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Abstract
Graph signal processing has recently emerged as a field with applications across a broad spectrum of fields including brain

connectivity networks, logistics and supply chains, social media, computational aesthetics, and transportation networks. In

this paradigm, signal processing methodologies are applied to the adjacency matrix, seen as a two-dimensional signal.

Fundamental operations of this type include graph sampling, the graph Laplace transform, and graph spectrum estimation.

In this context, topology similarity metrics allow meaningful and efficient comparisons between pairs of graphs or along

evolving graph sequences. In turn, such metrics can be the algorithmic cornerstone of graph clustering schemes. Major

advantages of relying on existing signal processing kernels include parallelism, scalability, and numerical stability. This

work presents a scheme for training a tensor stack network to estimate the topological correlation coefficient between two

graph adjacency matrices compressed with the two-dimensional discrete cosine transform, augmenting thus the indirect

decompression with knowledge stored in the network. The results from three benchmark graph sequences are encouraging

in terms of mean square error and complexity especially for graph sequences. An additional key point is the independence

of the proposed method from the underlying domain semantics. This is primarily achieved by focusing on higher-order

structural graph patterns.

Keywords Graph signal processing � Graph topology � Signal processing kernels � Discrete cosine transform �
Tensor algebra � Tensor stack network � Julia
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1 Introduction

Graph signal processing (GSP) over the past few years has

yielded many advanced analytics for graph mining appli-

cations including topological similarity. One major metric

expressing the latter is correlation coefficient between two

graphs, either deterministic or stochastic. This can be the

building block of graph distance metrics or clustering

schemes. Given that graph similarity analytics frequently

face scalability issues not only in terms of vertices and

edges, but also of higher-order patterns to be discovered, it

makes perfect sense for efficient computational kernels to

be used.

Deep learning (DL) yields scalable and robust models

which can inherently extract non-trivial knowledge from

massive sequences such as document collections, matrix

and tensor sequences, or graphs. Among DL models, tensor

stack networks (TSNs), implemented in software or in
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dedicated tensor processing units (TPUs), are becoming

popular as they generalize neural networks to inherently

handle two-dimensional input [28]. Preprocessing, outlier

discovery, dimensionality reduction, or attribute engineer-

ing may supplement the main DL methodology to reduce

its computational complexity or increase its accuracy [49].

GSP techniques that rely heavily on graphs bring two-

dimensional signals over an irregular domain [47]. Once

elementary GSP operations such as shifting and sampling

are defined, composite ones such as the graph Laplace

transform can be constructed. In conjunction with existing

efficient computational kernels like the fast Fourier trans-

form (FFT), GSP techniques such as domain transform

adaptive filtering algorithms, maximum likelihood esti-

mators (MLE), spectrum estimators, and the discrete cosine

transform (DCT) are gradually becoming established

analysis tools or preprocessing modules for more sophis-

ticated or data intensive DL schemes.

The primary research objective of this article is a GSP

technique for the estimation with a TSN of the topological

correlation coefficient between two unweighted graphs

compressed with the two-dimensional DCT (DCT2). Thus,

the TSN is trained to indirectly invert DCT2 and simulta-

neously to interpolate knowledge obtained from its train-

ing. Said technique has been inspired by domain transform

adaptive DSP ones. The proposed scheme differentiates

from previous approaches in the way the key elements

DCT2 and TSN are combined, as well as in the application

to a graph processing setting. The entire scheme has been

implemented in Julia.

The remainder of this work is structured as follows.

Section 2 briefly reviews the scientific literature regarding

neural networks and GSP. The proposed methodology is

presented in sections 3 and 4, whereas the results from the

benchmark graph sequences are presented in section 5.

Future research directions are given in 6. Technical acro-

nyms are explained the first time they are encountered in

the text. Tensors and matrices are represented by capital

boldface, vectors by small boldface, and scalars by small

letters. To keep consistent with GSP notation, vector and

matrix indexing will be C style. Finally, Table 1 summa-

rizes the notation of this work.

2 Previous work

GSP is an emerging field where graphs are treated as two-

dimensional signals in the time domain defined over an

irregular domain [8, 33]. Once elementary operations such

as shifting and sampling are defined [46], then transforms

to other domains can be built [18, 40]. The graph Fourier

transform, based on the eigenexpansion of the respective

graph Laplacian matrix, is introduced in [14] and the

Laplace transform in [37]. Fundamental concepts for graph

processing with neural networks are proposed in [31],

whereas a convolutional neural network (CNN) architec-

ture for processing signals expressed with graph connec-

tivity patterns is described in [16]. In generative graph

models, graph regularization acts similarly to Tikhonov

regularization preventing erroneously graphs from being

formed [6, 20]. Graph neural networks (GNNs) constitute a

class of iterative methods which directly process topolog-

ical graph information introduced in [17]. Recent extensive

surveys about the field GNNs are [47] and [50].

Tensors represent the next evolutionary step in linear

algebra since they allow simultaneous linear couplings

between different vector spaces [44]. They have a wide

range of applications including adaptive nonlinear system

identification [11], face recognition [43], robust multilinear

principal component analysis [29], distances for self-or-

ganizing maps (SOMs) [12], multiple input multiple output

(MIMO) radars [38], and genetic algorithm fitness func-

tions [13]. TSNs have been originally proposed for large

vocabulary recognition [48]. Moreover, applications have

been extended to sound classification and reconstruction

from corrupted files [21] and checking the resiliency of

large graphs based on structural patterns such as cycles and

triangles [10]. A TSN review is [28].

