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1  Introduction

Current scientific advancements in both biological and computer sciences have 
brought new opportunities to intradisciplinary research topics. On the one hand, the 
advancement in molecular biological experiments is producing huge amounts of 
data related to genome and RNA sequences, protein and metabolite abundance, 
protein-protein interactions, gene expression, and so on. On the other hand, comput-
ers and big data analytics along with cloud software tools are being developed, and 
thus, the capability of processing from terabyte data sets to petabytes and beyond 
has rapidly increased. As a result, the development of computer science methods 
and models used to describe these problems in a formal way arose in bioinformat-
ics. The available algorithmic approaches used to solve them are of great interest 
among researchers.

Regarding the majority of these problems, biological data are forming big, ver-
satile, and complex networks. More to the point, in recent years, sequencing has 
faced major scientific progress and in the following has leveraged the development 
of novel bioinformatics applications. It is not surprising why bioinformatics and life 
sciences applications, in general, are facing a rapidly increasing demand for data- 
handling capacity. In many cases, from low-level applications (such as systems biol-
ogy) to high-level integrated applications (such as systems medicine), the amounts 
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of data to be stored, transferred, and finally processed meet congestion in many 
current technologies.

The advances in the fields of bioinformatics and systems biology further require 
improved computational methods for analyzing data, while the ongoing progress in 
the field of molecular biology is evident and thus influences the development of 
computer science methods. Authors in (Bockenhauer & Bongartz 2007) introduce 
some key problems in bioinformatics, then discuss the models used to formally 
describe these problems, and finally analyze the algorithmic approaches used to 
solve them.

A deoxyribonucleic acid (DNA) macromolecule can be coded by a sequence 
over a four-letter alphabet. The four letters are A, C, G, and T and code the bases 
adenine, cytosine, guanine, and thymine, respectively. More specifically, DNA 
sequencing consists in determining the exact order of these bases in a DNA macro-
molecule. As a result, DNA sequencing technology constitutes a vital role in the 
advancement of molecular biology. Compared to previous sequencing aspects, 
Next-Generation Sequencing (NGS) performs swifter, with significantly lower pro-
duction costs and much higher throughput in the form of short reads, i.e., short 
sequences coding portions of DNA macromolecules.

The remainder of the paper is organized as follows: Sect. 2 summarizes the his-
tory of NGS and provides an overview of the three corresponding problems. Section 
3 discusses Longest Common Prefix along with four different algorithms. Likewise, 
Sects. 4 and 5 present Longest Common Substring and Longest Common 
Subsequence, respectively. In addition, Sects. 6 and 7 introduce the details of the 
implementation of the system (and the respective cloud infrastructure utilized) as 
well as the experimental results. Finally, in Sect. 8 our concluding remarks, open 
problems, and future work are introduced.

2  Related Work

In our days, there is a need for more effective algorithms regarding DNA sequence 
processing as the acquisition of DNA information is no longer a bottleneck in genet-
ics. This processing includes searching for selected parts of a sequence, analysis of 
similarities, differences, or even repetitive fragments. Therefore, sequence align-
ment methods are gaining much attention in terms of the research in biology and 
medicine. The sequences are, in many cases, expected to be matched despite the 
existing minute differences, as they may be caused by acquisition errors. Hence the 
searching procedure should accept a controlled number of mismatches. Heuristic 
methods, implemented in Basic Local Alignment Search Tool (BLAST)1, a program 
commonly used for sequence alignment, can manage searching sequence fragments 
in large databases.

1 https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Researchers in the field of computer science consider the fact that biologically 
meaningful results could be provided from considering DNA as a one-dimensional 
character string, abstracting the reality of DNA as a flexible three-dimensional mol-
ecule. Thus, interaction in a dynamic environment with protein and RNA, and rep-
etition of a life cycle in which even the classic linear chromosome exists for only a 
fraction of time, can take place (Gusfield 1997). Significant contributions to compu-
tational biology might be made by extending or adapting algorithms from computer 
science, even when the original algorithm has no clear utility in biology. This is 
illustrated by several recent sublinear-time approximate matching methods for data-
base searching that rely on an interplay between exact matching methods from com-
puter science and Dynamic Programming methods already utilized in molecular 
biology. Certain string algorithms that were generally deemed to be irrelevant to 
biology just a few years ago have now become adopted by practicing biologists in 
both large-scale projects and in narrower technical problems.

