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Abstract. The problem of human activity recognition (HAR) has been
increasingly attracting the efforts of the research community, having sev-
eral applications. In this paper we propose a multi-modal approach ad-
dressing the task of video-based HAR. Our approach uses three modali-
ties, i.e., raw RGB video data, depth sequences and 3D skeletal motion
data. The latter are transformed into a 2D image representation into
the spectral domain. In order to extract spatio-temporal features from
the available data, we propose a novel hybrid deep neural network ar-
chitecture that combines a Convolutional Neural Network (CNN) and a
Long-Short Term Memory (LSTM) network. We focus on the tasks of
recognition of activities of daily living (ADLs) and medical conditions
and we evaluate our approach using two challenging, publicly available,
multi-view datasets.

Keywords: Human Activity Recognition · Convolutional Neural Net-
works · Long Short Term Memory Networks · Multimodal Analysis.

1 Introduction
Human activity recognition (HAR) has attracted increasing research attention
over the last years. Evidently, it consists one of the most prominent computer
vision tasks, due to its many applications in e.g., video surveillance, assisted liv-
ing, human-machine interaction, affective computing, etc. Recently, deep learn-
ing approaches, especially based on deep Convolutional Neural Network (CNN)
architectures have been widely used for video-based human activity recogni-
tion, outperforming the majority of traditional machine learning approaches.
Although a vast amount of research has been conducted on improving recogni-
tion performance, several principal challenges, such as the representation and
the analysis of actions, still remain unresolved.
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Additionally, with the advent of cost-effective sensors such as Microsoft Kinect,
depth data have become available. This way, several challenging human activ-
ity datasets now provide multi-modal raw data, i.e., consisting of RGB video
and depth information. The latter has also allowed for the extraction of a third
modality, i.e., skeleton sequences that consist of 3D coordinates of human joints
over time. Therefore, a large number of training videos are now an option for
training deep neural network (NN) architectures. Note that the depth modal-
ity, unlike the conventional RGB, is invariant to illumination changes and also
reliable for the estimation of body silhouettes. Nevertheless, RGB information
contains colour and texture which are significant for discriminating several ac-
tions involving e.g., human-object interactions. Different modalities offer differ-
ent perspectives of actions, thus, intuitively, a fusion of their complementary cor-
relations should be meaningful. Moreover, the existence of skeletal information
can be very helpful for accurately capturing the human body posture. However,
in scenarios where the source of motion features is limited to sequence data, the
challenge of CNN-based methods is to find efficient encoding techniques for rep-
resenting skeleton sequences, while capturing spatio-temporal activity features.

In this paper we present a novel approach that utilizes multiple modalities
for human activity recognition and incorporates RGB, depth and a visual repre-
sentation of skeletal information. The latter has been proposed in our previous
works [17], [18] and is based on the Discrete Fourier Transform (DFT). More
specifically, skeleton sequences are transformed to a sequence of 2D pseudocol-
ored images for five subsets of skeletal joints corresponding to arms, legs and the
trunk. All available modalities are then used for learning features using a hybrid
network architecture that combines a CNN with a Long Short Term Memory
network (LSTM). The extracted features are then fused and used for classifica-
tion. Our proposed method is evaluated on subsets of two challenging 3D activity
recognition datasets, namely a) the PKU-MMD dataset [13] on activities of daily
living; and b) the NTU RGB+D [20] on medical conditions.

The rest of this paper is organized as follows: Section 2 presents recent re-
search works closely related to the proposed approach. Section 3 presents the
proposed visual representation of skeleton sequences and the hybrid CNN-LSTM
architecture. The structure of the experiments and their results are presented in
section 4, while conclusions and plans for future work are included in section 5.

2 Related Work
In this section, we briefly review recent scientific literature on HAR using deep
learning. Similar to this work, we focus on two categories, a) methods for de-
picting skeletal information by image-based representations; and b) models that
utilize information from multiple modalities using CNNs and LSTMs.

