
439© Springer Nature Switzerland AG 2020
P. Vlamos (ed.), GeNeDis 2018, Advances in Experimental Medicine
and Biology 1194, https://doi.org/10.1007/978-3-030-32622-7_42

Apache Spark Implementations for String
Patterns in DNA Sequences

Andreas Kanavos, Ioannis Livieris, Phivos Mylonas, Spyros Sioutas,
and Gerasimos Vonitsanos

1 Introduction

Current scientific advancements in both biological and computer sciences have
brought new opportunities to intradisciplinary research topics. On the one hand, the
advancement in molecular biological experiments is producing huge amounts of
data related to genome and RNA sequences, protein and metabolite abundance,
protein-protein interactions, gene expression, and so on. On the other hand, comput-
ers and big data analytics along with cloud software tools are being developed, and
thus, the capability of processing from terabyte data sets to petabytes and beyond
has rapidly increased. As a result, the development of computer science methods
and models used to describe these problems in a formal way arose in bioinformat-
ics. The available algorithmic approaches used to solve them are of great interest
among researchers.

Regarding the majority of these problems, biological data are forming big, ver-
satile, and complex networks. More to the point, in recent years, sequencing has
faced major scientific progress and in the following has leveraged the development
of novel bioinformatics applications. It is not surprising why bioinformatics and life
sciences applications, in general, are facing a rapidly increasing demand for data-
handling capacity. In many cases, from low-level applications (such as systems biol-
ogy) to high-level integrated applications (such as systems medicine), the amounts

A. Kanavos (*) · S. Sioutas · G. Vonitsanos
Computer Engineering and Informatics Department, University of Patras, Patras, Greece
e-mail: kanavos@ceid.upatras.gr; sioutas@ceid.upatras.gr; mvonitsanos@ceid.upatras.gr

I. Livieris (*)
Department of Mathematics, University of Patras, Patras, Greece

P. Mylonas
Department of Informatics, Ionian University, Corfu, Greece
e-mail: fmylonas@ionio.gr

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32622-7_42&domain=pdf
mailto:kanavos@ceid.upatras.gr
mailto:sioutas@ceid.upatras.gr
mailto:mvonitsanos@ceid.upatras.gr
mailto:fmylonas@ionio.gr

440

of data to be stored, transferred, and finally processed meet congestion in many
current technologies.

The advances in the fields of bioinformatics and systems biology further require
improved computational methods for analyzing data, while the ongoing progress in
the field of molecular biology is evident and thus influences the development of
computer science methods. Authors in (Bockenhauer & Bongartz 2007) introduce
some key problems in bioinformatics, then discuss the models used to formally
describe these problems, and finally analyze the algorithmic approaches used to
solve them.

A deoxyribonucleic acid (DNA) macromolecule can be coded by a sequence
over a four-letter alphabet. The four letters are A, C, G, and T and code the bases
adenine, cytosine, guanine, and thymine, respectively. More specifically, DNA
sequencing consists in determining the exact order of these bases in a DNA macro-
molecule. As a result, DNA sequencing technology constitutes a vital role in the
advancement of molecular biology. Compared to previous sequencing aspects,
Next-Generation Sequencing (NGS) performs swifter, with significantly lower pro-
duction costs and much higher throughput in the form of short reads, i.e., short
sequences coding portions of DNA macromolecules.

The remainder of the paper is organized as follows: Sect. 2 summarizes the his-
tory of NGS and provides an overview of the three corresponding problems. Section
3 discusses Longest Common Prefix along with four different algorithms. Likewise,
Sects. 4 and 5 present Longest Common Substring and Longest Common
Subsequence, respectively. In addition, Sects. 6 and 7 introduce the details of the
implementation of the system (and the respective cloud infrastructure utilized) as
well as the experimental results. Finally, in Sect. 8 our concluding remarks, open
problems, and future work are introduced.

2 Related Work

In our days, there is a need for more effective algorithms regarding DNA sequence
processing as the acquisition of DNA information is no longer a bottleneck in genet-
ics. This processing includes searching for selected parts of a sequence, analysis of
similarities, differences, or even repetitive fragments. Therefore, sequence align-
ment methods are gaining much attention in terms of the research in biology and
medicine. The sequences are, in many cases, expected to be matched despite the
existing minute differences, as they may be caused by acquisition errors. Hence the
searching procedure should accept a controlled number of mismatches. Heuristic
methods, implemented in Basic Local Alignment Search Tool (BLAST)1, a program
commonly used for sequence alignment, can manage searching sequence fragments
in large databases.