DCT has a broad spectrum of discrete signal processing

(DSP) applications, predominantly in signal compression

as shown in [1]. The energy concentration, as well as the

properties of the transform domain, is described in [39],

while fundamental symmetries allowing fast versions

compared to the standard transform definition are explored

in [15]. Image watermarking with DCT has been proposed

in [7]. The DCT has been applied in fast image fusion

hardware architectures as for instance in [42] and the in

fusion of visible and infrared images [35]. Recently, a

quantum version of DCT for strong medical image

encryption and privacy preserving has been developed

[34].

Julia is a high-level programming language based on the

low-level virtual machine (LLVM) [24, 25] with a syntax

influenced from Java [4]. Extensive benchmarkings have

shown that Julia has excellent performance despite being

an interpreted language [5]. Additionally, it natively sup-

ports parallelism and the use of graphics processing units

(GPUs) [3]. Specialized packages for Julia cover fields

such as operations research [30], mathematical optimiza-

tion [32], and medical image reconstruction [23].
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3 Tensor stack networks

3.1 Structure

Intuitively speaking TSNs consist of serially connected

layers with information moving successively from the

input to the output layer. The main TSN structural char-

acteristic is that each layer consists of stacked feedforward

neural networks (FFNNs) trained in parallel. The number

of layers and FFNNs depends on the specific task and

training set size. The TSN architecture has the following

properties:

– The synaptic weights of an FFNN are updated with a

linear combination of the updates of the others in the

cluster. Therefore, each FFNN learns from its own

errors and from those made collectively in its layer.

This weight correlation leads to smoother differences

across a cluster and a more efficient generalization.

– Two-dimensional objects such as matrices, images, or

graphs can be directly driven to a TSN without

preprocessing entailing vectorization or projection to

one dimension, preserving two-dimensional patterns.

This additional information can be exploited to

approach smoothly two-dimensional objects.

– Two-dimensional items may well represent one-dimen-

sional ones. For instance, matrices can represent

clusters with multiple alternative centroids, the vectors

closest to the centroid, or the centroids resulting from

various averaging functionals. Such representations

offer additional flexibility. Moreover, a TSN can be

trained to perform multiple simultaneous operations on

them.

– There is no specific criterion for selecting the number

of levels, as well as their respective compositions.

Factors influencing this decision are the number of

available training samples, the minimization of model

overfitting, the complexity of the training procedure,

and the resulting weight sparsity of each level.

Fig. 1 shows a high-level overview of the general archi-

tecture of a TSN. Notice that, each layer receives as input

not only the predictions of the preceding layer but also the

original data. In contrast to regular FFNNs, there is the

potential for driving the original network input to each

hidden layer with feedforward loops.

For simplicity, the indices of the particular layer have

been dropped. Moreover, the description for hidden layers

also holds for the output layer with the understanding that

matrix Y contains the final TSN output. The latter is used

to compute local discrete error gradients. Each layer

comprises of the following elements:

– Matrices X 2 RI1�I2 and S 2 RJ1�J2 denote the original

and layer input, respectively. Their dimensions need not

coincide for any layer after the first.

– The third-order tensors H 2 RI1�I2�I3 and G 2
RJ1�J2�J3 contain, respectively, the adjustable weights

for X and S, performing multilinear attribute

transformations.

– Matrix Y 2 RK1�K2 contains the predictions of the

layer, namely the output resulting from the activation

(or not) of the FFNNs packed in the particular layer.

– The third-order tensor N 2 RN1�N2�N3 contains the

clustered FFNNs. Interactions across them are modeled

through Z1 2 RN1�N1�N3 and Z2 2 RN1�N1�N3 .

– The third-order tensor V 2 RN1�N2�N3 has the values for

the individual neurons of every network in the cluster

and has the same structure with N.

The orders and the dimensions of these elements are not

fixed, excluding the dependencies necessary for operand

compatibility. Each layer also may have different orders

and dimensions. In the general case, the transformed inputs

Table 1 Notation of this article
Symbol Meaning First in

, Equality by definition Eq. (16)

s1; . . .; snf g Set with s1; . . .; sn Tb. 3

t1; . . .; tnð Þ Tuple with t1; . . .; tn Eq. (24)

t1; . . .; tnð Þk Tuple with t1; . . .; tn without tk Eq. (2)

skh i Sequence with elements sk Sub. 5.1

�� XNOR Boolean function Eq. (17)

prob Xf g Probability of event X Eq. (23)

deg vð Þ Degree of vertex v Eq. (23)

�k Tensor multiplication in the k-th dimension Eq. (3)

�k k Tensor or matrix norm (inferred from context) Eq. (30)

I Identity matrix of suitable dimensions Eq. (14)
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are driven to a multidimensional neuron grid. Each neuron

has a nonlinear activation function u �ð Þ triggered inde-

pendently. The neuron outputs constitute the layer predic-

tions (Fig. 2).

The above functionality, which captures only the for-

ward pass, takes place as follows. First, the two multilinear

transforms shown in Eq. (1) take place:

UI,H�1 X and UL,G�1 S ð1Þ

Matrices UI and UL are the common but split input layer of

the FFNNs packed in N.

The tensor multiplication along the k-th dimension �k

between the pair of real valued tensors Ta 2 RI1�...�Ik�...�Ina

of order na and Tb 2 RI0
1
�...�Ik�...�I0nb of order nb is defined

elementwise as shown in Eq. (2):

Ta �k Tbð Þ i1; . . .; inað Þk i01; . . .; i
0
nb

� �
k

h i

,

XIk
ik¼1

Ta i1; . . .; ina½ �Tb i01; . . .; i
0
nb

h i ð2Þ

Note that, Ta and Tb must have the same length along the

k-th dimension. Moreover, in the left hand side of (2), the

two index tuples are concatenated to a single one.

