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Abstract: Process mining is the art and science of (semi)automatically generating business processes from a large num-

ber of logs coming from potentially heterogeneous systems. With the recent advent of Industry 4.0 analog

enterprise environments such as floor shops and long supply chains are bound to full digitization. In this

context interest in process mining has been invigorated. Multilayer graphs constitute a broad class of combi-

natorial objects for representing, among others, business processes in a natural and intuitive way. Specifically

the concepts of state and transition, central to the majority of existing approaches, are inherent in these graphs

and coupled with both semantics and graph signal processing. In this work a model for representing business

processes with multilayer graphs along with related analytics based on information theory are proposed. As a

proof of concept, the latter have been applied to large synthetic datasets of increasing complexity and with real

world properties, as determined by the recent process mining scientific literature, with encouraging results.

1 INTRODUCTION

Recently the theory and practice of manufacturing un-

derwent a series of radical evolutionary transforma-

tions after a long period covering Antiquity and the

Middle Ages where humans, whether slaves or highly

paid technicians and professionals, animals, and sim-

ple machines such as Heron’s steam engine or Aeolip-

ile were the primary means of production. The roots

of each major milestone can be respectively traced in

the following historical periods:

• The Victorian era1 in the wake of a major scien-

tific wave saw the massive transition to hydraulic

power for a broad spectrum of applictions. The

uncontested colophon of that era was the develop-

ment of steam engine.

• Between the French-Prussian war of 1871 up to

the start of First World War in 1914 heavy em-

phasis was placed on developing extensive net-

works, whether physical, such as railroads and
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1The technology of that era and the promises it brought

about human life led to the steampunk subculture and liter-
ary genre.

post offices, or telecommunication ones, like the

telegraph and local telephone systems. These net-

works prompted the construction of massive as-

sembly lines and supply chains.

• Finally, after the end of the Second World War in

1945 and until the beginning of the 21st century

focus shifted on digitization and miniaturization,

eventually giving rise to microelectronics and dig-

ital computers. The main paradigm shift here was

the reinforcement not only of the human body but

of the brain as well.

Currently Industry 4.0, originally a set of speci-

fications compiled in 2011 by the Bundesregierung,

namely the federal German government, aims to

transform manufacturing landscape by introducing

the use of sensors, artificial intelligence (AI), and In-

ternet of Things (IoT) technology in order to increase

productivity, cybersecurity, and personnel safety. In

this way diverse operational objectives from various

scopes can be achieved even under quite adverse cir-

cumstances. At the same time human-to-machine and

machine-to-machine will become seamless and more

efficient through wearable electronics for humans and

reconfigurable sensor arrays for machines.

In this digital enterprise setting the role of process

mining is becoming increasingly more important as

large event logs are created by a multitude of commer-



cial business applications and big process graphs are

generated for various production purposes. Given that

data volume and its high generation rate, errors are

almost bound to happen. They are frequently mani-

fested in the absence or addition of spurious vertices

or edges at the process graphs. However, a more in-

sidious result is the changes to process graph seman-

tics as errors are more subtle and can be thus propa-

gated undetected in the process graph.

The primary research objective of this conference

paper is the development of edge, path, and trian-

gle similarity metrics for evaluating the difference be-

tween any template process graph and a correspond-

ing variant one. Said difference is evaluated with a

metric enriched with semantics represented as edge

labels which is derived from information theory. This

work differentiates from previous approaches in two

ways, namely the use of multilayer graphs in order to

represent long Industry 4.0 processes and the use of

the emerging field of graph signal processing (GSP).

The remaning of this work is structured as follows.

In Section 2 the recent scientific literature pertaining

to process mining and multilayher graphs is briefly re-

viewed. Section 3 contains the formal definition of as

well as some intuituion about mulilayer graphs. The

proposed methodology is described in detail in sec-

tion 4. The results of applying it to synthetic pro-

cess benchmark graphs of increasing complexity are

given in section 5. Section 6 recapitulates the main

results and outlines future research directions. Tech-

nical acronyms are defined the first time they are en-

countered in the text. In definitions parameters are

given after formal arguments following a semicolon.

Finally, table 1 summarizes the notation of this work.

Table 1: Notation of this conference paper.