1 https://blast.ncbi.nlm.nih.gov/Blast.cgi

A. Kanavos et al.

https://blast.ncbi.nlm.nih.gov/Blast.cgi

441

Researchers in the field of computer science consider the fact that biologically
meaningful results could be provided from considering DNA as a one-dimensional
character string, abstracting the reality of DNA as a flexible three-dimensional mol-
ecule. Thus, interaction in a dynamic environment with protein and RNA, and rep-
etition of a life cycle in which even the classic linear chromosome exists for only a
fraction of time, can take place (Gusfield 1997). Significant contributions to compu-
tational biology might be made by extending or adapting algorithms from computer
science, even when the original algorithm has no clear utility in biology. This is
illustrated by several recent sublinear-time approximate matching methods for data-
base searching that rely on an interplay between exact matching methods from com-
puter science and Dynamic Programming methods already utilized in molecular
biology. Certain string algorithms that were generally deemed to be irrelevant to
biology just a few years ago have now become adopted by practicing biologists in
both large-scale projects and in narrower technical problems.

A number of data structures have been designed with the aim of storing these
impressive amounts of data in an efficient way while allowing for immediate index-
ing and searching. As a result, all occurrences of any given pattern can be found
without traversing the whole sequences. In short, indexing is profitable and useful if
utilized regularly. It is evident that if sequences are available beforehand and no
periodical alteration takes place, researchers and users can take full advantage of the
index. The primary goal of these corresponding data structures constitutes the con-
struction of an index that provides efficient answers to queries with reasonable
building and maintenance costs. Classical data structures such as Tries (Crochemore
& Lecroq 2009), Suffix Trees (Farach 1997; Ukkonen 1995; Weiner 1973), Suffix
Arrays (Manber & Myers 1993), Directed Acyclic Word Graphs (DAWG) (Blumer
et al. 1985) as well as the compact version CDAWG (Crochemore & Vérin 1997) are
arguably considered very popular and useful data structures for string analysis,
especially when searching over large sequence collections. Yet, these structures are
full-text indexes as they require a large amount of space for a sequence to be repre-
sented. A survey of index construction algorithms is properly introduced in (Nsira
et al. 2017).

Authors in (Lanctot et al. 2003) introduce a collection of string algorithms that
lie in the crux of a number of biological problems such as the discovery of potential
drug targets, the creation of diagnostic probes, and the universal primers or unbi-
ased consensus sequences. All these problems are reduced to the task of identifying
a pattern that, with some flaws, occurs in one set of strings (Closest Substring
Problem) and does not appear in another (Farthest String Problem).

In addition, all NGS platforms perform sequencing of millions of small frag-
ments of DNA in parallel. The analysis in the area of bioinformatics maps each
individual read to the human reference genome with the aim of piecing together the
previous fragments. Each of the three billion bases in the human genome is
sequenced multiple times, providing thus inner depth for delivering accurate data
and an insight into unexpected DNA variation. NGS can also be used for purposes
of sequencing entire genomes, including small numbers of individual genes or even
all 22.000 coding genes (a whole exome) (Behjati & Tarpey 2013).

Apache Spark Implementations for String Patterns in DNA Sequences

442

3 Longest Common Prefix (LCP)

The LCP array, known as the abbreviation of the phrase “Longest Common Prefix,”
constitutes a data structure, which is mostly used in combination with the suffix
array. More specifically, the array itself contains the length of the longest common
prefix of two lexicographically consecutive suffixes (Manber & Myers 1993). The
LCP array is mainly utilized because of its critical information regarding repetitive-
ness in a given string and can be, therefore, considered as a very advantageous data
structure for analyzing textual data in several fields such as molecular biology, natu-
ral language processing, or musicology. Moreover, sequence variations that may be
the result of DNA replication or DNA sequence errors can also be identified (Alamro
et al. 2018; Ayad et al. 2018; Manzini 2015). Other approaches that address the
specific problem with the use of LCP array construction algorithms are considered
as well in (Fischer 2011; Gog & Ohlebusch 2011; Kasai et al. 2001).

Regarding the LCP array, there are numerous text search as well as indexing
applications, where the popular ones consist of the construction of the suffix tree,
and perform the efficient search of all occurrences of a search pattern in a text.