The multiplication between the matrix X, which is a

second-order tensor, and the third-order weight tensor H

yields the intermediate input matrix UI of Eq. (3):

UI i2; i3½ � ¼ H�1 Xð Þ i2; i3½ �,
XI1
i1¼1

H i1; i2; i3½ �X i1; i2½ � ð3Þ

A similar result holds for the intermediate matrix UL using

the input matrix S and weight tensor G. This shows the

symmetric role of X and S. Once matrices UI and UL are

computed, they are driven to N, a tensor containing an

FFNN cluster and hence the layer computational core. The

meaning of each dimension of N 2 RN1�N2�N3 is:

– The first dimension indicates neuron location. Thus,

N :; n2; n3½ � refers to the weights of layer n2 of network

n3, whereas N :; :; n3½ � gives all weights of n3.
– The second dimension is the layer location of the

cluster. Notice that, each layer in every network

contains N1 neurons. In the general case, this need

not be true.

– The third dimension identifies an individual network in

the cluster. By fixing this index, N :; :; n3½ � is the

synaptic networks internal to the n3-th FFNN.

The intra-network synaptic weight connections are given

from N. Each of the N3 networks has N2 layers with N1

neurons at each layer for a total of N1N2 neurons, which is

common parameter across all the N3 networks. The N1N3

across all N3 neurons of the same layer N2 fire and have

their synaptic weights updated together.

The interaction between peer layers, namely layers

having the same numbering, is codified in Z1 2 RN1�N1�N3

and Z2 2 RN1�N1�N3 . By construction, only peer layers of

neighboring FFNNs interact. This has been inspired by the

spatial properties of SOMs. Geometrically, each of the N3

FFNNs of a cluster is placed in the area defined by the first

two dimensions of N. Peer interactions between the k-th

layers are modeled by Zk. In the TSN configurations pre-

sented here for simplicity and efficiency both in design and

in training in each cluster, there are two FFNNs with two

layers each. Given UL and UI ; the input to the first layer is

defined elementwise as in (4):

Fig. 1 Architecture of a TSN

(Source: Authors)

Fig. 2 Hidden layer structure (Source: Authors)
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u,N n1; 1; n3½ �
YN2

n0
2
¼1

UL n1; n
0
2

� �

þ 1� N n1; 1; n3½ �ð Þ
YN2

n0
2
¼1

UI n1; n
0
2

� �

þ
X
n0
1

X
n0
3
6¼n3

Z1 n01; 1; n
0
3

� �
V n01; 1; n

0
3

� �

ð4Þ

This is the input driven to the n1-th neuron of the first layer

of the n3-th network. Observe it is linear in its arguments

and that it consists of the following components:

– A weighted version of UL takes into consideration the

specific input corresponding to the neuron location in

the layer n1. This creates a shared cluster output.

– A weighted version of UI . Because of its form, this term

competes with the preceding one. Effectively, this

forces stacked FFNNs to specialize their outputs.

– The third term is a weighted linear combination of the

output of the peer layers, namely the layers with the

same numbering, of the neighboring networks.

Once the input u of Eq. (4) is computed, it is driven to the

appropriate neuron. Because of its form u depends heavily

on the order the values V are computed inside a given

layer. In this article, these values are computed serially

based on the location of the FFNN in the cluster and the

new values are used wherever possible. For the second

layer, the input u0 to neuron n1 is similar to u as shown in

Eq. (5):

u0,N n1; 2; n3½ �
YN2

n0
2
¼1

V n1; 1; n
0
2

� �

þ 1� N n1; 2; n3½ �ð Þ
YN2

n0
2
¼1

UI n1; n
0
2

� �

þ
X
n0
1

X
n0
3
6¼n3

Z2 n01; 2; n
0
3

� �
V n01; 2; n

0
3

� �

ð5Þ

There are many options for the activation function. The

smooth rectified linear unit (sReLU) is a common option

shown in (6). As its name suggests, sReLU is a smoother

alternative to the original ReLU with sReLU retaining most

properties of the latter.

u x; r0ð Þ, ln er0x þ 1ð Þ; r0 [ 0 ð6Þ

An alternative option is the logistic activation function (lgi)

of Eq. (7), which has a natural interpretation in the context

of the class of Verhulst population models. In both acti-

vation functions of Eqs. (6) and (7), r0 is a scaling

constant.

u x; r0ð Þ, 1

1þ e�r0x
¼ 1� 1

1þ er0x
; r0 [ 0 ð7Þ

The scaled polynomial constant unit (SPOCU) is a third

option for the activation function [22]. It relies on the

scaled difference between the evaluations in two closely

spaced points of a polynomial kernel as shown in (8).

u x; a0; b0:c0ð Þ,a0 h
x

c0
þ b0

� �
� h b0ð Þ

� �
;

a0; c0 [ 0; b0 2 0; 1ð Þ
ð8Þ

The eighth degree polynomial kernel h �ð Þ of Eq. (8) is

defined as in (9). The constant c imposes a hard upper limit

on the neuron activation function value.

h x; cð Þ,
c3 c5 � 2x4 þ 2
� 	

; x[ c

x3 x5 � 2x5 þ 2
� 	

; 0� x� c

0; x\0

8><
>:

; c� 1 ð9Þ

For the proper and efficient training in terms of conver-

gence speed of the TSN, the activation function u �ð Þ should
satisfy at least the following fundamental conditions:

– There should be a thresholding behavior of u �ð Þ or a

smooth approximation thereof. This is critical for the

characteristic nonlinear behavior of the FFNNs inher-

ited by the TSNs. Firing thresholding is also a basic

trait of human neurons.