Symbol Meaning First
△
= Equality by definition Eq.(1)

{s1, . . . ,sn} Set consisting of s1, . . . ,sn Eq.(2)

(t1, . . . , tn) Tuple with t1, . . . , tn Eq.(1)

|S| Set or tuple cardinality Eq.(3)

S1 \S2 Asymmetric set difference Eq.(3)

[e1, . . . ,ep] Path of edges e1, . . . ,ep Eq.(9)

H (·) Harmonic mean Eq.(5)

diag [·] Diagonal matrix Eq.(12)

2 PREVIOUS WORK

Industry 4.0 is a major milestone in the history of in-

dustrial organization and production (da Rosa Righi

et al., 2020). It aims to the full digitization of in-

dustrial production through a wide array of sensors

installed in machinery and in wearable electronics

for human operators as well as through delegation

of minor, mundane, or dangerous tasks to computer-

operated equipment (Bigliardi et al., 2020). Various

sensor architectures based on the Industry 4.0 require-

ments have been proposed and compared in (Bajic

et al., 2020). Operational criteria and considerations

for the industrial equipment are examined in (Culot

et al., 2020). The connections between Industry 4.0

and circular economy are explored in (Rajput and

Singh, 2019). The principal question of sustainabil-

ity is put in (Bai et al., 2020). An extensive review of

the relevant bibliography about Industry 4.0 is given

in (Souza et al., 2020).

Process mining relies heavily on the parsing of

automatically generated process logs in order to dis-

cover patterns, latent dependencies, and persistent

anomalies (Mitsyuk et al., 2017; Reinkemeyer, 2020).

The IEEE extensive event stream (XES) or IEEE stan-

dard 1849-2016 is a standard log file format designed

for the explicit purpose of process mining proposed

in (Acampora et al., 2017). Automated log mining is

explained in (Egger et al., 2020). PM4py is a Python

package for process mining complete with methods

for pattern discovery and miners such as A and A+

(Berti et al., 2019). Dealing with malformed or oth-

erwise imperfect process logs is examined in (Suri-

adi et al., 2017). Context-aware process mining with

the introduction of advanced graph mining is the topic

of (Becker and Intoyoad, 2017). The role of process

mining to auditing information systems is described

in (Zerbino et al., 2018). Finally, among the various

surveys covering the topic are (Lopes and Ferreira,

2019) and (Verenich et al., 2019).

Multilayer or multiplex graphs allow parallel

edges between the same pairs of vertices (Caimo and

Gollini, 2020; Halnaut et al., 2020). As with ordi-

nary graphs massive graph mining for this class can

take place with the help of graph analytics (Zhou

and Cheung, 2019) including attribute engineering

(Drakopoulos and Mylonas, 2020). Also multilayer

graphs have been proposed as a scalable IoT model

(Xie et al., 2020). Functional and structural aspects of

brain circuits are combined to form multilayer graphs

in (Mandke et al., 2018). Visualization techniques

for multilayer graphs are explored in (McGee et al.,

2019). Semi-supervised learning methods for this

class of graphs are proposed in (Mercado et al., 2019).

Multilayer graphs have been used for image segmen-

tation (Wang et al., 2016), spectral graph clustering

(Chen and Hero, 2017), fast graph transform mining

(Drakopoulos et al., 2021). A versatile and space ef-

ficient data structure which can be used among others

for process storage and additionally supports persis-



tency is proposed in (Kontopoulos and Drakopoulos,

2014).

3 MULTILAYER GRAPHS

Informally speaking, the class of multilayer graphs

represents graphs with multiple edge labels. The

name comes from the fact when considering only a

single given label, then an ordinary graph termed a

layer results. Thus, a multilayer graph can be decom-

posed to various layers. The total activity in such a

graph comes from the following interacting factors:

• Activity in each separate layer. This happens at

the vertices and edges of the specific layer.

• Activity across layers. Typically this takes place

at the vertices belonging to at least two layers.

The above imply that any extension of Metcalfe’s

law (Metcalfe, 2013) to multilayer graphs should take

into account both these factors if the true graph value

is to be determined. Possibly this entails a compos-

ite power law which will be a function of the overall

average degree or the average degree of each layer.

Formally, the combinatorial structure of a multi-

layer graph is given by definition 1.

Definition 1 (Mutilayer graph). A multilayer graph is

the ordered quadruple of equation (1).

G
△
= (V,E,L,h) (1)

In equation (1) the tuple elements are the following:

• The vertex set V contains the vertices of the graph.

In this context vertices represent special states,

namely the beginning or the end of a process or

important intermediate steps.

• The edge set E ⊆ V ×V ×L contains the labeled

edges of the graph. They indicate dependencies

or the various connections between either process

states or entire processes.

4 PROPOSED METHODOLOGY

4.1 General Notes

In this section the proposed methodology based on

the class of multilayer graphs will be described. First

the way edge similarity is computed will be presented

followed by applications to paths and triangles, two of

the most common structural pattterns encountered in

process mining graphs. Then the edge signal to noise

ratio, a concept borrowed and adapted from the field

of information theory, will be also presented.