The algorithms considered in this study for the Longest Common Prefix problem
are the following:

• Word-by-Word Matching
• Character-by-Character Matching (divide and conquer)
• Binary Search

3.1 Word-by-Word Matching

The Longest Common Prefix problem for the Word-by-Word Matching Algorithm
for n given strings can be considered as

LCP s s LCP LCP LCP s s s sn n1 1 2 3…() = ()() …(), , ,

(1)

The Time Complexity of Word-by-Word Matching Algorithm is O(n ∗ m), where n
is the number of strings and m is the length of the largest string. We iterate through
all the strings, and, namely, for each string, we iterate through all of its characters.

3.2 Character-by-Character Matching

This algorithm differs from the previous one as in this case there is no common
prefix among the given strings and therefore no need of searching all the strings.
Specifically, as this algorithm traverses the characters of each string, once a string
that is not common to the other strings is reached, searching stops, and it is stated
that there is no prefix.

A. Kanavos et al.

443

The Time Complexity of Character-by-Character Matching Algorithm is O(n∗m),
where n is the number of strings and m is the length of the largest string. We evi-
dently iterate through all the characters of all the strings.

3.3 Divide and Conquer

This algorithm divides a concrete problem into several subproblems that are similar
to the initial problem; in the following it recursively solves these subproblems and
finally combines the solutions derived from the subproblems in order to solve the
initial problem. Because of its recursive function, there is a limitation; each sub-
problem must be smaller than the initial problem, and there must also be a base case
for all corresponding subproblems (Farach et al. 1998; Kärkkäinen & Sanders 2003).

More to the point, these kinds of algorithms constitute the following three steps:

• Divide the problem into a number of subproblems that are smaller instances of
the same problem.

• Conquer the subproblems by solving them in a recursive way. If they are small
enough, they solve the subproblems as base cases.

• Combine the solutions of the above subproblems into a solution corresponding
to the initial problem.

• This algorithm stems from the associative property of LCP operation. We notice
that

LCP S S LCP LCP S Sn k1 1…() = …()()

(2)

LCP S S LCP S S LCP LCP S S LCP S Sk n n k k n+ +…() …() = …() …()()1 1 1 1,

(3)

where LCP(S1 ...Sn) is the Longest Common Prefix in a set of strings [S1 ...Sn] with
1 < k < n.

The Time Complexity of divide-and-conquer algorithm is O(n ∗ m), where n is
the number of strings and m is the length of the largest string. This is since we are
iterating through all the characters of all the strings.

3.4 Binary Search

The idea of this algorithm is to apply the well-known Binary Search method in order
to find the string with maximum value L, which is a common prefix of all the strings
(Irving & Love 2003). The algorithm searches in the interval (0...minLen), where
minLen is of minimum string length and simultaneously has the maximum possible
common prefix. At each time period, the search space, which is (0 . . . minLen), is
divided in two equal parts, one of which is discarded as it doesn’t contain the
solution.

Apache Spark Implementations for String Patterns in DNA Sequences

444

There are two possible cases:

• The first case assumes that the S[1 . . . mid] is not a common string. This means
that for each j > i, the string S[1...j] is not a common one and, thus, the second
half of the search space is discarded.

• The second case assumes that the S[1 . . . mid] is a common string. This means
that for each i < j, the string S[1...i] is a common one and, thus, the first half of
the search space is once again discarded (our goal is to find a longer common
prefix).

The Time Complexity of Binary Search Algorithm is O(n ∗ m ∗ logm), where n
is the number of strings and m is the length of the largest string. This occurs since
we use the recurrence relation T(M) = T(M/2) + O (M ∗ N).

4 Longest Common Substring

The Longest Common Substring compares two strings and determines whether they
might match by determining the longest length of a sequence of characters (sub-
string) that is common to both strings. Specifically, it checks whether that corre-
sponding substring matches exactly or is a part of the given string. The Longest
Common Substring is a major problem in the study of strings, and it occurs in many
different cases in the field of biology (Arnold & Ohlebusch 2011; Babenko &
Starikovskaya 2008; Zhang et al. 2007). Specifically, let us consider two strings S
and T with length m and n, respectively, and then the goal is to find the longest
strings which are substrings of both S and T.