2.1 Visual Skeletal Representations
Huynh-The et al. [5] proposed a technique named, “pose-transition feature to im-
age,” transforming skeletal information from video sequences to skeleton-based
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images. Two geometric features are extracted, i.e., joint-joint distance and joint-
joint orientation. For each video frame, a row vector F is composed with four
normalized values. The first two values correspond to the distance and orienta-
tion between two arbitrary joints, while the last two values correspond to the
distance and orientation between two arbitrary joints of two consecutive frames,
respectively. The RGB skeleton-based image is formed by stacking the feature
vectors F of all skeleton frames in the video, and encoding the normalized values
as color pixels. Similarly, Pham et al. [19] represented the skeletal information
with an enhanced action map, named “enhanced Skeleton Posture-Motion Fea-
ture” (SPMF). Joint motion and posture are encoded using the aforementioned
joint features, the Euclidean distance between two joints and the joint-joint ori-
entation. Additionally, the Adaptive Histogram Equalization (AHE) which is a
color enhancement method, is adopted for increasing contrast and highlighting
the texture and edges of the motion maps.

In the work of Wang et al. [22], a representation called “joint trajectory maps”
(JTM) was proposed, wherein skeleton data sequences are represented by three
2D images. The motion dynamics are captured as the image’s texture and color.
Specifically, motion direction is reflected as hue in the colored image, different
body parts are represented by multiple color maps and last but not least, the
motion magnitude of joints is reflected by the image’s saturation and brightness.
Another similar approach to representing skeletal information as color texture
images is the method of “joint distance maps” (JDM), proposed by Li et al. [10].
Therein, pairwise distances of joints generate four JDMs. The first three maps
correspond to distances in the three orthogonal planes (xy, yz and xz), while
the fourth encodes distances calculated in the 3D space (xyz). The existence of
the fourth JDM improved the robustness of the method when tested on multiple
viewpoints. Again, the image’s hue expresses the variations of joint distances.

Furthermore, Li et al. [11] presented a deep learning model that preserves
spatial and temporal features, taking advantage of both LSTM and CNN archi-
tectures. Inspired by [19] and [22], spatial domain features and temporal domain
features are extracted from skeleton sequence data. The former consist of rela-
tive position distances between joints and distances between joints and the lines
connecting two joints. Temporal domain features are generated using the afore-
mentioned methods to construct JDMs and JTMs. Spatial domain features are
used as input to LSTM networks, while temporal domain features are used to
train a CNN. To fuse resulting feature vectors a multiply score fusion is adopted.

Liu et al. [14] proposed a spatio-temporal representation for skeleton se-
quences that also incorporates the various durations of the different actions
performed. The constructed images are based on a three-channel image patch,
termed “Skepxel,” which is composed by arranging the indices of the skeleton
joints in a 2D grid and encoding their coordinate values along the third dimen-
sion. Each Skepxel might have a different arrangement of the joints but in order
to keep the representation of the skeleton sequence compact, only a few, highly
relevant arrangements are selected. A group of Skepxels are generated for a single
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skeleton frame and the final image is compactly constructed by concatenating
the group of skepxels in a column-wise manner for an N -frame sequence.

An approach addressing the problem of view invariance was presented in the
work of Liu et al. [15] where a transformation creating a 5D representation of
joints has been proposed. They adopted a 5D space, consisting of the 3D coor-
dinates of each joint and the additional two dimensions of time and joint label.
Upon projection to a 2D image using the dimensions of time and joint label,
the remaining three dimensions are used as R, G, B, channels to form pseudo-
colored images. Similarly, Yang et al. [23] proposed a “tree structure skeleton
image” (TSSI), based on the idea that spatially related joints in original skele-
tons have direct graph links between them. For their method, human skeleton
graph structure is rearranged using a depth-first tree traversal order and there-
fore, the spatial correlations between joints are better preserved. Hou et al. [6]
introduced an image-based representation called “joint skeleton spectra.” The
joint distribution maps are projected onto three Cartesian planes, reflecting the
temporal variation of a skeleton sequence to hue values. Finally, Ke et al. [9] pro-
posed a skeletal representation capable of extracting translation, rotation and
scale invariant features. In their method, five subsets of joints are selected to
represent the following body parts, arms, legs and trunk. For each body part
the cosine distances and the normalized magnitudes are calculated, creating two
feature arrays which are then transformed into gray scale images.