A number of data structures have been designed with the aim of storing these 
impressive amounts of data in an efficient way while allowing for immediate index-
ing and searching. As a result, all occurrences of any given pattern can be found 
without traversing the whole sequences. In short, indexing is profitable and useful if 
utilized regularly. It is evident that if sequences are available beforehand and no 
periodical alteration takes place, researchers and users can take full advantage of the 
index. The primary goal of these corresponding data structures constitutes the con-
struction of an index that provides efficient answers to queries with reasonable 
building and maintenance costs. Classical data structures such as Tries (Crochemore 
& Lecroq 2009), Suffix Trees (Farach 1997; Ukkonen 1995; Weiner 1973), Suffix 
Arrays (Manber & Myers 1993), Directed Acyclic Word Graphs (DAWG) (Blumer 
et al. 1985) as well as the compact version CDAWG (Crochemore & Vérin 1997) are 
arguably considered very popular and useful data structures for string analysis, 
especially when searching over large sequence collections. Yet, these structures are 
full-text indexes as they require a large amount of space for a sequence to be repre-
sented. A survey of index construction algorithms is properly introduced in (Nsira 
et al. 2017).

Authors in (Lanctot et al. 2003) introduce a collection of string algorithms that 
lie in the crux of a number of biological problems such as the discovery of potential 
drug targets, the creation of diagnostic probes, and the universal primers or unbi-
ased consensus sequences. All these problems are reduced to the task of identifying 
a pattern that, with some flaws, occurs in one set of strings (Closest Substring 
Problem) and does not appear in another (Farthest String Problem).

In addition, all NGS platforms perform sequencing of millions of small frag-
ments of DNA in parallel. The analysis in the area of bioinformatics maps each 
individual read to the human reference genome with the aim of piecing together the 
previous fragments. Each of the three billion bases in the human genome is 
sequenced multiple times, providing thus inner depth for delivering accurate data 
and an insight into unexpected DNA variation. NGS can also be used for purposes 
of sequencing entire genomes, including small numbers of individual genes or even 
all 22.000 coding genes (a whole exome) (Behjati & Tarpey 2013).
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3  Longest Common Prefix (LCP)

The LCP array, known as the abbreviation of the phrase “Longest Common Prefix,” 
constitutes a data structure, which is mostly used in combination with the suffix 
array. More specifically, the array itself contains the length of the longest common 
prefix of two lexicographically consecutive suffixes (Manber & Myers 1993). The 
LCP array is mainly utilized because of its critical information regarding repetitive-
ness in a given string and can be, therefore, considered as a very advantageous data 
structure for analyzing textual data in several fields such as molecular biology, natu-
ral language processing, or musicology. Moreover, sequence variations that may be 
the result of DNA replication or DNA sequence errors can also be identified (Alamro 
et  al. 2018; Ayad et  al. 2018; Manzini 2015). Other approaches that address the 
specific problem with the use of LCP array construction algorithms are considered 
as well in (Fischer 2011; Gog & Ohlebusch 2011; Kasai et al. 2001).

Regarding the LCP array, there are numerous text search as well as indexing 
applications, where the popular ones consist of the construction of the suffix tree, 
and perform the efficient search of all occurrences of a search pattern in a text.

The algorithms considered in this study for the Longest Common Prefix problem 
are the following:

• Word-by-Word Matching
• Character-by-Character Matching (divide and conquer)
• Binary Search

3.1  Word-by-Word Matching

The Longest Common Prefix problem for the Word-by-Word Matching Algorithm 
for n given strings can be considered as

 
LCP s s LCP LCP LCP s s s sn n1 1 2 3…( ) = ( )( ) …( ), , ,

 
(1)

The Time Complexity of Word-by-Word Matching Algorithm is O(n ∗ m), where n 
is the number of strings and m is the length of the largest string. We iterate through 
all the strings, and, namely, for each string, we iterate through all of its characters.

3.2  Character-by-Character Matching

This algorithm differs from the previous one as in this case there is no common 
prefix among the given strings and therefore no need of searching all the strings. 
Specifically, as this algorithm traverses the characters of each string, once a string 
that is not common to the other strings is reached, searching stops, and it is stated 
that there is no prefix.
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The Time Complexity of Character-by-Character Matching Algorithm is O(n∗m), 
where n is the number of strings and m is the length of the largest string. We evi-
dently iterate through all the characters of all the strings.

3.3  Divide and Conquer

This algorithm divides a concrete problem into several subproblems that are similar 
to the initial problem; in the following it recursively solves these subproblems and 
finally combines the solutions derived from the subproblems in order to solve the 
initial problem. Because of its recursive function, there is a limitation; each sub-
problem must be smaller than the initial problem, and there must also be a base case 
for all corresponding subproblems (Farach et al. 1998; Kärkkäinen & Sanders 2003).

