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Abstract. Self organizing maps (SOMs) are neural networks designed
to be in an unsupervised way to create connections, learned through a
modified Hebbian rule, between a high- (the input vector space) and
a low-dimensional space (the cognitive map) based solely on distances
in the input vector space. Moreover, the cognitive map is segmentwise
continuous and preserves many of the major topological features of the
latter. Therefore, neurons, trained using a Hebbian learning rule, can
approximate the shape of any arbitrary manifold provided there are
enough neurons to accomplish this. Moreover, the cognitive map can
be readily used for clustering and visualization. Because of the above
properties, SOMs are often used in big data pipelines. This conference
paper focuses on a multilinear distance metric for the input vector space
which adds flexibility in two ways. First, clustering can be extended
to higher order data such as images, graphs, matrices, and time series.
Second, the resulting clusters are unions of arbitrary shapes instead of
fixed ones such as rectangles in case of �1 norm or circles in case of �2
norm. As a concrete example, the proposed distance metric is applied to
an anonymized and open under the Creative Commons license cognitive
multimodal dataset of fMRI images taken during three distinct cogni-
tive tasks. Keeping the latter as ground truth, a subset of these images
is clustered with SOMs of various configurations. The results are evalu-
ated using the corresponding confusion matrices, topological error rates,
activation set change rates, and intra-cluster distance variations.
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1 Introduction

Self organizing maps (SOMs) are grids of computational neurons which can
efficiently learn through a modified Hebbian process to approximate any higher
dimensional manifold, called the input vector space and represented by a set of
data points or data vectors, with a low dimensional space termed the cognitive
map, which is one- or two-dimensional. This map can be then employed for
clustering and visualization purposes. For this reason in a typical data science
pipeline SOMs can be placed either at the beginning in order to discover outliers
or at the end in order to cluster or visualize high dimensional results.

The approximation and the associated properties are made feasible by rear-
ranging the namely connections between the input vector space and the cognitive
map. Distances in the former are reflected to the latter with some loss of minor
information, provided the cognitive map contains sufficient neurons to capture
the desired input vector features in the geometry of the cognitive map. This
ability as well as the segmentwise continuity of the latter can be attributed to
the training process and to the distance metric in the input vector space, which
can be theoretically arbitrary to a great extent allowing thus the progressive
construction of variable shaped clusters. This is a distinct advantage over clus-
tering algorithms which are based on fixed shaped regions. Nonetheless, most
common distance metrics do not take advantage of this.

The primary research objective of this conference paper is the development
of a multilinear distance metric for the data points of the input space. This
lays the groundwork for more flexible cluster shapes in the cognitive map, as
they can be the union of arbitrary shapes instead of fixed ones, clustering higher
order data points such as graphs and matrices, and for multi-aspect clustering
where each object in the input space can be represented by multiple but distinct
data points. In order to evaluate the above, they have been tested with an open
dataset, under the Creative Commons license from openneuro.org, containing
fMRI images taken during three cognitive tasks conducted by elderly people.
Since ground truth data is available, the confusion matrices have been derived for
SOMs of various configurations. Moreover, the corresponding topological error
rates, the activation set change rates, and the intra-cluster distance variations
have been computed for each epoch during the cognitive map formulation.

The remaining of this work is structured as follows. In Sect. 2 the relevant
scientific literature regarding the applications of blockchains, including process
mining and IoT, is briefly summarized. Section 3 overviews the various SOM
aspects. Section 4 overviews the clustering evaluation metrics, which can be
either SOM-specific or generic. The proposed family of tensor-based distance
metrics is proposed in Sect. 5, whereas the activation set variation is introduced
in Sect. 6 where also the experimental results are given and commented on.
Future research directions are described in Sect. 7. Tensors are represented by
capital calligraphic letters, matrices with capital boldface, vectors with small
boldface, and scalars with small letters. Vectors are assumed to be columns
unless stated otherwise. When a function or a set depends on a number of param-
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eters, then the latter are shown in the respective definition after a colon. Finally,
Table 1 summarizes the notation of this work.

Table 1. Notation of this conference paper.