2.2 Multimodal Methods

In the work of Zhu et al. [24] both RGB and depth modalities are exploited for
gesture recognition. Short term spatio-temporal features are learnt by a 3D CNN
and then, long term spatio-temporal features are learnt based on the extracted
features with the use of convolutional LSTM networks. Moreover, Haque et al.
[3] follow an early fusion approach of RGB, Depth and thermal information, to
capture complementary facial features related to pain. For the feature extraction
a CNN-LSTM model is employed. Imran et al. [7] presented a multi-stream net-
work for human action analysis, leveraging CNN and RNN networks, where fea-
tures from RGB, depth and inertial data are incorporated. In the work of Sun et
al. [21], fused feature elements of RGB and depth information are learnt through
an enhanced two-stream LSTM network, called “Lattice-LSTM.” A memory cell
jointly trains both input gates and output gates, integrating motion patterns
and temporal dependencies. In addition, Liu et al. [16] compensated with view-
point variations, by utilizing RGB and depth information. Dense trajectories are
extracted from RGB frames which are then processed by a non-linear knowl-
edge transfer model for learning invariant features. Simultaneously, the depth
stream is filtered by a CNN and a Fourier temporal pyramid is applied on the
extracted features. The fusion of the invariant features is used to train further an
L1-L2 classifier. Li et al. [12] suggested a method that uses three modalities from
real-world data, specifically, depth information, microphone and RFIDs mobile
sensors, for recognizing concurrent human activities. Each of the aforementioned
modalities is processed by a CNN followed by an LSTM for extracting spatial
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and temporal features respectively, which are later fused for the classification.
Finally, Hazirbas et al. [4] proposed an encoder-decoder network architecture for
semantic labeling of indoor scenes. Although, their approach is not addressing
HAR, both RGB and depth information is taken into account and fused in the
following way: two encoding branches are used for each modality and a fusion
block consolidates the produced feature maps.

3 Methodology

The proposed method incorporates three different modalities, i.e., RGB, depth
and skeletal information. The latter consists of the 3D motion of a set of 25
human skeleton joints. These modalities are processed independently through a
deep hybrid architecture which is based on a 2D CNN and a LSTM network.
To effectively leverage the capability of the hybrid network in mining discrim-
inative features for the problem of recognition, skeletal data are encoded into
five pseudo-coloured images, termed “activity images,” each corresponding to a
body part. In other words, a given activity performed by a human subject is
represented by five sequences of activity images. Once again, these sequences
are processed separately through the network and finally, the produced feature
maps from all modalities are combined using a late fusion approach. In brief,
the proposed approach consists of the following key components: a) input pre-
processing and construction of the activity images; b) a 2D hybrid CNN-LSTM
network architecture; and c) fusion of the produced feature maps.

3.1 Input Pre-processing

Firstly, input video sequences are resized. Although the resolution of RGB and
depth videos is high (i.e., 1920 × 1080 and 512 × 424, respectively), following
the common good practices we resized both modalities to 213 × 120 and 128 ×
106, respectively. In order to create a more diverse training set, so as to reduce
overfitting during the training procedure, we adopted data augmentation. More
specifically, datasets were augmented by using random crops (wherein a random
subset of a given image is created, while its original aspect ratio is preserved) and
horizontal flips both for RGB and depth modalities. Finally, since the duration
of different activities and of the performing speed of a given activity between
different subject vary, we downsampled all input video sequences into a fixed
length of 15 frames, fulfilling the need for a fixed input size.