More to the point, these kinds of algorithms constitute the following three steps:

• Divide the problem into a number of subproblems that are smaller instances of 
the same problem.

• Conquer the subproblems by solving them in a recursive way. If they are small 
enough, they solve the subproblems as base cases.

• Combine the solutions of the above subproblems into a solution corresponding 
to the initial problem.

• This algorithm stems from the associative property of LCP operation. We notice 
that

 
LCP S S LCP LCP S Sn k1 1…( ) = …( )( )

 
(2)

 
LCP S S LCP S S LCP LCP S S LCP S Sk n n k k n+ +…( ) …( ) = …( ) …( )( )1 1 1 1,

 
(3)

where LCP(S1 ...Sn) is the Longest Common Prefix in a set of strings [S1 ...Sn] with 
1 < k < n.

The Time Complexity of divide-and-conquer algorithm is O(n ∗ m), where n is 
the number of strings and m is the length of the largest string. This is since we are 
iterating through all the characters of all the strings.

3.4  Binary Search

The idea of this algorithm is to apply the well-known Binary Search method in order 
to find the string with maximum value L, which is a common prefix of all the strings 
(Irving & Love 2003). The algorithm searches in the interval (0...minLen), where 
minLen is of minimum string length and simultaneously has the maximum possible 
common prefix. At each time period, the search space, which is (0 . . . minLen), is 
divided in two equal parts, one of which is discarded as it doesn’t contain the 
solution.

Apache Spark Implementations for String Patterns in DNA Sequences
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There are two possible cases:

• The first case assumes that the S[1 . . . mid] is not a common string. This means 
that for each j > i, the string S[1...j] is not a common one and, thus, the second 
half of the search space is discarded.

• The second case assumes that the S[1 . . . mid] is a common string. This means 
that for each i < j, the string S[1...i] is a common one and, thus, the first half of 
the search space is once again discarded (our goal is to find a longer common 
prefix).

The Time Complexity of Binary Search Algorithm is O(n ∗ m ∗ logm), where n 
is the number of strings and m is the length of the largest string. This occurs since 
we use the recurrence relation T(M) = T(M/2) + O (M ∗ N).

4  Longest Common Substring

The Longest Common Substring compares two strings and determines whether they 
might match by determining the longest length of a sequence of characters (sub-
string) that is common to both strings. Specifically, it checks whether that corre-
sponding substring matches exactly or is a part of the given string. The Longest 
Common Substring is a major problem in the study of strings, and it occurs in many 
different cases in the field of biology (Arnold & Ohlebusch 2011; Babenko & 
Starikovskaya 2008; Zhang et al. 2007). Specifically, let us consider two strings S 
and T with length m and n, respectively, and then the goal is to find the longest 
strings which are substrings of both S and T.

The k-common substring problem can be considered as a generalization. 
Concretely, given the set of strings S = S1,...,SK, where |Si| = ni and Σni = N, the algo-
rithm finds the longest strings which occur as substrings of at least k strings, with 
2 ≤ k ≤ K.

The algorithms considered in this study for the Longest Common Substring 
problem are the following:

• Naive Search
• Dynamic Programming
• Suffix array

4.1  Naive Search

The Naive Search constitutes the simplest method among other pattern searching 
algorithms. Concretely, it checks whether all the characters of the main string exist 
in a specific pattern (Gusfield 1997). Furthermore, it is proven to be effective regard-
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445

ing smaller texts, and also, it does not require any preprocessing phases. For the 
identification of a substring, an additional check for the string needs to be per-
formed (Knuth et al. 1977).

The Time Complexity of Naive Search Algorithm is O(n ∗ m), where n is the size 
of the main string and m is the size of the pattern.

4.2  Dynamic Programming

The Dynamic Programming is considered a powerful enough technique that can be 
used for solving several different problems in O(n2) or O(n3) time, where a naive 
approach would require an exponential time (Gusfield 1997; Iliopoulos & Rahman 
2008b; Wagner & Fischer 1974; Zhang et al. 2007). One important factor that needs 
to be taken into account regarding these kinds of problems is the following: if solv-
ing a subproblem is the optimal solution, then this optimal solution for the specific 
subproblem must be used (Hsu & Du 1984).