Symbol Meaning
�
= Definition or equality by definition

{s1, . . . , sn} Set with elements s1, . . . , sn

(t1, . . . , tn) Tuple with elements t1, . . . , tn

|S| Set or tuple cardinality

loc (s) Grid location for data point s

invloc (u) Set of data points assigned to neuron u

weight (u) Synaptic weights of neuron u

neighb (u1, u2) Indicator function of neighboring neurons u1 and u2

vec (T ) Vector operator for tensor T

2 Previous Work

SOMs have been proposed in [11] for dimensionality reduction, clustering, and
visualization and since then their popularity remains unabated. The latter can
be mainly attributed to the preservation of the topological properties of the
original high dimensional space in the final low dimensional one [8,10]. Among
the SOM applications can be found climatology models [7], knowledge discov-
ery in gene expressions [25], and the novel clustering of ECG complexes [14]. A
clustering method for strings based on SOMs is presented in [13]. Finding pat-
terns with SOMs in collections of Web documents is explored in [9]. SOMs have
been also used as a visualization tool in finance clustering long feature vectors
[2]. Additionally, due to SOM popularity, a number of implementations exists.
In [24] a Simulink library aiming at FPGAs is proposed, while [23] discusses a
parallel SOM library based on the MapReduce paradigm.

Tensors have found multiple applications in fields such as signal processing
[1], computer vision [22], and deep learning [29]. Unsupervised methods for face
recognition based on the separation of higher order subspaces are described in
[28] and extended in [20]. The term-document matrix of information retrieval is
extended to a term-keyword-document tensor in [4] in order to exploit the added
semantic value of keywords. Face recognition in the context of emotion discovery
is discussed in [27]. In [6] a genetic algorithm is proposed for discovering com-
munities based on linguistic and geographical criteria. Multilinear discriminant
analysis is a higher order clustering approach based on tensor algebra [16]. A
distinction between its primary approaches with an application to gait recogni-
tion is given in [19]. Finally, an LMS-based update scheme for tensor entries has
been used in adaptive system identification as shown in [5].
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3 Cognitive Maps

3.1 Input and Coordinate Spaces

In an SOM each neuron is placed on a one- or two-dimensional grid, with the
latter being more common. In the following analysis it will be assumed that a two
dimensional p× q grid is used. Without loss of generality, the following concepts
can be applied also to one dimensional girds [12,15]. Once the training process is
complete, the SOM is a cognitive map, namely a low dimensional representation
of the data point space with the former preserving topological similarities and
neighborhoods of the latter. This technique is believed to be performed by the
hippocampus of the human brain in order to construct mental representations
of the physical or perceived world [3,21,26].

Let n denote the number of available data vectors or data points and d their
fixed dimensionality. The latter holds true even when the data points are of
variable length such as strings. In this case, d is taken to be the maximum string
length.

Definition 1 (Input vector space). The input space V is the d-dimensional

space spanned by the set of the n data points S
�
= {sk}n

k=1.

In this work each data vector is assumed to consist of d numerical features
extracted from the dataset of Sect. 6:

sk
�
=

[
sk,1 sk,2 . . . sk,d

]T (1)

Definition 2 (Coordinate space). The coordinate space C is a p × q two
dimensional discrete space composed of the m = pq locations of the neurons.

Each neuron uk represents a location vector in C as follows:

uk ↔
[
xk yk

]T ∈ C, 0 ≤ k ≤ m − 1 (2)

Since multiple data vectors can be mapped to the same neuron, loc (·) is not
a function as its inverse returns the set of data vectors Sk ⊆ S defined as:

invloc (uk)
�
=

{
sk1 , . . . , skfk

} �
= Sk (3)

Definition 3 (Neighboring neurons). Any neuron adjacent in C to a given
neuron ui is termed to be a neighbor of ui.

The designation of neighborhood depends on the grid number of dimensions,
grid shape, and neighborhood strategy. Thus, in a square grid the neighboring
neurons can form a cross, a square, or a hexagon around ui. In this work the
first choice is used. The following indicator function codifies the above:

neighb (ui, uj)
�
=

{
1, ui and uj are neighboring
0, otherwise

(4)
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Therefore, for each neuron ui the neighborhood set Γ (ui) is defined as follows:

Γ (ui)
�
= {uj ∈ C | neighb (ui, uj) = 1} (5)

Each neuron ui in the grid has its own vector of synaptic weights wi:

weight (ui)
�
= wi ∈ V (6)

3.2 Distance Metrics and Weight Function

SOMs require three functions in order to construct the final cognitive map,
namely the distance metrics of V and C and the weight function. As its name
suggests, the distance metrics in d (·, ·) used between data points and synaptic
weights. Common choices, depending on the nature of data points, are: �2, �1, or
�0 norms for numerical vectors, Hamming distance for binary vectors, Tanimoto
coefficient for sets, and Levenshtein distance for strings.