– The local derivative of u �ð Þ for both input matrices

should be bounded in order to ensure both smooth

weight corrections, as well as a total smooth

convergence.

Note that, the logistic function of Eq. (7) satisfies both

criteria. On the other hand, the sReLU of Eq. (6) is

unbounded. However, because of its linear scaling, which

is sufficiently low, it can yield acceptable values for a wide

range of r0 which do not lead to numerical instability for

bounded input. SPOCU is also by construction bounded.

All activation functions are evaluated for each neuron

individually.

In this particular case, the TSN augments its input with

knowledge stored in it. Therefore, it is essential that the

number of hidden layers and adjustable parameters be kept

to a minimum so that the input information is fully

exploited without model overfit. To this end, the number of

hidden layers of TSN will be kept low, namely one and

two, in the fashion of autoencoders and extreme learning

machines (ELMs).

3.2 Training

As a general remark, training a TSN is considerably more

complex than an ordinary FFNN. This is attributed
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primarily to the estimation at each layer of the intercon-

nected local error gradients of the neuron grid N. The latter

must be done correctly both algorithmically and numeri-

cally to avoid error magnification through the TSN.

First, however, the error metric L quantifying the dis-

tance between the final TSN output and the corresponding

desired response should be defined. Since the desired out-

put is the topology correlation coefficient rd of Eq. (16), it

follows immediately that the last layer of the TSN should

be also yield a scalar y. In this case, assuming that C0

results rd;k

 �

are available, then L is defined as in Eq. (10):

L,
1

C0

XC0

k¼1

rd;k � yk
� 	2 ð10Þ

This is the deterministic mean square error taken over all

the available C0 pairs of the actual TSN output yk and the

corresponding desired output rd;k. This particular is a rea-

sonable choice for both scalar network outputs and the

TSN extrapolation task.

The initial synaptic weights of H, G, Z1, Z2, and G at

each layer and output values of V at each level are drawn

from the uniform distribution �1;þ1½ �. At each layer, the

available synaptic weights, namely the elements of weight

tensors H and G and of the neuron grid N, are updated in a

single pass in the (k þ 1)-th epoch according to the delta

rule of Eq. (11) as appropriate.

H kþ1½ � ¼ H k½ � þ l kþ1½ �
0 X kþ1½ � rXN

kþ1½ �
� �T

rXN
kþ1½ �

G kþ1½ � ¼ G k½ � þ l kþ1½ �
0 S kþ1½ � rSN

kþ1½ �
� �T

rSN
kþ1½ �

ð11Þ

In equation (11), l kþ1½ �
0 ; the learning rate, has been selected

as the cosine decay rate defined as in (12), where M0 is an

estimation of the number of training iterations.

l k½ �
0 ,

cos
2pk

M0 þ 1

� �
; 0� k�M0=4

cos
pM0

2 M0 þ 1ð Þ

� �
; k[M0=4

8>>><
>>>:

ð12Þ

The delta rule for the synaptic weight update of the N is

given in Eq. (13):

N kþ1½ �
,N k½ � þ l kþ1½ �

0 rXNþrSNð Þ �1 E
kþ1½ � ð13Þ

The error matrix E kþ1½ � of Eq. (13) is given by Eq. (14):

E k½ �
,

I� 2Y k½ �Tu Y k½ �� 	
; hidden layer

2

C0

yk � rd;k
� 	

; output layer

8><
>:

ð14Þ

In (14), the notation u Mð Þ is the elementwise application

of u �ð Þ to matrix M.

The local error gradient with respect to X of N and S for

a layer different than the output one is the respective dif-

ference of the current weight tensor value from the past

one. The weight updates for the tensors Z1 and Z2 are

given in (15):

Z
kþ1½ �
1 n1; n2; n3½ �,Z

k½ �
1 n1; n2; n3½ � þ l kþ1½ �

0 uE n1; n2½ �
Z

kþ1½ �
2 n1; n2; n3½ �,Z

k½ �
2 n1; n2; n3½ � þ l kþ1½ �

0 u0E n1; n2½ �
ð15Þ

4 Proposed methodology

4.1 Graph topology correlation

Having described in detail the general case of the func-

tionality of a TSN, the proposed DL scheme and its pur-

pose can now be explained. Comparing the topology of two

large-scale unweighted graphs is by no means trivial

because of scalability issues. For two graphs without loops

with n vertices, each let the correlation coefficient rd be

defined as in Eq. (16) [9]:

rd,
1

n2 � n

Xn�1

i1¼0

Xn�1

i2¼0

M1 i1; i2½ �M2 i1; i2½ � ð16Þ

Equation (16) assumes that a bijection between the two

vertex sets has been already established. Although ruled

out in many cases, loops may have a valid interpretation in

certain domains such as state modeling of transmission

attempts over shared media in communication networks

[20, 26]. In these cases, only the leading normalization

coefficient needs to be changed.

Observe also that rd counts only common edge occur-

rences. In certain domains, it may be desirable that com-

mon edge absences are also taken into consideration, for

instance in link prediction problems. Such problems fre-

quently arise among others in recommendation engines in

the form of item suggestion [27] and in social network

analysis in the form of friend discovery [41]. In these cases,

the correlation coefficient ra of (17) can be used:

ra,
1

n2 � n

Xn�1

i1¼0

Xn�1

i2¼0

M1 i1; i2½ � ��M2 i1; i2½ � ð17Þ

In Eq. (17), the operation �� between the adjacency matrix

entries is the complementary XOR Boolean function which

takes a value of one when both entries have the same value.

In any case, the proposed methodology can be applied to

this correlation coefficient variant as well without any loss

of generality.

The difference between the two correlation coefficients

of Eqs. (16) and (17) can be illustrated with the following
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example. In Fig. 3, two input graphs are shown. The cor-

responding adjacency matrices are given in Eq. (18).