Overall, this method constitutes a general approach for solving problems and 
resembles the “divide-and-conquer” method. The main difference between these 
two methods is that in Dynamic Programming, the subproblems will typically over-
lap. The aim is to somehow split the initial problem into a reasonable number of 
subproblems in a way that we can use optimal solutions to the smaller subproblems. 
The final output is to provide the initial problem with a near optimal solution. The 
storing of the concrete solutions can be implemented by using a memory-based data 
structure, such as an array, a map, etc.

4.3  Suffix Array

The suffix array has been introduced by Manber and Myers (Manber & Myers 
1993) as a practical and memory-efficient replacement for the suffix tree in string 
matching applications. The suffix array of a string s having length n is merely an 
array of these n integers that indicate the lexicographic order of non-empty suffixes 
of s. Its simplicity and compactness make it an extremely useful tool in modern text 
processing. Furthermore, the suffix array represents in an explicit way all the leaves 
of the suffix tree, while it omits internal nodes and outgoing edges.

Authors in (Nong et al. 2009) introduce a linear time and space suffix array con-
struction algorithm, which is novel because of the LMS substrings used for the 
problem reduction and the pure induced sorting used to propagate the order of suf-
fixes as well as that of LMS substrings.

Definition 1 The suffix array of a string S of length n is an array A containing a 
permutation of the interval [O, n], such that SA[i − 1] < lex SA[i] for all i ∈ [1, n].

Apache Spark Implementations for String Patterns in DNA Sequences
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5  Longest Common Subsequence (LCS)

The Longest Common Subsequence problem for a given set of sequences consti-
tutes the identification of a common subsequence of all the sequences that has the 
maximal length (Hirschberg 1977; Lowrance & Wagner 1975). It can be considered 
as a classic computer science problem as it is the basis of data comparison programs 
and also has several applications in bioinformatics. Also, LCS addresses various 
problems in genetics and molecular biology, while it is also being used as a measure 
of similarity between the strings and the biological sequences they represent. In 
addition, it is widely used by revision control systems, such as SVN and Git, in 
terms of reconciling multiple changes made to a revision-controlled collection 
of files.

A survey introducing a comprehensive comparison of well-known Longest 
Common Subsequence algorithms (for two input strings) and in the following 
studying their behavior in various application environments are presented in 
(Bergroth et al. 2000). As authors state, the performance of the methods depends 
heavily on the properties of the problem as well as on the supporting data structures 
used in the implementation.

One related work was introduced in (Karp & Rabin 1987), where authors pre-
sented a randomized algorithm to solve this problem. More to the point, the corre-
sponding algorithm associates with each string X, a fingerprint φ(X), which is quite 
shorter from the corresponding string. In the following, the search procedure com-
pares short fingerprints instead of the initial long strings. Similarly, in (Iliopoulos & 
Rahman 2008a), new variants of Longest Common Subsequence problem and effi-
cient algorithms for solving them are properly introduced. In particular, authors 
discuss the notion of gap constraints in corresponding problems.

The algorithms considered in this study for the Longest Common Subsequence 
(LCS) problem are the following:

• Naive Search
• Dynamic Programming
• Longest Increasing Subsequence (LIS)

5.1  Naive Search

As mentioned in the previous problem, the Naive Search method for this problem 
considers initially the generation of all the subsequences of the given sequences. In 
the following, the second step constitutes the identification of the longest matching 
subsequence.

The Time Complexity of the Naive Search Algorithm is exponential. The number 
of the total possible combinations will be 2n. Hence, this general recursive solution 
requires O(2n).

A. Kanavos et al.
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5.2  Dynamic Programming

The Dynamic Programming method has already been introduced in the Longest 
Common Substring problem. What is more, each of the subproblem solutions is 
indexed based on the values of its input parameters so as to facilitate its lookup. As 
a result, the time where the same subproblem occurs, instead of recomputing its 
solution, one simply looks up the previously computed solution, hence saving com-
putation time. The corresponding technique of storing solutions for the subprob-
lems, instead of recomputing them, is called memorization.

5.3  Longest Increasing Subsequence (LIS)

The Longest Increasing Subsequence (LIS) problem corresponds to the discovery 
of the subsequence of a given sequence in which the subsequence’s elements are in 
sorted order, lowest to highest, and in which the subsequence is as long as possible. 
Notice that this subsequence is not necessary to be continuous or unique. Generally, 
this method creates a sequence based on the positions of the characters of the one 
string that match the characters of the other string (Crochemore & Porat 2010; 
Garcia et al. 2001).