The k-common substring problem can be considered as a generalization.
Concretely, given the set of strings S = S1,...,SK, where |Si| = ni and Σni = N, the algo-
rithm finds the longest strings which occur as substrings of at least k strings, with
2 ≤ k ≤ K.

The algorithms considered in this study for the Longest Common Substring
problem are the following:

• Naive Search
• Dynamic Programming
• Suffix array

4.1 Naive Search

The Naive Search constitutes the simplest method among other pattern searching
algorithms. Concretely, it checks whether all the characters of the main string exist
in a specific pattern (Gusfield 1997). Furthermore, it is proven to be effective regard-

A. Kanavos et al.

445

ing smaller texts, and also, it does not require any preprocessing phases. For the
identification of a substring, an additional check for the string needs to be per-
formed (Knuth et al. 1977).

The Time Complexity of Naive Search Algorithm is O(n ∗ m), where n is the size
of the main string and m is the size of the pattern.

4.2 Dynamic Programming

The Dynamic Programming is considered a powerful enough technique that can be
used for solving several different problems in O(n2) or O(n3) time, where a naive
approach would require an exponential time (Gusfield 1997; Iliopoulos & Rahman
2008b; Wagner & Fischer 1974; Zhang et al. 2007). One important factor that needs
to be taken into account regarding these kinds of problems is the following: if solv-
ing a subproblem is the optimal solution, then this optimal solution for the specific
subproblem must be used (Hsu & Du 1984).

Overall, this method constitutes a general approach for solving problems and
resembles the “divide-and-conquer” method. The main difference between these
two methods is that in Dynamic Programming, the subproblems will typically over-
lap. The aim is to somehow split the initial problem into a reasonable number of
subproblems in a way that we can use optimal solutions to the smaller subproblems.
The final output is to provide the initial problem with a near optimal solution. The
storing of the concrete solutions can be implemented by using a memory-based data
structure, such as an array, a map, etc.

4.3 Suffix Array

The suffix array has been introduced by Manber and Myers (Manber & Myers
1993) as a practical and memory-efficient replacement for the suffix tree in string
matching applications. The suffix array of a string s having length n is merely an
array of these n integers that indicate the lexicographic order of non-empty suffixes
of s. Its simplicity and compactness make it an extremely useful tool in modern text
processing. Furthermore, the suffix array represents in an explicit way all the leaves
of the suffix tree, while it omits internal nodes and outgoing edges.

Authors in (Nong et al. 2009) introduce a linear time and space suffix array con-
struction algorithm, which is novel because of the LMS substrings used for the
problem reduction and the pure induced sorting used to propagate the order of suf-
fixes as well as that of LMS substrings.

Definition 1 The suffix array of a string S of length n is an array A containing a
permutation of the interval [O, n], such that SA[i − 1] < lex SA[i] for all i ∈ [1, n].

Apache Spark Implementations for String Patterns in DNA Sequences

446

5 Longest Common Subsequence (LCS)

The Longest Common Subsequence problem for a given set of sequences consti-
tutes the identification of a common subsequence of all the sequences that has the
maximal length (Hirschberg 1977; Lowrance & Wagner 1975). It can be considered
as a classic computer science problem as it is the basis of data comparison programs
and also has several applications in bioinformatics. Also, LCS addresses various
problems in genetics and molecular biology, while it is also being used as a measure
of similarity between the strings and the biological sequences they represent. In
addition, it is widely used by revision control systems, such as SVN and Git, in
terms of reconciling multiple changes made to a revision-controlled collection
of files.

A survey introducing a comprehensive comparison of well-known Longest
Common Subsequence algorithms (for two input strings) and in the following
studying their behavior in various application environments are presented in
(Bergroth et al. 2000). As authors state, the performance of the methods depends
heavily on the properties of the problem as well as on the supporting data structures
used in the implementation.

One related work was introduced in (Karp & Rabin 1987), where authors pre-
sented a randomized algorithm to solve this problem. More to the point, the corre-
sponding algorithm associates with each string X, a fingerprint φ(X), which is quite
shorter from the corresponding string. In the following, the search procedure com-
pares short fingerprints instead of the initial long strings. Similarly, in (Iliopoulos &
Rahman 2008a), new variants of Longest Common Subsequence problem and effi-
cient algorithms for solving them are properly introduced. In particular, authors
discuss the notion of gap constraints in corresponding problems.