3.2 Skeletal Information

The skeletal input data consist of 3D spatial human joint coordinates, captured
using Microsoft Kinect v2 cameras. In more detail, during the performance of a
given action the Kinect sensors record the 3D position over time of 25 joint coor-
dinates (x,y,z) for each detected human body in the scene. The human skeleton
is modelled as a graph of skeletal joints and edges. Each joint corresponds to
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a body part such as head, shoulder, knee, etc. while edges connect these joints
shaping the body structure. In the proposed method, we divide the human skele-
ton into five main body parts, namely, head-torso, right arm, left arm, right leg
and left leg. For each of these joint groups we construct a sequence of activity
images to be used as an input for our hybrid network. Skeleton joints and the
selected body parts are illustrated in Fig. 1.

head
torso

left 
hand

right 
hand

right 
leg

left 
leg

Fig. 1: The 25 skeletal joints divided into five main body parts

3.3 Activity Images

The activity images we use to capture spatiotemporal properties of skeletons have
been partially inspired by the work of Jiang et al. [8], who presented a similar
concept for the representation of signal sequences obtained by accelerometers and
gyroscopes. Moreover, Papadakis et al. in [17], [18] composed an activity image
representing a single activity. In this work joint coordinates are considered as
three separate 1D signals; this way a given video sequence consists of 75 1D
signals. All signals for a given activity sample are concatenated forming a signal
image which is transformed to the activity image by a spectral transformation.

In this work we propose a quite similar implementation of activity images. We
remind that they are constructed so as to be visual representations of 3D human
body motion over time. In other words, they capture both spatial and temporal
dependencies that are reflected by the color and texture of the images. Joint
coordinates are likewise considered as 1D signals and a spectral transformation
is utilized to form the final activity image. However, a key difference in the
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presented approach is that each action is depicted by five sequences of activity
images corresponding to five body parts, i.e., arms, legs and head-torso. To
this goal, joint coordinates are appropriately grouped based on the body part
to which they belong. This way, head-torso is associated with the joints head,
neck, spine-shoulder, spine-mid and spine-base. Arms are associated with spine-
shoulder left/right-shoulder, elbow, wrist, thumb, hand and hand-tip. Lastly,
legs are related with hip, knee, ankle and foot.

Each video frame is translated as a row vector, composed of the 3D joint
coordinates (x,y,z). These row vectors are then concatenated composing a sig-
nal image. Image width is indicated equal to the number of joints participating,
while image height is equal to the number of frames. The height parameter is
affected by the user-defined sequence length: to create a sequence of N activ-
ity images for a single action, it is necessary that frame rows are split into N
equal sets. Larger sequence length induces less frames for each image and thus,
a smaller height. It is also worth mentioning that joint coordinates are arranged
in chronological order, i.e., the first row corresponds to the first video frame etc.
As a result, a sequence of signal images corresponds to representations of con-
secutive segments of an activity. Furthermore, since performed activities suffer
from temporal variations, an interpolation step is required and a set of signal
images of fixed height and sequence length is created for each body part. Finally,
activity images are constructed by imposing the 2D Discrete Fourier Transform
(DFT) on the interpolated signal images, discarding their phase.

3.4 Network Architecture

As it has already been mentioned, the proposed approach, is based on a 2D
hybrid CNN-LSTM network. The motivation for our approach is that a) CNNs
have been widely used for learning spatial features; anc b) LSTM networks have
been successfully used for sequential modeling. Our approach combines both
network architectures for capturing spatiotemporal correlations. Particularly, the
different typed data (RGB, Depth, body-part based Activity Images) are filtered
by a 2D-CNN for learning short-term spatiotemporal features and are then fed
to an LSTM for extracting long-term spatiotemporal dependencies. The output
feature maps are concatenated and a final dense layer with a softmax activation
is applied for the classification.