At this point it is important to highlight that the

theory developed here is based on the following un-

derlying fundamental assumption.

Assumption 1 (Alignment assumption). The tem-

plate and the variant process graphs are aligned.

This is not a trivial observation since alignment

is a major research topic in graph mining, ontology

discovery, and in related fields.

Moreover, emphasis should be placed that the

comparison metrics described in this section were

explicitly designed for evaluating distances between

the original process graph and the variant graph, ex-

plained respectively in definitions 2 and 3.

Definition 2 (Process graph). The process graph is

the template describing in detail the desired process

mining assumptions, approach, and operational char-

acteristics of an organization.

Definition 3 (Variant graph). The variant

graph is the process mining graph constructed

(semi)automatically from parsing process logs,

equipment sensors, personnel reports, and any other

technical means deployed in the field.

Since the original process graph and any variant

one deriving from it are aligned, each edge e in the

latter has a unique counterpart e0 in the former. Hence

it makes perfect sense to refer in the text to the coun-

terpart of e without any further clarification.

4.2 Label Noise

Since multilayer graphs allow multiple edges between

the same pair of vertices, for comparison purposes as

well as for notation simplification a group of labeled

edges can be replaced with a single edge with a set,

the edge set, containing the labels of the respective in-

dividual edges. In figure 1 is shown how various par-

allel labeled edges can be substituted with an equiva-

lent label set. This step is crucial for developing the

analytics presented in later sections.

Therefore, in a process graph for a given vertex

pair a group of connecting edges e1, . . . ,en with cor-

responding labels l1, . . . , ln L is replaced by a single

edge e with the edge set of equation (2):

L
△
= {l1, . . . , ln} (2)

The basic building block for assessing the simi-

larity between process patterns is edge similarity. In

order to evaluate the similarity between two edges,

one from the process graph and one from the template

graph, it suffices to compare the respective label sets.

To this end the asymmetric Tversky index will be em-

ployed. The latter evaluates the divergence between



Figure 1: Construction of the edge label set. Source: Authors.

two sets T and V where the former is considered to

be a template and the latter a variance thereof. Thus

these two sets are by construction not interchange-

able. This fundamental property is reflected in the

index mathematical definition (Tversky, 1977):

τ(T,V ;α0,β0)
△
=

|T ∩V |

|T ∪V |+α0 |T \V |+β0 |V \T |
(3)

In equation (3) the parameters α0 and β0 denote

respectively the weights for the number of elements

present in T but absent in V and vice versa. Although

their only real constraint is that they are non-negative,

frequently their sum is normalized to one such that

α0 and β0 become relative weights. This is further

illustratred by typically selecting their values such

that their ratio takes a predetermined and application-

dependent value γ0 as shown in equation (4):

α0

β0
= γ0 (4)

These changes to process graphs labels can be

thought of as noise similar to that present in digi-

tal electronics-based wired (DEBW) telecommunica-

tions systems. However, the properties of the label

noise are fundamenally different because of the fol-

lowing reasons:

• In contrast to DEBW systems where the primary

source of noise is continuous, any changes to edge

labels are discrete.

• In DEBW systems the noise is numerical in na-

ture, where in process graphs the noise results in

semantic errors.

• In DEBW systems noise comes from the elec-

tronics components located in the transmitter and

the receiver or from the propagation medium,

whereas changes to labels stem primarily from de-

sign or communication errors.

Thus, given the above it is clear that the addi-

tive white Gaussian noise (AWGN) model is not ap-

propriate in this context and by extension neither is

the Gaussian distribution a proper model for the label

noise.

The signal to noise ratio (SNR) is a fundamen-

tal concept in information theory which serves in

the development for metrics of signal distorion over

telecommunication channels.

Definition 4 (Edge SNR). For a single edge of the

variant process graph the SNR is defined as the loga-

rithm of the ratio of to as shown in equation (5):

s(e)
△
= ln

(

τ(L,L0)

1− τ(L,L0)

)

(5)

In equation (5) 0 ≤ τ(L,L0) ≤ 1

loga b =
logc a

logc b
, a,b,c 6= 0 (6)

The numerical behavior of s with respect to

τ(L,L0) in equation (5) is degrading as label noise

vanishes as shown in equation (7):

∂s

∂τ
=

1

τ(1− τ)
(7)

∂2s

∂τ2
=

2τ−1

τ2 (1− τ)2
(8)
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Figure 2: Label SNR vs Tversky index. Source: Authors.