The algorithms considered in this study for the Longest Common Subsequence
(LCS) problem are the following:

• Naive Search
• Dynamic Programming
• Longest Increasing Subsequence (LIS)

5.1 Naive Search

As mentioned in the previous problem, the Naive Search method for this problem
considers initially the generation of all the subsequences of the given sequences. In
the following, the second step constitutes the identification of the longest matching
subsequence.

The Time Complexity of the Naive Search Algorithm is exponential. The number
of the total possible combinations will be 2n. Hence, this general recursive solution
requires O(2n).

A. Kanavos et al.

447

5.2 Dynamic Programming

The Dynamic Programming method has already been introduced in the Longest
Common Substring problem. What is more, each of the subproblem solutions is
indexed based on the values of its input parameters so as to facilitate its lookup. As
a result, the time where the same subproblem occurs, instead of recomputing its
solution, one simply looks up the previously computed solution, hence saving com-
putation time. The corresponding technique of storing solutions for the subprob-
lems, instead of recomputing them, is called memorization.

5.3 Longest Increasing Subsequence (LIS)

The Longest Increasing Subsequence (LIS) problem corresponds to the discovery
of the subsequence of a given sequence in which the subsequence’s elements are in
sorted order, lowest to highest, and in which the subsequence is as long as possible.
Notice that this subsequence is not necessary to be continuous or unique. Generally,
this method creates a sequence based on the positions of the characters of the one
string that match the characters of the other string (Crochemore & Porat 2010;
Garcia et al. 2001).

Definition 2 A subsequence of sequence x1, . . . , xn is some sequence xφ1, . . . , xφh
suchthatforallk,where1 ≤ k ≤ h,wehave1 ≤ φk ≤ n. In addition, for any xj in the
subsequence, all xi preceding xj in the subsequence satisfy that i < j. An increasing
subsequence constitutes a subsequence such that for any xj in the subsequence, all xi
preceding xj in the subsequence satisfy xi < xj. A largest increasing subsequence is a
subsequence of maximum length.

The Time Complexity of the Longest Increasing Subsequence Algorithm is O(n2
∗ logk), where n is the length of the strings and k is the maximum length of LCS.

6 Implementation

In this section we will briefly discuss the tools we used to perform the experimental
evaluation. The analysis was performed with the use of Apache Spark. We based our
experiments on two different DNA sequences, and the application we implemented
utilized Python language. In the next subsections, the cloud infrastructure and the
datasets are properly introduced.

Apache Spark Implementations for String Patterns in DNA Sequences

448

6.1 Apache Spark

Apache Spark2 (Zaharia et al. 2016) was founded in 2009 at the University of
California, Berkeley. Although it shares the same principles as Hadoop, its philoso-
phy differs. It uses the abstraction of “Resilient Distributed Dataset” (RDDs), which
represent a fault-tolerant correlation of elements, distributed across many compute
nodes that can be manipulated in parallel. Using them, a wide range of tasks, includ-
ing SQL, streaming, machine learning, and graph processing, in a unified manner,
can be captured. Its main advantage over MapReduce paradigm is that we don’t
have to flush the intermediate data to the disk, just to read them at the reduce stage,
since it can perform iterative computations in memory, which can have a positive
impact on the performance (Shi et al. 2015).

The creators of Apache Spark have also founded Databricks that supplies
researchers with a web-based platform in which they can store and analyze their
data with Spark. It offers researchers a mini cluster with 6 Gb of RAM for their
analysis, and it also offers cloud storage. As programming language, Python
(PySpark) was chosen.

6.2 Datasets

As previously mentioned, the experiments were conducted with DNA sequences
derived from the database of National Center for Biotechnology Information
(NCBI). More specifically, these sequences are part of Escherichia coli K-12 (Rudd
2000) and Streptococcus pneumoniae R6 genomes (Hoskins et al. 2001).

7 Results

The results of our work are presented in Tables 1, 2, 3, 4, 5, and 6 for different num-
ber of input strings as well as different number of strings characters. The execution
time (in milliseconds and seconds) is used as the evaluation metric for the different
algorithms.

Regarding Table 1, we present four different experiments for the problem of
Longest Common Prefix. In the first case, the number of characters for the 3 input
strings is 450, 300, as well as 125, respectively, and the output consists of an LCP
with 76 characters. In the following, in the second case, the number of characters for
input strings is 2605, 2455, as well as 2060, respectively, and the output consists of
an LCP with 250 characters. For the last two cases, the number of characters for
input strings is 9948, 8884, 8504 and 21350, 18790, 16845, whereas the output
consists of an LCP with 1054 and 2530 characters, respectively.