The implemented architecture of the CNN is presented in Fig. 2 and includes
the following layers: a) a convolutional layer with 32 kernels of size 7 × 7 with
stride 2, with batch normalization and ReLU activation; b) convolutional layer
with 32 kernels of size 3 × 3, again with batch normalization and ReLU acti-
vation; c) pooling layer, downsampling the image with 2 × 2 max-pooling with
stride 2; d) convolutional layer with 32 kernels of size 3×3 with batch normaliza-
tion and ReLU activation; e) pooling layer, downsampling the image with 2× 2
max-pooling with stride 2; f) flatten layer. For the aforementioned layers, time
distributed layers are used to extract features from the entire sequence of images,
creating the appropriate input for g) an LSTM layer with 256 units. Finally, the
output features that are extracted from the LSTM layer are concatenated for
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each type of data (i.e., RGB, depth, activity Images) and used as input to h) a
dense layer with softmax activation that produces the final classification results.
The proposed approach is summarized in Fig. 3.

Conv2D
(7x7)*32
+ ReLU

Conv2D
(3x3)*32
+ ReLU
+ BN

MaxPool
2x2

Conv2D
(3x3)*32
+ ReLU
+ BN

MaxPool
2x2

LSTM

Fig. 2: The proposed hybrid CNN-LSTM architecture.

4 Experiments

4.1 Datasets

For network training and experimental evaluation, our method was tested on a)
activities that resemble to “activities of daily living” (ADLs) and are part of the
PKU-MMD dataset; and b) on “medical conditions” that are part of the NTU
RGB+D dataset. More specifically:

PKU-MMD [13] is a large-scale dataset for continuous multi-modality 3D
human action understanding, captured via the Kinect v2 sensor. It contains
approximately 20K action instances corresponding to 51 categories providing
color and depth images, infrared sequences and human skeleton joints. For the
evaluation of our model we selected 11 classes that are considered to be mostly
related to ADLs: eat meal snack, falling, handshaking, hugging other person,
make a phone call answer phone, playing with phone tablet, reading, sitting down,
standing up, typing on a keyboard and wearing a jacket.

NTU RGB+D [20] is a large scale benchmark dataset for 3D Human Ac-
tivity Analysis. RGB, depth, infrared and skeleton videos for each performed
action have been also recorded using the Kinect v2 sensor. It is considered to be
one of the most challenging human action recognition datasets due to its large
intra-class and viewpoint variations. It contains 120 action classes performed
by 40 human subjects with approx. 114K samples in total. The actions in this
dataset are divided into three major categories: daily actions, mutual actions,
and medical conditions. For our experiments we selected the medical-condition-
related category consisting of 12 classes, namely: sneeze/cough, staggering, falling
down, headache, chest pain, back pain, neck pain, nausea/vomiting, fan self, yawn,
stretch oneself and blow nose.
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LSTM LSTM LSTM LSTM LSTM LSTM LSTM

ConvNet ConvNet ConvNet ConvNet ConvNet ConvNetConvNet

trunk left arm right leg

Fusion

Softmax

RGB images Depth imagesskeletal sequences

Split into joint parts

Concatenation & Interpolation

Discrete Fourier Transform

Signal Images

Activity Images

right arm left leg

Fig. 3: An overview of the proposed approach.

4.2 Implementation and Network Training Details

Experiments were performed on a personal workstation with an Intel™i7 5820K
12 core processor on 3.30 GHz and 16GB RAM, using NVIDIA™Geforce GTX
2060 GPU with 8 GB RAM and Ubuntu 18.04 (64 bit). The deep architecture
has been implemented in Python, using Keras 2.2.4 [2] with the Tensorflow 1.12
[1] backend. All data pre-processing and processing steps have been implemented
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in Python 3.6 using NumPy, SciPy and OpenCV. For training, we set the batch
size to 16. We used the Adam optimizer and set the learning rate to 0.0001.