Definition 2 A subsequence of sequence x1, . . . , xn is some sequence xφ1, . . . , xφh 
suchthatforallk,where1 ≤ k ≤ h,wehave1 ≤ φk ≤ n. In addition, for any xj in the 
subsequence, all xi preceding xj in the subsequence satisfy that i < j. An increasing 
subsequence constitutes a subsequence such that for any xj in the subsequence, all xi 
preceding xj in the subsequence satisfy xi < xj. A largest increasing subsequence is a 
subsequence of maximum length.

The Time Complexity of the Longest Increasing Subsequence Algorithm is O(n2 
∗ logk), where n is the length of the strings and k is the maximum length of LCS.

6  Implementation

In this section we will briefly discuss the tools we used to perform the experimental 
evaluation. The analysis was performed with the use of Apache Spark. We based our 
experiments on two different DNA sequences, and the application we implemented 
utilized Python language. In the next subsections, the cloud infrastructure and the 
datasets are properly introduced.

Apache Spark Implementations for String Patterns in DNA Sequences
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6.1  Apache Spark

Apache Spark2 (Zaharia et  al. 2016) was founded in 2009 at the University of 
California, Berkeley. Although it shares the same principles as Hadoop, its philoso-
phy differs. It uses the abstraction of “Resilient Distributed Dataset” (RDDs), which 
represent a fault-tolerant correlation of elements, distributed across many compute 
nodes that can be manipulated in parallel. Using them, a wide range of tasks, includ-
ing SQL, streaming, machine learning, and graph processing, in a unified manner, 
can be captured. Its main advantage over MapReduce paradigm is that we don’t 
have to flush the intermediate data to the disk, just to read them at the reduce stage, 
since it can perform iterative computations in memory, which can have a positive 
impact on the performance (Shi et al. 2015).

The creators of Apache Spark have also founded Databricks that supplies 
researchers with a web-based platform in which they can store and analyze their 
data with Spark. It offers researchers a mini cluster with 6 Gb of RAM for their 
analysis, and it also offers cloud storage. As programming language, Python 
(PySpark) was chosen.

6.2  Datasets

As previously mentioned, the experiments were conducted with DNA sequences 
derived from the database of National Center for Biotechnology Information 
(NCBI). More specifically, these sequences are part of Escherichia coli K-12 (Rudd 
2000) and Streptococcus pneumoniae R6 genomes (Hoskins et al. 2001).

7  Results

The results of our work are presented in Tables 1, 2, 3, 4, 5, and 6 for different num-
ber of input strings as well as different number of strings characters. The execution 
time (in milliseconds and seconds) is used as the evaluation metric for the different 
algorithms.

Regarding Table  1, we present four different experiments for the problem of 
Longest Common Prefix. In the first case, the number of characters for the 3 input 
strings is 450, 300, as well as 125, respectively, and the output consists of an LCP 
with 76 characters. In the following, in the second case, the number of characters for 
input strings is 2605, 2455, as well as 2060, respectively, and the output consists of 
an LCP with 250 characters. For the last two cases, the number of characters for 
input strings is 9948, 8884, 8504 and 21350, 18790, 16845, whereas the output 
consists of an LCP with 1054 and 2530 characters, respectively.

2 http://spark.apache.org/

A. Kanavos et al.

http://spark.apache.org/


449

Binary Search, as expected, achieved the best performance in Table 2, while 
the other three algorithms, although they almost have the same complexity, in 
fact are quite different. Binary Search takes the lowest time as it examines each 
character starting from the first one until the one that is in the position equal to 
the length of the smallest string. Divide and conquer is the next best perfor-
mance as it divides the problem into smaller subproblems and calculates the 
final solution through solutions in each subproblem. Word-by-Word Matching is 
the slowest, as it has to look at all the strings and the prefix, which occur each 
time between the pairs of the strings and may be larger than the final prefix, so 
there is the possibility of additionally unnecessary calculations. On the other 
hand, Character-by-Character matching, instead of going through the strings 
one by one, looks at the characters separately. So, once a character in any string 
is not the same with the other, the query stops, and the output consists of the 
occurred prefix; moreover, no additional unnecessary calculations need to 
be done.

Furthermore, results in Table 3 introduce the problem of the Longest Common 
Substring. We also present 4 different experiments, where in the first case, the num-
ber of characters for the 2 input strings is 300 as well as 280, respectively, and the 
output consists of a substring with 7 characters. In the second case, the number of 
characters for input strings is 4575 as well as 4270, respectively, and the output 
consists of a substring with 13 characters. For the last two cases, the number of 
characters for input strings is 7500, 7000 and 14925, 14070, whereas the output 
consists of a substring with 13 and 23 characters, respectively.