2 http://spark.apache.org/

A. Kanavos et al.

http://spark.apache.org/

449

Binary Search, as expected, achieved the best performance in Table 2, while
the other three algorithms, although they almost have the same complexity, in
fact are quite different. Binary Search takes the lowest time as it examines each
character starting from the first one until the one that is in the position equal to
the length of the smallest string. Divide and conquer is the next best perfor-
mance as it divides the problem into smaller subproblems and calculates the
final solution through solutions in each subproblem. Word-by-Word Matching is
the slowest, as it has to look at all the strings and the prefix, which occur each
time between the pairs of the strings and may be larger than the final prefix, so
there is the possibility of additionally unnecessary calculations. On the other
hand, Character-by-Character matching, instead of going through the strings
one by one, looks at the characters separately. So, once a character in any string
is not the same with the other, the query stops, and the output consists of the
occurred prefix; moreover, no additional unnecessary calculations need to
be done.

Furthermore, results in Table 3 introduce the problem of the Longest Common
Substring. We also present 4 different experiments, where in the first case, the num-
ber of characters for the 2 input strings is 300 as well as 280, respectively, and the
output consists of a substring with 7 characters. In the second case, the number of
characters for input strings is 4575 as well as 4270, respectively, and the output
consists of a substring with 13 characters. For the last two cases, the number of
characters for input strings is 7500, 7000 and 14925, 14070, whereas the output
consists of a substring with 13 and 23 characters, respectively.

The results in Table 4 show that the Naive Search algorithm is the slowest one as
it requires, after the identification of all the possible strings of the first input, to
additionally check whether each one of them is a substring of the initial; the largest
one will be the desired Longest Common Substring. The Dynamic Programming

Table 1 Four different
scenarios for LCP
implementations

Scenario Number of input strings
LCP
output

1 450, 300, 125 76
2 2605, 2455, 2060 250
3 9948, 8884, 8504 1054
4 21350, 18790, 16845 2530

Table 2 Time for different scenarios of LCS implementations

Longest common prefix algorithm 1 2 3 4

Word by Word Matching 2,02 2,88 3,58 5,75
Character by Character Matching 1,55 2,68 3,39 5,39
Divide and Conquer 1,52 1,73 1,97 2,61
Binary Search 0,95 1,09 1,28 1,44

Apache Spark Implementations for String Patterns in DNA Sequences

450

method performs better because in this case, a table that contains the lengths of the
maximum common suffixes of the two strings will be created. In the following, as
already mentioned, every corresponding output will be stored in the table in order to
be used in calculations that precede. On the other hand, the suffix array approach,
even if quite simple, is faster than the previous two algorithms. It is considered a
simple data structure that contains all the information needed for finding the Longest
Common Substring; a table is created with all the possible string suffixes resulting
from the combination of input strings, and after being sorted in lexicographic order
using an LCP algorithm, we find all the LCPs between each value with the exactly
next one. The largest of these LCPs constitutes the desired Longest Common
Substring.

Finally, Table 5 presents the problem of the Longest Common Subsequence,
where, in the first case, the number of characters for both two input strings is 20 and
the output consists of an LCS with 9 characters. In the second case, the number of
characters for the 2 input strings is 83 as well as 81, respectively, and the output
consists of an LCS with 46 characters. For the last two cases, the number of charac-
ters for input strings is 158, 155 and 300, 280, whereas the output consists of an
LCSub with 90 and 179 characters, respectively.