Common distance metrics g (·, ·) in C include the triangular, square, circular,
and Gaussian distances. Notice that it is not necessary to use the same distance
metric in both V and C. In fact, because these spaces are of different nature, a
given metric may not be even applicable in one of these spaces.

Finally, the weight function h (·, ·), which is usually normalized such that its
maximum value equals one, depends on the location of two neurons in the grid.
In fact, in most cases the weight depends on some form of the grid distance, not
to be confused with the function g (·, ·) defined earlier, between two neurons and
not on their absolute locations. In certain scenaria h (·, ·) and g (·, ·) are related,
by they do not need to be so in the general case. In this work these functions
are independent of each other. Common options include:

– Constant: Each neuron in the proximity set receives the same weight.
– Gaussian: The Gaussian kernel has a smooth decay rate which drops fast

enough to ensure the clusters remain relatively compact. It is defined as:

h (ui, uj ;σ0)
�
=

1
σ0

√
2π

exp
(

−‖ui − uj‖12
2σ2

0

)
(7)

– Triangular: This function has a linear decay rate since:

h (ui, uj ; γ0)
�
= 1 − ‖ui − uj‖1

γ0
(8)

– Circular: The weight function forms a semicircle around neuron uj :

h (ui, uj ; ρ0)
�
=

√
ρ20 − ‖ui − uj‖22

ρ0
(9)

The weight function also plays a central role in the formation for each neuron
of its proximity set, which is defined as follows:
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Definition 4 (Proximity set). The proximity set Δ (ui; ξ0) for a neuron ui

given a threshold ξ0 is the set of neurons for which h (·, ·) remains above ξ0:

Δ (ui; ξ0)
�
= {uj ∈ C | h (ui, uj) ≥ ξ0} (10)

The proximity set Δ (ui; ξ0) of a given neuron ui differs from its the neighbor-
hood Γ (ui) introduced in Definition 3. The former corresponds to the effective
area of a cluster around ui whereas the latter to the central area of that clus-
ter. Therefore, Δ (ui; ξ0) always includes Γ (ui) but extends beyond that. The
limiting case where the two sets coincide is very rarely used in practice, if at all.

3.3 Learning Rate

The learning rate η of an SOM controls as in other neural network architectures
the convergence rate of the training process.

– Constant: Under this policy the learning rate is a fixed constant η0.
– Exponential decay: In order to ensure that early epochs receive a larger

weight in comparison to the later ones, the following scheme can be used:

η [r;α0, γ0] = α0 exp (−γ0r) (11)

– Cosine decay: This option is based on the following function:

η [r;α0, r0] = α0 cos
(

πr

2r0

)
, 0 ≤ r ≤ r0 − 1 (12)

– Inverse polynomial: This rate attempts to achieve a smoother decay as:

η [r;α0, β0, γ0, δ0] =
δ0

(α0r + β0)
γ0 (13)

– Inverse logarithm: Finally, this choice yields the formula:

η [r;α0, β0, δ0]
�
=

δ0
a0 log (r) + β0

(14)

The learning rate can be allowed to vary within the same epoch or remain
fixed and change only with each epoch. In the former case, the learning rate can
very well be a product of two factors, one taking into account the epoch and the
other depending on the projection within the epoch. As a general note, when the
learning parameter is allowed to change within the same epoch, then it should
be combined with a policy which does not preserve the order which the input
vectors are projected to the SOM. Here η remains constant during each epoch.