M1,

0 1 0 0 0 1

1 0 1 0 1 0

0 1 0 1 0 1

0 0 1 0 1 0

0 1 0 1 0 1

1 0 1 0 1 0

2
666666664

3
777777775

and M2,

0 1 0 1 0 0

1 0 0 0 1 1

0 0 0 1 1 0

1 0 1 0 1 0

0 1 1 1 0 1

0 1 0 0 1 0

2
666666664

3
777777775

ð18Þ

For the specific example, the values are ra ¼ 1=3 and

rd ¼ 2=3. The fact that the latter is twice the former is

directly attributed to the fact that common edge absences

are factored in besides common edge occurrences.

4.2 Graph compression

The first step of the proposed methodology is to compute

the DCT2 of the respective adjacency matrix. Given the

energy compression property of this transform, keeping a

fraction of the largest DCT2 coefficients is tantamount to

keeping only the most important higher-order structural

graph properties. In turn, this is equivalent to compressing

the input graph. For a signal x 2 RI1�I2 ; the DCT2 is a

linear transform to the two-dimensional spatial frequency

domain and as stated earlier, it is most commonly associ-

ated with numerous DSP applications. The most common

DCT2 variant is the so-called type II defined as shown in

Eq. (19):

X u1; u2½ �,b1 u1½ �b2 u2½ �
XI1�1

i1¼0

XI2�1

i2¼0

x i1; i2½ � cosx1 cosx2

ð19Þ

The spatial frequency variables x1 and x2 are defined as in

Eq. (20):

x1,
pu1 2i1 þ 1ð Þ

2I1
and

x2,
pu2 2i2 þ 1ð Þ

2I2

ð20Þ

The normalization coefficients b1 u1½ � and b2 u2½ � of

Eq. (19), which ensure DCT2 is an isometric transform,

take the values shown in Eq. (21):

b1 u1½ �,

ffiffiffiffi
2

I1

r
; u1 ¼ 0

ffiffiffiffi
1

I1

r
; u1 6¼ 0

8>>><
>>>:

b2 u2½ �,

ffiffiffiffi
2

I2

r
; u2 ¼ 0

ffiffiffiffi
1

I2

r
; u2 6¼ 0

8>>><
>>>:

ð21Þ

In a GSP setting, it makes perfect sense to ask what is the

meaning of spatial frequency. The latter is inherently tied

to graph sampling. A high spatial frequency denotes denser

sampling in the sense that fewer intermediate vertices, as

determined by the adjacency matrix, are skipped [37].

Based on this interpretation, DCT2 coefficients, especially

those in low spatial frequencies, contain a part of the pat-

terns of local paths. Thus, higher-order graph structure is

reflected in the DCT2 coefficients. A correlation preserving

relationship similar to Parseval’s equality ensures that

topological comparisons in the original and in the DCT2

domain are equivalent [39]. Furthermore, because of the

strong energy concentration, only few of the DCT2 coef-

ficients can capture most of the topological properties of

the original graph [15]. This is the reason the DCT and

DCT2 are heavily used in popular audio and image com-

pression standards such as JPEG and MP3. Still, in prac-

tice, DCT2 has a compression limit beyond which artifacts

appear [7]. Moreover, since in this case, the DCT2 coef-

ficients are real, only their magnitude needs to be

examined.

The computational complexity of DCT2 is in practice

much lower compared to the quadratic number of opera-

tions dictated by equation (19). This is explained as DCT2

is the real part of the two-dimensional Fourier transform.

Thus, DCT2 can be derived through efficient implemen-

tations exploiting trigonometric symmetries, as well as its

recursive nature [15]. Concerning memory requirements,

DCT2 is in-place and so the additional overhead is at most

of the order of magnitude of the input data [1].

4.3 Graph decompression and structural
augmentation

Once the DCT2 coefficients have been computed and

selected, they are driven to an appropriately configured

TSN which acts as an extrapolator or predictor followed by

an inverse transformer. The cost of replacing the IDCT2
Fig. 3 Two example input graphs (Source: Authors)
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with the more expensive TSN is justified by the improved

prediction of the correlation coefficient (16).

Let n be the number of vertices for the two graphs for

which the correlation coefficient is sought. Then, the input

to the TSN is a pair of n� n matrices containing only the

c0 highest DCT2 coefficients in their respective locations

and zero at the remaining locations. The number of non-

zero coefficients c0 is c0nd e.
In the proposed scheme, the packed FFNNs in each

layer contain c0 processing neurons. Thus, each FFNN in

the first layer of the TSN has 2N3c0 neurons, and each

FFNN at the second layer of the TSN N3 c0 þ 1ð Þ. Given
that each TSN layer contains N3 packed networks, the total

number of neurons Np in the TSN is given by (22):

Np ¼ N3 3c0 þ 1ð Þ ð22Þ

This is pseudolinear in the number of the DCT2 coeffi-

cients, meaning that if the number of packed FFNNs in

each TSN layer N3 is o c0ð Þ, then the N0 is linear in c0.

Therefore, in this case, the space complexity of the TSN is

comparable to that of the DCT2. Moreover, regarding the

total number of operations required by the TSN, the fol-

lowing can be said about the interaction of a single neuron

at each iteration:

– Each interacts with at most c0 others at the next layer of

the same FFNN.

– Also, it interacts with at most 2c0 others at peer layers

of neighboring FFNNs.

Given the above, the total number of interactions per

iteration Ni is 3c
2
0. When the number of training iterations

is sublinear in c0, then the overall complexity is compa-

rable to that of the standard DCT2 but higher than that of

the fast DCT2. Nevertheless, for a sequence of graphs or

for large and sparse graphs, the proposed scheme may be a

viable alternative to the IDCT2 from a complexity

perspective.