As in the Longest Common Substring implementations, we observe in Table 6
that the naive method for calculating the Longest Common Subsequence is the
slowest. Specifically, its complexity is exponential and in the worst case reaches

Table 3 Four different
scenarios for LCS
implementations

Scenario Number of Input Strings
Longest Common
Substring Output

1 300, 280 7
2 4575, 4270 13
3 7500, 7000 13
4 14925, 14070 23

Table 4 Time for different scenarios of LCS implementations

Longest common substring algorithm 1 2 3 4

Naive Search 3,82 14,16∗103 58,14∗103 482,53∗103

Dynamic Programming 0,01 3,32 8,02 33,22
Suffix array 0,003 0,22 0,42 1,59

Table 5 Four different
scenarios for Longest
Common Subsequence
implementations

Scenario Number of Input Strings
Longest Common
Subsequence Output

1 20, 20 9
2 83, 81 46
3 158, 155 90
4 300, 280 179

A. Kanavos et al.

451

O(2n). This undoubtedly proves that it is unsuitable for long sequences like the ones
used for computations in the field of bioinformatics. On the other hand, the Dynamic
Programming is clearly a faster method because it uses a table for storing the tem-
porary results in order to be used in subsequent calculations. The LIS approach
achieves the medium performance as initially it creates a sequence based on the
positions of the string characters, and then, a LIS algorithm that will produce the
desired LCS is applied.

8 Conclusion

The aim of this work was to study DNA sequences regarding three well-known
problems, namely, the Longest Common Prefix, the Longest Common Substring,
and the Longest Common Subsequence. The application was developed in Apache
Spark environment with Python programming language. The use of Spark has
accelerated the processing of large-scale biological sequences, while it has also
contributed to the versatility of the use of Python.

It would be interesting to analyze the Longest Common Extension (LCE) prob-
lem that appears to be a subproblem in several fundamental problems with strings
such as the k-Difference Global Alignment for the construction of alignment tools
in bioinformatics. Moreover, another potential future work is to incorporate in our
experiments the use of Suffix Tree in the Longest Common Substring problem. In
addition, the ongoing research is aimed at investigating the performance of algo-
rithms using various text compression algorithms. To be more specific, these algo-
rithms will take full advantage of genomic sequence data.

References

Alamro H, Ayad LAK, Charalampopoulos P, Iliopoulos CS, Pissis SP (2018) Longest common
prefixes with k-mismatches and applications. In: 44th international conference on current
trends in theory and practice of computer science (SOFSEM), pp 636–649

Arnold M, Ohlebusch E (2011) Linear time algorithms for generalizations of the longest common
substring problem. Algorithmica 60(4):806–818

Ayad LAK, Barton C, Charalampopoulos P, Iliopoulos CS, Pissis SP (2018) Longest common
prefixes with k-errors and applications. In: 25th international symposium on string processing
and information retrieval (SPIRE), pp 27–41

Table 6 Time for different scenarios of LCSub implementations

Longest common subsequence algorithm 1 2 3 4

Naive Search 102,48 – – –
Dynamic Programming 0,001 0,009 0,012 0,037
Longest Increasing Subsequence (LIS) 0,006 0,62 21,41 320,53

Apache Spark Implementations for String Patterns in DNA Sequences

452

Babenko MA, Starikovskaya TA (2008) Computing longest common substrings via suffix arrays.
In: Computer science - theory and applications, third international computer science sympo-
sium in Russia (CSR), pp 64–75

Behjati S, Tarpey PS (2013) What is next generation sequencing? Arch Dis Child Educ Pract Ed
98(6):236–238

Bergroth L, Hakonen H, Raita T (2000) A survey of longest common subsequence algorithms.
In: Seventh international symposium on string processing and information retrieval (SPIRE),
pp 39–48

Blumer A, Blumer J, Haussler D, Ehrenfeucht A, Chen MT, Seiferas J (1985) The smallest automa-
tion recognizing the subwords of a text. Theor Comput Sci 40:31–55

Bockenhauer HJ, Bongartz D (2007) Algorithmic aspects of bioinformatics. Springer, Berlin,
Heidelberg

Crochemore M, Lecroq T (2009) Trie. In: Encyclopedia of database systems. Springer, Heidelberg,
pp 3179–3182

Crochemore M, Porat E (2010) Fast computation of a longest increasing subsequence and applica-
tion. Inf Comput 208(9):1054–1059

Crochemore M, Vérin R (1997) On compact directed acyclic word graphs. In: Structures in
logic and computer science, a selection of essays in honor of Andrzej Ehrenfeucht. Springer,
Heidelberg, pp 192–211

Farach M (1997) Optimal suffix tree construction with large alphabets. In: 38th annual symposium
on foundations of computer science (FOCS), pp 137–143

Farach M, Ferragina P, Muthukrishnan S (1998) Overcoming the memory bottleneck in suffix
tree construction. In: 39th annual symposium on foundations of computer science (FOCS),
pp 174–185