3.4 Grid Dimensions

In the general case there is no straightforward criterion to determine the grid
size. This work follows the empirical rule proposed in [10] which takes into con-
sideration only the total number of data points:

p = q =
⌈
5
√

n
⌉

(15)
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3.5 Training Process

The synaptic weights of the winning neuron u∗ are updated in each projection
of the epoch r based on a modified Hebbian update rule as follows:

Δweight (u∗) [r] = η [r] · d (si,weight (u∗)) (16)

The winning neuron u∗ for the specific input vector si is the neuron whose
weight vector is closest in V to si:

u∗ �
= argmin {d (si,weight (u))} (17)

Notice that the distance metric in (17) is computed in V and not in C since
data points belong in the former. Additionally, u∗ is added to the set D [r] of
activated neurons for that given epoch is formed, assuming that D [r] is empty
at the beginning of the epoch:

D [r] ← D [r] ∪ u∗ (18)

Additionally, besides the winning neuron u∗ the synaptic weights of each
neighboring neuron ui ∈ Δ (u∗; ξ0) are also updated as follows:

Δweight (uj) [r] = η [r] · h (u∗, uj) · d (sk,weight (uj)) (19)

Both updates (16) and (19) drive the weights of the corresponding neurons closer
to the data point sk, gradually creating a cluster. Neurons in Δ (u∗; ξ0) receive
a reduced update because of the added factor of the weight function.

4 Performance Metrics

Perhaps the most common and intuitive SOM error metric is the topological
error. As local coherence preservation is of primary importance in the final cog-
nitive map, it is only natural to measure the average probability that a data
point is assigned to the periphery of a cluster.

Definition 5 (Topological error rate). The topological error T [r] for epoch
r is the ratio of the number of data points which are mapped to Δ (u∗) \ Γ (u∗).

T [r]
�
=

1
n

∑

sk∈S

|{loc (sk) �∈ {u ∪ Γ (u) | u ∈ D [r]}}| (20)

Another SOM performance metric is the activation set evolution, essentially
the number of clusters formed at each epoch and the centroids thereof. The latter
is not static but rather dynamic and it is controlled by the data points.

Definition 6 (Activation set change rate). The change of activation set is
the percentage of the activation set cardinalty during the current epoch.

K [r]
�
=

|D [r]| − |D [r − 1]|
|D [r]| , r ≥ 1 (21)
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Clustering performance is usually difficult to evaluate. One common metric
for assessing clustering is the average intra-clustering distance, namely the arith-
metic mean of the average distsance of each data point from the corresponding
centroid. In the case of the SOMs this metric takes the following form.

Definition 7 (Intra-cluster distance). The intra-cluster distance is the aver-
age of the average distance of each data point from its respective centroid.

Q [r]
�
=

1
|D [r]|

∑

ui∈D[r]

1
|Ci|

∑

uj∈Ci

g (uj , ui) (22)

5 Tensor Distance

Here the multilinear distance metric, based on work previously done [17], is
introduced. First, an auxiliary definition is in order.

Definition 8 (Tensor vector operator). The tensor vector operator maps a
P -th order tensor T ∈ R

I1×I2×...×IP to a vector v ∈ R
N by stacking from top to

bottom the columns of dimension Ik from left to right. Also N = I1 · . . . · IP .

The proposed distance is defined as follows:

Definition 9 (Multilinear distance). The multilinear distance metric is
defined as the squared root weighted quadratic form of the vectorized difference
of the data points where the latter are represented as tensors.

J (X ,Y;G)
�
=

⎛

⎝vec (X − Y)T G vec (X − Y)
︸ ︷︷ ︸

s

⎞

⎠

1
2

=
√
sTGs (23)

Metric J includes bilinear and quadratic functions as special cases. This allows
more flexibility as different tensor components can receive different weights.

The weight matrix G is defined in [17] elementwise as the Gaussian kernel
whose values depend only on the locations of the elements of s involved. Although
this resulted in a matrix with non-negative entries, a better way is to define G
as positive definite, meaning that the value of the quadratic function under the
square root in (23) is guaranteed to be positive.

Moreover, it makes sense to select a G tailored to the underlying nature of
the data points. Since in the experiments the data points are stacked images, the
following two properties of the discrete cosine transform (DCT) will be exploited:
First, since images consist of real values, the transformation spectrum will also
contain only real values. Second this spectrum will be very sparse, with non-zero
values concentrated along the low spatial frequencies. Therefore, subtracting and
weighing through a linear filter only these values instead of every pixel saves
tremendous computational time.