4.3 Path Noise

Let p be a directed path in a process graph con-

sisting of n of labeled edges as shown in equation (9):

p
△
= [e1, . . . ,en] (9)

Definition 5 (Path SNR).

s(p)
△
=

n

∑n
k=1

1

s(ek)

△
= H (s(e1) , . . . ,s(en)) (10)



The harmonic mean of equation (10) has many

algorithmic and numerical properties which make it

ideal for this conference paper.

∇s(p)
△
=

[

∂s(p)

∂s(e1)

∂s(p)

∂s(e2)
. . .

∂s(p)

∂s(en)

]T

= n
[

s(e1)
2

. . . s(en)
2
]T

(11)

∇2s(p)
△
=

























∂2s(p)

∂s(e1)
2

. . .

∂2s(p)

∂s(e1)∂s(en)

∂2s(p)

∂s(e2)∂s(e1)
. . .

∂2s(p)

∂s(e2)∂s(sn)
...

. . .
...

∂2s(p)

∂s(en)∂s(e1)
. . .

∂2s(p)

∂s(en)
2

























= 2ndiag [s(e1) , . . . ,s(en)]

(12)

4.4 Triangle Noise

Triangles are the simplest yet most fundamental com-

munity blocks in graphs as well as the first closed

graph structural pattern. By extending the path SNR

metric to any given triangle yields equation (13):

s(T )
△
= H (s(e1) ,s(s2) ,s(s3)) (13)

5 RESULTS

In this section the similarity metrics presented earlier

are put to test. Synthetic datasets based on the follow-

ing real world Industry 4.0 requirements were con-

structed. Specifically, the benchmarks will be graph

datasets generated to have many of the process graph

properties reported in the recent process mining sci-

entific literature in works such as (Verenich et al.,

2019) and (Acampora et al., 2017). These properties

include:

• The number of vertices and edges as well as the

number of labels.

• The average graph diameter as well as the effec-

tive 70

• The expected number of triangles.

• The expected path length and the associated vari-

ance.

Table 2 contains the synopses of template graphs

used in this work. Each is a Kronecker graph com-

ing from a generator graph of lower size. In order to

create the variant graphs labels where either added or

removed at random from edges of the template graph

until an average SNR was met. For each template

graph and for each SNR a thousand instances were

created. The average values and the respective vari-

ances for each metric were recorded. Coding was

done in Python 3.8 with the numpy and the scipy

packages for analysis. Graphs were created and han-

dled with the NetworkX package.

From the dataset synopses presented in table 2 it

follows that they have an increasing level of complex-

ity, implying that more complex datasets pose a big-

ger challenge for analytics designers.

Figure 3: . Source: Authors.

6 CONCLUSIONS

This conference paper focuses on a process mining

model for Industry 4.0 based on the class of multi-

layer graphs as well as on associated analytics. This

class of graphs extends the ordinary ones by adding

edge labels, essentially semantics based on the under-

lying process logs. This is appealing since edges can

have properties depending on their role in the over-

all process and, moreover, edges denoting tasks ex-

ecuted in parallel along the same check points can

be combined to a single one with a label set. As

high degree task parallelism, typically due to multiple

sensor readings, is a very common characteristic of

an Industry 4.0 setting, edges with label sets of even

a moderate size arise frequently. In turn, these sets

can be the building blocks for a number of analytics

for the distance between the process graph, namely

the actual graph as mined from the various system



Table 2: Dataset properties.

Set 1

Generator vertices 5

Generator edges 7

Template vertices 3125

Template edges 16807

Label set size 16

Labels per edge 6.53

Diameter 11

80% effective 7

90% effective 8

Number of triangles 625

Set 2

Generator vertices 5

Generator edges 8

Template vertices 15625

Template edges 262144

Label set size 32

Labels per edge 11.67

Diameter 13

80% effective 9

90% effective 11

Number of triangles 33125

Set 3

Generator vertices 7

Generator edges 13

Template vertices 16807

Template edges 371293

Label set size 48

Labels per edge 28.44

Diameter 15

80% effective 11

90% effective 13

Number of triangles 67617

Set 4

Generator vertices 7

Generator edges 17

Template vertices 16807

Template edges 1419857

Label set size 64

Labels per edge 32.33

Diameter 16

80% effective 12

90% effective 15

Number of triangles 212881

and process logs, and the template graph, namely the

blueprint process graph as derived by system design-

ers. Analytics based on this distance metric include

path and vertex similarity metrics as well as a mod-

ified clustering coefficient. Experiments conducted

with synthetic datasets indicate that these analytics

can discover errors in multilayer graphs while at the

same time being algorithmically robust and numeri-

cally stable, given the large number of floating points

operations required to derive the final result.
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