Recall that an epoch is defined as the number of itera-

tions required to feed the TSN with every training sample

once. Thus, the number of iterations equals by definition

the number of the samples. Assuming a total of g0 available

samples, let the t0g0d e be reserved for training purposes,

t1g0d e for testing purposes, and the remaining for valida-

tion once the TSN configurations are tested.

DCT2 has been consistently reported as achieving better

compression ratios under a relatively broad spectrum of

conditions. This implies that the total number of levels and

their synaptic weights can be kept low. Moreover, TSNs

can offer additional generalization power in reconstructing

two-dimensional objects compared to the DCT2 compres-

sion alone since the synaptic weights, if properly trained,

can learn to augment the input data with semantic infor-

mation in order to compute the correlation coefficient with

a much higher accuracy. In graphs and images, information

is typically stored in a distributed manner, resulting in a

high semantic similarity between most neighboring ver-

tices and pixels, respectively. However, the former repre-

sent an irregular domain in the sense that not only the

number of connections may well vary across vertices, but

also local connectivity patterns. Therefore, graphs have

richer structural patterns compared to an image.

5 Results

5.1 Experimental setup

In order to experimentally evaluate the proposed method-

ology in terms of accuracy and complexity, three undi-

rected graphs were downloaded from the network

repository [36]. Specifically, the inf-power [45], the yeast-

protein-inter [19], and the ca-Erdos992 [2] graphs were

selected, forming, respectively, the graphs P0, Y0, and E0.

For each of these, the corresponding graph sequences Pkh i,
Ykh i, and Ekh i were generated, each containing g0 graphs,

using the following probabilistic procedure:

– With probability p0; select uniformly one vertex from

the v0nd e ones having the lowest degrees, where n is the
total number of vertices. Also, select uniformly one

vertex from the v0nd e ones having the highest degrees

and connect them.

– Otherwise, with probability 1� p0; select two vertices

with probability proportional to their locally weighted

degrees as shown in (23) and connect them.

prob vf g / deg vð ÞP
u deg uð Þ ð23Þ

In the above equation, the denominator ranges over all

neighbors of v. This mechanism prevents all high degree

vertices of obtaining immediately more neighbors, essen-

tially dominating the graph. This exponential degree

growth is not observed in large real-world graphs. On the

contrary, the latter have rather sizeable groups of vertices

with moderate degrees acting as local hubs. Equation (23)

achieves that approximately. Notice that, all graphs in the

sequence have the same number of vertices.

The configuration of each TSN in the experiments is

represented by a tuple (24):

input size; activation functionð Þ ð24Þ

Table 2 contains the TSN configurations used. The left

column contains configurations with the sReLU activation

function, whereas the right one has configurations with the

lgi. Configurations in the same row differ only in the

activation function.
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Table 2 essentially represents a non-exhaustive search of

the parameter space. The points by definition represent a

valid individual TSN architecture. Comparing them sheds

light into the relative strengths and weaknesses of each.

Table 3 contains all the parameters which have been

mentioned in the preceding analysis along with their

respective values for convenience.

5.2 TSN configuration evaluation

Reconstructing a graph is similar to image or music

recovery. In the graph topology context, the DCT coeffi-

cients can be interpreted as views of the graph of variable

resolution. To see why, consider first the DCT coefficients

of lower spatial frequencies which represent in a more

compact form the higher-order global structural patterns of

the topology. Adding more coefficients with progressively

higher spatial frequencies leads to gradually more refined

views of the graph, until the last coefficients which rep-

resent local patterns add the finishing touch in graph

reconstruction. So, keeping only a fraction of the coeffi-

cients is tantamount to lossy topology compression.

The preceding qualitative analysis raises the two fun-

damental questions of how many coefficients are sufficient

for a given level of information loss and how the latter is

defined. In several cases [39], the ranked DCT coefficients

in terms of amplitude Xk have been reported to have a

power law decay as in Eq. (25):

Xk ¼ a0 k þ 1ð Þ�g0 ;

a0; g0 [ 0; 0� k� n2 � 1
ð25Þ

Taking the natural logarithm of (25) for each k and stacking

the n2 equations yield the linear system of Eq. (26).

Observe that its coefficient matrix is tall.

lnX0

lnX1

..

.

lnXn2�1

2
66664

3
77775
¼

1 0

1 � ln 2

..

. ..
.

1 � 2 ln n

2
66664

3
77775

ln a0
g0

 �
, x ¼ Aw ð26Þ

Since the system of equation (26) does not have a unique

solution, an approximation thereof can be sought. One such

solution is the least squares (LS) of (27):

wLS, ATA
� 	�1

ATx ð27Þ

This imples that the values predicted by the LS solution are

given by (28):

xLS ¼ AwLS ¼ A ATA
� 	�1

ATw ¼ Pw ð28Þ

Moreover, observe that the matrix P is a orthogonal pro-

jection matrix since:

P2 ¼ A ATA
� 	�1

AT � A ATA
� 	�1

AT ¼ P ð29Þ

The relative residual B is a figure of merit of the LS

goodness of fit shown in (30). It measures the ratio of the

amount of energy of the original measurements contained

in the residual space, which is perpendicular and hence

inaccessible to LS solution, to the amount of energy

retained by the LS solution. This exploits the fact that the

operators I� P and P span two orthogonal spaces the

union of which has x.