The original data points are three stacked fMRI images for each subject:

Xk
�
=

[
Xk,1 Xk,2 Xk,3

]
(24)
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Therefore, G is built as a matrix product involving the discrete DCT matrix
D, the linear filtering matrix F, the identity matrix I, and the 3 × 1 auxiliary
vector 13,1 whose elements equal 1 as follows:

G
�
= (13,1 ⊗ D)T · (I ⊗ F) · (13,1 ⊗ D) (25)

In Eq. (25) ⊗ denotes the Kronecker tensor product which is used to create
the following structured matrices:

13,1 ⊗ D =

⎡

⎣
D
D
D

⎤

⎦ I ⊗ F =

⎡

⎣
F

F
F

⎤

⎦ (26)

The linear filter matrix F has been selected to be the first order lowpass or
smoothing Butterworth filter.

The advantages of using a higher order distance metric such as that of
Eq. (23) are the following:

– It enables multi-aspect clustering, meaning that the various objects of the
input vector space can be clustered in more than one ways. Thus, different
aspects of the same object may contribute to clustering. Alternatively, this
can be interpreted as that each object is represented by multiple attribute
vectors, which is the basis for many advanced clustering algorithms.

– There is more flexibility in defining weights for the various attribute vectors
or aspects, which can help understand the underlying clustering dynamics.

– Multilinear metrics are suitable for evaluating the distance between higher
order data such as graphs, tensors, time series, and images in a natural way.

6 Results

The anonymized dataset for the experiments was first published in [18] as part
of a project for studying the ageing human brain and uploaded to openneuro.org
under the Creative Commons license1. Following the warnings of the respository,
the files pertaining to one subject were ignored. According to the dataset authors,
the latter consists of 34 participants (33 in our case), 14 male and 20 (19 in our
case) female, all right handed with no health problems. Each participant was
presented for three seconds an image of neutral or negative affective polarity
selected from the International Affective Picture System and then was issued an
audio instruction to suppress, maintain, or enhance their emotions. These are
the three cognitive tasks, respectively denoted as T1, T2, and T3.

Again according to [18], the fMRI images used here were collected with the
following parameters. There were 30 sagittal images with each such image having
a 3 mm thickness with repetition time (TR) and echo time (TE) being respec-
tively equal to 2000 msec and 30 msec, a slice gap of 33%, a field of view (FoV)

1 Dataset doi:10.18112/openneuro.ds002366.v1.0.0.

10.18112/openneuro.ds002366.v1.0.0
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of 192×192 mm2, and a spatial resolution of 3 mm. From these images were kept
three, one each at 10%, 50%, and 90% of the block length. Finally, after nor-
malization, registration, and correcting for magnetic field inhomogenetity and
head motion, spatial preprocessing took place with a Gaussian kernel of 6 mm
FWHM. Table 2 has the total and marginal frequency distribution for the three
cognitive tasks and the image polarity. It follows that not only the three classes
but also their subclasses are well balanced.

Table 2. Distribution of tasks.

T1 T2 T3 Subtotal

Neutral 6 5 5 16

Negative 6 6 5 17

Subtotal 12 11 10 33

The configuration of an SOM is represented by a tuple ck:

ck
�
= (p, q, d (·, ·) , g (·, ·) , h (·, ·) , η) (27)

The possible options for each field of ck are given in Table 3. Out of the 27
possible combinations of metrics for V, C, and learning parameter rate, in total
9 were chosen with emphasis given to the learning parameter rate.

Table 3. SOM configuration options.

d (·, ·) g (·, ·) h (·, ·) η

T: tensor G: Gaussian G: Gaussian S: cosine

L2: �2 norm C: circular C: circular E: exponential

L1: �1 norm R: triangle R: triangle P: inverse polynomial

The values used in each function as needed by each SOM configuration are
shown in Table 4. Recall that p0 and q0 are the SOM tableau dimensions, as

Table 4. Values for each configuration parameter.

Param. Value Param. Value

r0 25 S α0: 1.0

G σ0: 4 E (α0, γ0): (1.0, 0.5)

C ρ0: 5 P (α0, β0, γ0, δ0): (1.0, 1.0, 2, 1.0)

R γ0: 0.2 p0, q0 30, 30
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determined by (15), and r0 is the fixed number of epochs used. Notice that p0
and q0 were selected to be identical resulting in square tableau, but this is by
no means mandatory.

