Our extensive experiments showed that the removal of arms had a significant effect on accuracy. This was not

surprising, as most of the selected activities were expressed mainly by one or both arms’ motion. Of course, in some

cases several activities showed quite consistent performance, despite the removal of one or more body parts. However,

in our opinion, as demonstrated, occlusion is one of the dominant problems in human activity recognition applications.

Therefore, in the future we would like to incorporate occluded samples within the training process of our method.
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