B,
I� A ATA

� 	�1
AT

� �
x

���
���
2

A ATA
� 	�1

ATx
���

���
2

¼ I� Pð Þxk k2
Pxk k2

ð30Þ

Since one is interested in retaining as much of the original

power in the LS solution, it follows that the lower B is, the

better the LS solution is—with zero being the obvious

lowest possible bound. Table 4 shows B, as well as the

minimum, maximum, and average exponent over each

member of each sequence. Also, it shows the average

fraction �c0 of the DCT2 coefficients necessary to capture

the s0 of the total coefficient energy. This has been

obtained by averaging the individual fractions for member

in the respective sequence. The values of �c0 justify the

values of c0 in Table 3. The minimum, maximum, and

Table 2 TSN configurations

# Configuration # Configuration # Configuration

1 0:1P0; sReLUð Þ 6 0:1P0; lgið Þ 11 0:1P0; SPOCUð Þ
2 0:15P0; sReLUð Þ 7 0:15P0; lgið Þ 12 0:15P0; SPOCUð Þ
3 0:2P0; sReLUð Þ 8 0:2P0; lgið Þ 13 0:2P0; SPOCUð Þ
4 0:25P0; sReLUð Þ 9 0:25P0; lgið Þ 14 0:25P0; SPOCUð Þ
5 0:3P0; sReLUð Þ 10 0:3P0; lgið Þ 14 0:3P0; SPOCUð Þ

Table 3 Experimental setup

Parameter Value

percentage of coefficients c0 0:1; 0:15; 0:2; 0:25; 0:3f g
graphs in each sequence g0 10000

direct selection probability p0 0.05

fraction of low degree vertices v0 0.15

training set percentage t0 0.6

testing set percentage t1 0.3

learning rate l0 decay cosine - eq. (12)

number of training iterations M0 128

runs for each configuration R0 1000

DCT2 coefficient power threshold s0 0.75
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average densities q0 for each sequence are given as well.

Recall that the density is the number of edges to the

number of vertices.

Since the B is low and the exponent range is narrow, it

can be assumed that in all three cases, the DCT2 coeffi-

cients decay with a power law. The relationship between

the number of coefficients for a given power threshold s0
can be approximated as follows. Summing the DCT2

coefficients yields Eq. (31):

Xc0nd e

k¼1

a0k
�g0 	 a0

Z c0

1

x�g0dx ¼ a0 1� c
1�g0
0

1� g0

 !
� s0

ð31Þ

Given a power threshold s0 for the DCT2 coefficients, c0
and c0 can be computed.

The TSN configurations of the proposed scheme will be

evaluated for each benchmark graph sequence. This eval-

uation is based on the following criteria:

– The normalized MSE of the test set for the respective

TSN configuration Et.

– The normalized number of epochs for each TSN

configuration Ne.

– The ratio of the execution time to that of computing rd
of a graph pair Te.

– The same without the training time for the TSN

configurations Tc.

The first three criteria aim at comparing the TSN config-

urations with each other. The normalized values have been

selected as they yield better insight on the configuration

performance by providing relative measurements. The next

two criteria focus on the comparison between the best TSN

configurations and the direct method of compressing two

graphs with the DCT2 and computing their correlation

coefficient. Thus, they reveal whether it is worth trading

time for a better estimation of rd. Perhaps more interest-

ingly, the last criterion aims at showing whether the pro-

posed scheme is a viable alternative for graph sequences.

The results are summarized in Table 5.

Given the entries of Table 5, the following can be said:

– Configurations 8, 9, and 10 systematically yield better

performance. All three utilize the lgi activation func-

tion, which is highly nonlinear compared to the sReLU,

and rely on a large number of DCT2 coefficients.

– The more coefficients are available, the lower the error

is. This is expected as more coefficients offer a finer

topology view. As a limiting case, taking all DCT2

coefficients is equivalent to computing the correlation

coefficient.

– There appears to be a tradeoff between lowering the

error and the number of iterations in the above three

TSN configurations. This also applies when these

configurations are compared to the compressed method.

– Taking fewer DCT2 coefficients also leads in an

increased number of iterations. This is attributed to

the slower convergence rate, as well as to the higher

steady-state error caused by the limited attributes

available to the TSN.

– The lgi outperforms sReLU and SPOCU with the latter

being the second best. This can be attributed to the

strong nonlinearity of lgi and SPOCU, as well as to the

monotonicity of lgi which is suitable for the interpo-

lation task of the TSN.

– TSNs can learn easier sparser graphs than denser ones.

This can be attributed to the fact that the former have

less patterns to learn and regenerate at fewer locations.

The DCT2 can capture easier the structure of sparse

graphs.

– The proposed scheme is efficient compared to the

compressed method in terms of computational time for

large graphs, especially for sparse ones, only when it is

applied to many graph pairs once the TSN is trained.

DCT2 is a standard DSP algorithm and it can be inverted in

many ways. Using a TSN for this particular purpose is a

novelty driven by the following reasons:

– TSNs can achieve robust generalization from the

training graphs and, provided the latter are structurally

strongly related to the input graphs, lower the error.

– In an evolving environment such as social networks or

supply chains, TSNs can track its dynamics by synaptic

network update through short training graphs.

Although the computational complexity of rd in Eq. (16)

can be clearly described by a closed formula, that of the

proposed scheme is not. This can be attributed to the lack

of a reliable prediction mechanism for the number of

training iterations of a TSN. To this end, as stated earlier,

the normalized and averaged over R0 runs number of

Table 4 LS residual error,

exponents, and density
Seq. B min g0 max g0 avg g0 �c0 min q0 max q0 avg q0

Pkh i 0.0152 �2:5667 �2:2551 �2:3216 0.2885 27.5688 84.2331 55.9833

Ykh i 0.0542 �2:8854 �2:5993 �2:6781 0.2566 33.6667 96.4411 61.1120

Ekh i 0.0433 �2:9432 �2:6883 �2:8563 0.2319 48.4551 112.3334 74.4453
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iterations has been recorded. Since the TSN is computa-

tionally intensive and CPU bound, the number of iterations

is a good indicator of the true execution time.