The actual configurations used in the experiments along with their numbering
are shown in Table 5. As it can be seen, the exact same number of combinations
was used with the �1 norm, the �2 norm, and the proposed multilinear metric.
Configurations achieving the best confusion matrix in terms of maximizing its
trace, one for each distance metric in V, are marked in boldface.

Table 5. SOM configurations.

# Configuration # Configuration # Configuration

1 (p0, q0, L1, C, C,E) 10 (p0, q0, L2, C, C,E) 19 (p0, q0, T, C,C,E)

2 (p0, q0, L1, C, C, P ) 11 (p0, q0, L2, C, C, P ) 20 (p0, q0, T, C,C, P )

3 (p0, q0, L1, C, C, S) 12 (p0, q0, L2, C, C, S) 21 (p0, q0, T, C,C, S)

4 (p0, q0, L1, R,R,E) 13 (p0, q0, L2, R,R,E) 22 (p0, q0, T, R,R,E)

5 (p0, q0, L1, R,R, P ) 14 (p0, q0, L2, R,R, P ) 23 (p0, q0, T, R,R, P )

6 (p0, q0, L1, R,R, S) 15 (p0, q0, L2, R,R, S) 24 (p0, q0, T, R,R, S)

7 (p0, q0, L1, G,G,E) 16 (p0, q0, L2, G,G,E) 25 (p0, q0, T,G,G,E)

8 (p0,q0,L1,G,G,P) 17 (p0, q0, L2, G,G, P ) 26 (p0, q0, T,G,G, P )

9 (p0, q0, L1, G,G, S) 18 (p0,q0,L2,G,G,S) 27 (p0,q0,T,G,G,S)

Table 6. Best (left, configuration 8) and average confusion matrix for �1.

Task(%) T1 T2 T3 T1 T2 T3

T1 78.66 8.33 13.00 77.11 11.89 11.00

T2 10.66 75.00 14.33 11.00 74.50 14.50

T3 4.00 7.00 79.00 5.20 8.20 76.60

Tables 6, 7, and 8 are the confusion matrices when the SOM distance metric
is the �1 norm, the �2 norm, and that of Eq. (23) respectively for the SOM
configuration which achieved the least misclassification rate, in other words it
maximized the trace of the corresponding confusion matrix. In all three cases
the best case entries are distinct from but not very far from their average case
countrparts. This points to the best case scenario being actually achievable and
not being merely a fortuitous but rare result.

Moreover, from the entries of Tables 6, 7, and 8 follows that the proposed
multilinear distance metric consistently results in lower misclassification rates.
This can be attributed to the additional flexibility offered by it, in terms of
partitioning the data input space to arbitrary regions and of discovering latent
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Table 7. Best (left, configuration 18) and average confusion matrix for �2.

Task(%) T1 T2 T3 T1 T2 T3

T1 79.66 8.00 12.33 78.00 7.50 14.50

T2 9.00 81.00 10.00 7.30 79.40 13.30

T3 7.66 8.33 83.00 5.00 13.50 81.50

Table 8. Best (left, config. 27) and average confusion matrix for multilinear metric.

Task(%) T1 T2 T3 T1 T2 T3

T1 91.01 6.99 2.00 88.50 11.16 1.33

T2 2.33 85.33 12.33 2.00 84.00 14.00

T3 5.00 8.66 87.33 3.00 11.50 86.50

Table 9. Performance scores vs configuration.