Fischer J (2011) Inducing the lcp-array. In: 12th international symposium on algorithms and data
structures (WADS), pp 374–385

Garcia T, Myoupo JF, Seme D (2001) A work-optimal cgm algorithm for the longest increasing
subsequence problem. In: International conference on parallel and distributed processing tech-
niques and applications (PDPTA), vol 2, pp 563–569

Gog S, Ohlebusch E (2011) Fast and lightweight lcp-array construction algorithms. In: 13th work-
shop on algorithm engineering and experiments (ALENEX), pp 25–34

Gusfield D (1997) Algorithms on strings, trees, and sequences: computer science and computa-
tional biology. Cambridge University Press, Cambridge

Hirschberg DS (1977) Algorithms for the longest common subsequence problem. J ACM
24(4):664–675

Hoskins J, Alborn WE, Arnold J, Blaszczak LC, Burgett S, DeHoff BS, Estrem ST, Fritz L, Fu
DJ et al (2001) Genome of the bacterium streptococcus pneumoniae strain r6. J Bacteriol
183(19):5709–5717

Hsu WJ, Du MW (1984) New algorithms for the LCS problem. J Comput Syst Sci 29(2):133–152
Iliopoulos CS, Rahman MS (2008a) Algorithms for computing variants of the longest common

subsequence problem. Theor Comput Sci 395(2–3):255–267
Iliopoulos CS, Rahman MS (2008b) New efficient algorithms for the LCS and constrained LCS

problems. Inf Process Lett 106(1):13–18
Irving RW, Love L (2003) The suffix binary search tree and suffix avl tree. J Discrete Algorithms

1(5–6):387–408
J Kärkkäinen, Sanders P (2003) Simple linear work suffix array construction. In: 30th international

colloquium on automata, languages and programming (ICALP), pp 943–955
Karp RM, Rabin MO (1987) Efficient randomized pattern-matching algorithms. IBM J Res Dev

31(2):249–260
Kasai T, Lee G, Arimura H, Arikawa S, Park K (2001) Linear-time longest- common-prefix com-

putation in suffix arrays and its applications. In: 12th annual symposium on combinatorial
pattern matching (CPM), pp 181–192

A. Kanavos et al.

453

Knuth DE, Morris JH Jr, Pratt VR (1977) Fast pattern matching in strings. SIAM J Comput
6(2):323–350

Lanctot JK, Li M, Ma B, Wang S, Zhang L (2003) Distinguishing string selection problems. Inf
Comput 185(1):41–55

Lowrance R, Wagner RA (1975) An extension of the string-to-string correction problem. J ACM
22(2):177–183

Manber U, Myers EW (1993) Suffix arrays: a new method for on-line string searches. SIAM
J Comput 22(5):935–948

Manzini G (2015) Longest common prefix with mismatches. In: 22nd international symposium on
string processing and information retrieval (SPIRE), pp 299–310

Nong G, Zhang S, Chan WH (2009) Linear suffix array construction by almost pure induced-
sorting. In: Data compression conference (DCC), pp 193–202

Nsira NB, Lecroq T, Elloumi M (2017) Algorithms for indexing highly similar DNA sequences.
In: Algorithms for next-generation sequencing data, techniques, approaches, and applications,
pp 3–39

Rudd KE (2000) Ecogene: a genome sequence database for Escherichia coli K-12. Nucleic Acids
Res 28(1):60–64

Shi J, Qiu Y, Minhas UF, Jiao L, Wang C, Reinwald B, Özcan F (2015) Clash of the titans: mapre-
duce vs. spark for large scale data analytics. PVLDB 8(13):2110–2121

Ukkonen E (1995) On-line construction of suffix trees. Algorithmica 14(3):249–260
Wagner RA, Fischer MJ (1974) The string-to-string correction problem. J ACM 21(1):168–173
Weiner P (1973) Linear pattern matching algorithms. In: 14th annual symposium on switching and

automata theory (SWAT), pp 1–11
Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, Meng X, Rosen J, Venkataraman S,

Franklin MJ, Ghodsi A, Gonzalez J, Shenker S, Stoica I (2016) Apache spark: a unified engine
for big data processing. Commun ACM 59(11):56–65

Zhang YC, Che M, Ma J (2007) Analysis of the longest common substring algorithm. Comput
Simul 12:025

Apache Spark Implementations for String Patterns in DNA Sequences