4.3 Experimental Results and Analysis
Initially, we assessed the contribution of different body parts to the accuracy
of classification. It is obvious that the majority of the aforementioned activ-
ities mainly consist of upper body motion. A few also involve significant leg
motion. Our experiments indicated that all parts were needed to maximize ac-
curacy. When legs were omitted, a small, yet significant drop of performance
occured. We also performed several experiments regarding image sizes and se-
quence lengths. Upon this experimental evaluation, we ended up with the fol-
lowing setup: RGB sequences of 15 frames with dimension 213 × 120, depth
sequences of 15 frames with dimension 128× 106, image sequences of 7 activity
images from head-torso with dimension 15×53, image sequences of 7 activity im-
ages from arms with dimension 18×53 and image sequences of 7 activity images
from legs with dimension 12 × 53. Within the evaluation using both datasets,
we adopted the same evaluation protocol, which includes single-view, cross-view
and cross-subject evaluation criteria. This approach has been followed in order to
investigate our approach’s competency in dealing with view-independent action
recognition and intra-class variations among different subjects. In both datasets
each scene is captured by three different angles, thus in a single-view setting
train and test sets are derived from the same camera, while in a cross-view eval-
uation one/two viewpoints are used for training and the remaining for testing.
In cross-subject experiments, subjects are split into training and testing groups.
Results are summarized in Table 1. When compared to those of our previous
work [17], it is evident that the accuracy of the latter has been outperformed.

5 Conclusion
In this paper an effective method for human action recognition has been pro-
posed. Our goal was to incorporate multiple modalities and exploit complemen-
tary features from pre-segmented videos. For skeletal information we used an
image-based spectral representation aiming to capture spatio-temporal features.
Considering that CNNs work efficiently with highly dimensional data, such as
images, we utilized a CNN architecture to extract spatial features. In addition
to capture the temporal dependencies among the extracted features an LSTM
was employed. We assessed the performance of our approach in actions related
to daily living activities and to medical conditions. The experimental results on
the different subsets have shown the competence of this approach for learning
and classifying human activities. Our plans for future work include investigation
on methods for creating the signal image, possibly with the use of other types
of sensor measurements such as wearable accelerometers, gyroscopes etc. and
evaluation of the proposed approach on several other public datasets, and for
other types of activities. Finally, we would like to perform an evaluation into a
real-like or even real-life assistive living environment.
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Table 1: Experimental results of the proposed approach. P, R, F1 and Acc. denote
Precision, Recall, F1 score and Accuracy, respectively.

Experiment Viewpoint PKU-MMD NTU
Train Test P R F1 Acc. Acc. of cite P R F1 Acc.

Cross View

LR M 0.95 0.95 0.95 0.95 0.77 0.75 0.75 0.75 0.75
LM R 0.89 0.88 0.88 0.88 0.60 0.72 0.71 0.71 0.71
RM L 0.87 0.86 0.86 0.86 0.60 0.64 0.62 0.62 0.62
M L 0.86 0.85 0.84 0.85 0.62 0.63 0.63 0.63 0.63
M R 0.90 0.90 0.90 0.90 0.58 0.67 0.68 0.68 0.68
R L 0.65 0.65 0.63 0.65 0.32 0.57 0.57 0.56 0.57
R M 0.86 0.86 0.86 0.86 0.56 0.70 0.69 0.69 0.70
L R 0.73 0.72 0.72 0.72 0.41 0.64 0.64 0.64 0.64
L M 0.87 0.86 0.86 0.86 0.65 0.68 0.68 0.68 0.68

Cross Subject LRM LRM 0.94 0.94 0.94 0.94 0.85 0.63 0.64 0.65 0.64

Single View
L L 0.90 0.90 0.90 0.90 0.76 0.68 0.67 0.67 0.67
M M 0.94 0.94 0.94 0.94 0.89 0.69 0.68 0.68 0.68
R R 0.92 0.91 0.91 0.91 0.84 0.69 0.68 0.68 0.68
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