# Scores # Scores # Scores

1 7.58, 0.66, 15.11, 1.15 10 6.22, 0.74, 12.54, 1.13 19 6.02, 0.82, 10.34, 7.22

2 7.61, 0.64, 15.43, 1.13 11 6.71, 0.73, 13.53, 1.11 20 6.17, 0.81, 10.84, 7.21

3 7.65, 0.61, 15.04, 1.19 12 6.43, 0.69, 13.42, 1.14 21 6.39, 0.79, 10.72, 7.28

4 8.56, 0.68, 14.48, 1.17 13 6.25, 0.76, 12.52, 1.12 22 5.82, 0.83, 9.11, 7.25

5 8.71, 0.67, 14.94, 1.15 14 6.36, 0.73, 12.55, 1.12 23 5.97, 0.81, 9.34, 7.23

6 8.62, 0.64, 14.65, 1.13 15 6.35, 0.74, 12.67, 1, 11 24 6.08, 0.81, 9.56, 7.22

7 6.93, 0.71, 13.43, 1.13 16 6.23, 0.77, 12.13, 1.13 25 5.35, 0.84, 8.56, 7.24

8 7.03, 0.67, 13.46, 1.11 17 6.55, 0.74, 12.62, 1.11 26 5.55, 0.82, 8.99, 7.25

9 7.11, 0.69, 13.77, 1.12 18 6.42, 0.75, 12.37, 1.13 27 5.47, 0.81, 8.84, 7.22

features in the image triplets. Also, since there were divisions by 33, the total
number of subjects, fractions like 0.33 and 0.66 were very frequent.

In Table 6 there is a trend for T2 to be confused with T3 and vice-versa.
Specifically, the entries denoting a confusion between T2 and T3 and vice versa
were significantly higher than those recording confusion between T1 and T3 and
vice versa as well as T1 and T3 and vice versa.

From Table 7 is clear that �2 norm outperforms �1. This is an indication that
spheres may be a better way to partition the data input space, perhaps due to
their isotropic curvature. The strong confusion between T2 and T3 continues.

Table 8 contains the best values both in the optimal and in the mean case.
The confusion trend between T2 and T3 is also present.

Table 9 shows the average topological error rate, the average absolute activa-
tion set change rate, the average inter-cluster distance variation, and the mean
wallcklock time (in seconds) in this order for each configuration. Each SOM
configuration was executed eleven times, with the first time being considered a
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test and thus not contributing at all to the time and performance measurements
presented here. The numbering is exactly the same as that of Table 5.

Since the SOM training is computationally intensive, it is a reasonable indi-
cator of the true computational time. Although the proposed metric is more
expensive, its cost is not prohibitive. There is minimum variation among the
time measurements for each distance metric with the �1 and �2 norms achieving
very similar scores.

Figure 1 depicts the mean topological error rate scores of Table 9 in order to
obtain a intuitive evaluation of the indicative performance of each configuration.
The remaining three scores were omitted to avoid cluttering.
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Fig. 1. Mean topological error vs SOM configuration.

Certain conclusions can be drawn regarding the various SOM configurations.
Partitioning the cognitive map to Gaussian regions leads to better performance
scores, followed by spherical and rectangular regions. The same can be said about
the cosine decay rate. Also, the tensor distance metric yield systematically better
scores at all three performance metrics.

The conclusion which can be drawn about the three cognitive tasks is that
there is a systematic trend for confusion between T2 and T3 as in all cases
the confusion between these two was consistently higher regardless of metric
distance. This may indicate a tendency for negative emotions to persist in older
adults, a view also shared by [18].
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7 Conclusions and Future Work

This conference paper describes the application of SOMs to the clustering of
fMRI image triplets in order to distinguish between three cognitive tasks. The
SOMs configurations had different combinations of distance metrics for input
and neuron space, learning rate decay rate, and neighbourhood shape. The three
distance metrics for the data input space were the �1 norm, the �2 norm, and a
multilinear metric. The distinction between the cognitive tasks is in compliance
with established results. Moreover, the proposed metric achieves lower topo-
logical error, intra-cluster distance, and activation set change rate, whereas it
resulted in a confusion matrix with the highest trace.

This work can be extended in a number of ways. First and foremost, the
selection of other features which are appropriate for high dimensional cultural
datasets can be explored. Moreover, evaluating both the SOM performance and
the activation set variation with larger benchmark datasets can shed more light
in their behavior. Concerning the SOM itself, the link between the data point
selection strategies and the total number of epochs should be explored. Also,
an approriate estimation for the grid dimensions, based perhaps on informa-
tion theoretic measures such as the AIC, BIC, or MDL, is a possible research
direction. The development of training termination criteria connected with the
overall quality of the cognitive map should be sought. The role of bias in ensuring
that no inactive neurons exist, especially for large grids with randomly initalized
synaptic weights is another possible topic. How SOMs can be applied to online
clustering, especially in big data pipelines, is worth researching.
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