As for the TSN training overhead, it occurs only once

and then the network can be used as a black box. Moreover,

in the scenarios examined here, both the number of layers

and the number of weights are kept intentionally small.

5.3 Discussion

The outcome of the experiments agrees with the previously

reported results. The power law decay of the DCT coeffi-

cient amplitudes is mentioned in [39] and [15]. Moreover,

the DCT is a preprocessing or nonlinear attribute engi-

neering step in DL pipelines as explained among others in

[49].

The preceding analysis showed the broad generality of

the proposed scheme as it did not rely on a particular

context. Nevertheless, potential applications include:

– In a computer communication, network topologies are

an integral part, especially if multiple protocols such as

the user datagram protocol (UDP) or the transmission

control protocol (TCP), each with its own network

layout, are utilized. The proposed scheme can discover

bottlenecks or propose packet routing alternatives.

– In a signal processing context, graph topologies may

represent mobile terminal locations. Given past location

patterns, the proposed scheme can yield resource

allocation profiles. In a MIMO context, the TSN can

adaptively equalize effects caused by the physical

propagation medium such as multipath and refraction.

– In social networks, the proposed methodology can

discover latent patterns or augment account topologies

with context information. As a concrete example, in a

Twitter subgraph comprising of follow relationships,

probable influencers may be discovered or its overall

sentiment with respect to an event may be estimated.

– In a probabilistic topological machine learning (ML)

scenario, the proposed scheme can find similar topolo-

gies with better properties such as advanced inter-

pretability or lower computational complexity. When

training ML models, different policies may be com-

pared for finding the one allowing maximum

parallelism.

As seen before, the advantages of the proposed method are

the low mean square error when approximating the corre-

lation coefficient, scalability in terms of the input graph

size, the reliance on higher-order graph patterns, and the

independence from any underlying domain semantics. On

the other hand, this generality comes at the cost of ignoring

possible additional functional information not captured in

the graph structure. Moreover, in the general case, the large

number of synaptic weights may slow down the TSN

training process and a suitable pruning method has to be

applied.

6 Conclusions and future work

This article presents a novel graph signal processing

technique for estimating the topological correlation coef-

ficient of two compressed graphs. In particular, a tensor

stack network (TSN) is trained to estimate this coefficient

Table 5 Results for each TSN

configuration and benchmark

sequence

# Pkh i Ykh i Ykh i

Et Ne Te Tc Et Ne Te Tc Et Ne Te Tc

1 2.33 1.92 1.83 2.03 2.13 2.11 1.92 1.86 1.91 1.88 2.15 2.03

2 2.13 1.62 1.77 1.94 2.01 1.95 1.75 1.72 1.80 1.72 2.03 1.84

3 1.88 1.41 1.63 1.78 1.89 1.71 1.73 1.63 1.76 1.74 1.81 1.75

4 1.69 1.23 1.58 1.61 1.78 1.63 1.59 1.43 1.51 1.62 1.67 1.61

5 1.62 1.17 1.61 1.59 1.61 1.67 1.37 1.62 1.43 1.49 1.51 1.43

6 1.13 1.09 1.19 1.13 1.11 1.08 1.09 .141 1.05 1.09 1.12 1.18

7 1.09 1.04 1.07 1.08 1.08 1 1.13 1.14 1.17 1.14 1.09 1.11

8 1 1.02 1 1 1 1.03 1 1.04 1 1.03 1 1

9 1.04 1 1.12 1.14 1.13 1.12 1.17 1 1.14 1.17 1.18 1.21

10 1.07 1.09 1.19 1.22 1.23 1.19 1.24 1.12 1.17 1.21 1.25 1.26

11 1.38 1.36 1.32 1.28 1.39 1.27 1.43 1.29 1.28 1.42 1.45 1.47

12 1.46 1.42 1.38 1.43 1.47 1.34 1.51 1.38 1.39 1.47 1.54 1.56

13 1.35 1.28 1.22 1.25 1.27 1.21 1.29 1.21 1.22 1.24 1.25 1.27

14 1.44 1.42 1.41 1.46 1.44 1.45 1.42 1.46 1.45 1.42 1.45 1.47

15 1.53 1.47 1.54 1.52 1.56 1.53 1.52 1.51 1.54 1.55 1.53 1.56

Neural Computing and Applications

123



between the two-dimensional discrete cosine transforms

(DCT2) of two graph adjacency matrices. Thus, the TSN

indirectly acts simultaneously as decoder and interpolator

of already obtained knowledge. Although the latter is a

well-known architecture and DCT2 is an established signal

processing algorithm, to the best of the knowledge of the

authors, they have neither been combined before nor have

they been applied to graphs. The major advantages of the

proposed methodology are that it can be applied to large

and potentially sparse graphs or graph sequences, it attains

low mean square error compared to the direct correlation

coefficient computation, it is independent of the semantics

of the underlying domain, and it focuses on higher-order

graph structural patterns. Moreover, for evolving graph

sequences, the computational complexity is low. The above

were obtained from experiments conducted with three

benchmark graph sequences over various configurations of

the proposed scheme.

Regarding future research directions, exploring the

scalability limits of the proposed scheme warrants further

investigation. Additionally, techniques for taking into

consideration partial, fuzzy, or incomplete topologies

should be explored. Finally, the connection between the

density in the input topologies and that of the synaptic

weights should be investigated and potentially exploited in

pruning methods.
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