The results in Table 4 show that the Naive Search algorithm is the slowest one as 
it requires, after the identification of all the possible strings of the first input, to 
additionally check whether each one of them is a substring of the initial; the largest 
one will be the desired Longest Common Substring. The Dynamic Programming 

Table 1 Four different 
scenarios for LCP 
implementations

Scenario Number of input strings
LCP 
output

1 450, 300, 125 76
2 2605, 2455, 2060 250
3 9948, 8884, 8504 1054
4 21350, 18790, 16845 2530

Table 2 Time for different scenarios of LCS implementations

Longest common prefix algorithm 1 2 3 4

Word by Word Matching 2,02 2,88 3,58 5,75
Character by Character Matching 1,55 2,68 3,39 5,39
Divide and Conquer 1,52 1,73 1,97 2,61
Binary Search 0,95 1,09 1,28 1,44

Apache Spark Implementations for String Patterns in DNA Sequences
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method performs better because in this case, a table that contains the lengths of the 
maximum common suffixes of the two strings will be created. In the following, as 
already mentioned, every corresponding output will be stored in the table in order to 
be used in calculations that precede. On the other hand, the suffix array approach, 
even if quite simple, is faster than the previous two algorithms. It is considered a 
simple data structure that contains all the information needed for finding the Longest 
Common Substring; a table is created with all the possible string suffixes resulting 
from the combination of input strings, and after being sorted in lexicographic order 
using an LCP algorithm, we find all the LCPs between each value with the exactly 
next one. The largest of these LCPs constitutes the desired Longest Common 
Substring.

Finally, Table  5 presents the problem of the Longest Common Subsequence, 
where, in the first case, the number of characters for both two input strings is 20 and 
the output consists of an LCS with 9 characters. In the second case, the number of 
characters for the 2 input strings is 83 as well as 81, respectively, and the output 
consists of an LCS with 46 characters. For the last two cases, the number of charac-
ters for input strings is 158, 155 and 300, 280, whereas the output consists of an 
LCSub with 90 and 179 characters, respectively.

As in the Longest Common Substring implementations, we observe in Table 6 
that the naive method for calculating the Longest Common Subsequence is the 
slowest. Specifically, its complexity is exponential and in the worst case reaches 

Table 3 Four different 
scenarios for LCS 
implementations

Scenario Number of Input Strings
Longest Common 
Substring Output

1 300, 280 7
2 4575, 4270 13
3 7500, 7000 13
4 14925, 14070 23

Table 4 Time for different scenarios of LCS implementations

Longest common substring algorithm 1 2 3 4

Naive Search 3,82 14,16∗103 58,14∗103 482,53∗103

Dynamic Programming 0,01 3,32 8,02 33,22
Suffix array 0,003 0,22 0,42 1,59

Table 5 Four different 
scenarios for Longest 
Common Subsequence 
implementations

Scenario Number of Input Strings
Longest Common 
Subsequence Output

1 20, 20 9
2 83, 81 46
3 158, 155 90
4 300, 280 179

A. Kanavos et al.



451

O(2n). This undoubtedly proves that it is unsuitable for long sequences like the ones 
used for computations in the field of bioinformatics. On the other hand, the Dynamic 
Programming is clearly a faster method because it uses a table for storing the tem-
porary results in order to be used in subsequent calculations. The LIS approach 
achieves the medium performance as initially it creates a sequence based on the 
positions of the string characters, and then, a LIS algorithm that will produce the 
desired LCS is applied.

8  Conclusion

The aim of this work was to study DNA sequences regarding three well-known 
problems, namely, the Longest Common Prefix, the Longest Common Substring, 
and the Longest Common Subsequence. The application was developed in Apache 
Spark environment with Python programming language. The use of Spark has 
accelerated the processing of large-scale biological sequences, while it has also 
contributed to the versatility of the use of Python.

It would be interesting to analyze the Longest Common Extension (LCE) prob-
lem that appears to be a subproblem in several fundamental problems with strings 
such as the k-Difference Global Alignment for the construction of alignment tools 
in bioinformatics. Moreover, another potential future work is to incorporate in our 
experiments the use of Suffix Tree in the Longest Common Substring problem. In 
addition, the ongoing research is aimed at investigating the performance of algo-
rithms using various text compression algorithms. To be more specific, these algo-
rithms will take full advantage of genomic sequence data.
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