
Approximate High Dimensional Graph Mining With Matrix Polar Factorization: A
Twitter Application

Georgios Drakopoulos
Ionian University

0000-0002-0975-1877

Eleanna Kafeza
Zayed University

0000-0001-9565-2375

Phivos Mylonas
Ionian University

0000-0002-6916-3129

Spyros Sioutas
University of Patras

sioutas@ceid.upatras.gr

Abstract—At the dawn of the Internet era graph analytics play
an important role in high- and low-level network policymaking
across a wide array of fields so diverse as transportation
network design, supply chain engineering and logistics, social
media analysis, and computer communication networks, to
name just a few. This can be attributed not only to the size
of the original graph but also to the nature of the problem
parameters. For instance, algorithmic solutions depend heavily
on the approximation criterion selection. Moreover, iterative or
heuristic solutions are often sought as it is a high dimensional
problem given the high number of vertices and edges involved
as well as their complex interaction. Replacing under con-
straints a directed graph with an undirected one having the
same vertex set is often sought in applications such as data
visualization, community structure discovery, and connection-
based vertex centrality metrics. Polar decomposition is a key
matrix factorization which represents a matrix as a product of
a symmetric positive (semi)definite factor and an orthogonal
one. The former can be an undirected approximation of the
original adjacency matrix. The proposed graph approximation
has been tested with three Twitter graphs with encouraging
results with respect to density, Fiedler number, and certain
vertex centrality metrics based on matrix power series. The
dataset was hosted in an online MongoDB instance.

Index Terms—polar factorization, graph approximation, alge-
braic graph mining, graph signal processing, MongoDB

1. Introduction

With the advent of the Internet era physical and virtual
networks have been proliferated while their importance in
almost every financial and technological sector has been
multiplied. Approximating large graphs is among the major
algorithmic cornerstones of a plethora of graph analytics.
Although directed graphs constitute a more general algorith-
mic or data flow model and certain problems in fields such
as electrical current computation, maximum profit routes in
currency exchange networks, computational neuroscience,
or capacity and flow prediction can be accurately modeled
only with them, in many engineering applications approxi-
mating the former with the latter is often necessary if mean-
ingful results are to obtained under tight time constraints.

Prominent examples include event discovery in social media
[1], high abstraction views [2], and graph resilience [3].

The above raise two questions, namely what is the
approximation criterion and how to actually compute an
undirected graph which is optimal under said criterion.
The answer to both questions is further complicated from
the inherent high graph dimensionality, which ultimately
translates to the large cardinality of the vertex set as well as
to the complexity of their interaction as cofidied in the edge
set or equivalently in the graph adjacency matrix. Empirical
evidence tends to corroborate that ignoring edge direction
results in a rather structurally distorted graph. The main
motivation behind this work is to address both questions as
well as the dimensionality issue through the matrix polar
factorization. An iterative scheme [4] can be the building
block for new approaches, whereas approximation goodness
can be assessed from graph properties.

The primary contribution of this conference paper is a
higher dimensionality methodology for approximating di-
rected unweighted graphs with undirected ones while pre-
serving up to a degree key structural properties such as den-
sity and community structure. The algorithmic cornerstone
for the this is the polar decomposition, which differentiates
this work from previous ones. The proposed scheme was
applied to three Twitter graphs obtained with topic sampling.

The structure of this conference paper follows. Section
2 overviews relevant scientific literature regarding graph
approximation, graph signal processing, and polar factor-
ization. In section 3 the main properties of the matrix polar
factorization are examined, whereas in section 4 its appli-
cation to directed graph approximation is described. The
results are summarized and interpreted in section 5 and this
work is concluded with section 6. Vectors are symbolized
with lowcase boldface and matrices with capital boldface.
Acronyms are explained the first time they are encountered
in the text. Finally, notation is summarized in table 1.

2. Previous Work

Graph signal processing has recently emerged as an
interdisciplinary field with numerous applications [5] [6].
Therein are defined operations on irregular domains [7]
including graph sampling [8], graph Laplace transforms
[9], vertex frequency operations [10], and dimensionality

978-1-xxxx-xxxx-x/21/$31.00 ©2021 IEEE

TABLE 1. NOTATION OF THIS CONFERENCE PAPER

Symbol Meaning First in
4
= Definition or equality by definition Eq. (2)
M[k] k-th iteration of an iterative process Eq. (20)
radius (M) Spectral radius of matrix M Sec. 3
sp (M) Spectrum of matrix M Eq. (6)
diag [d1 . . . dn] Diagonal matrix with d1 . . . dn Eq. (30)
‖M‖ Matrix or vector norm Eq. (5)
{s1, . . . , sn} Set with elements s1, . . . , sn Eq. (6)
|S| Set or sequence cardinality functional Eq. (6)
deg (u) Degree of vertex u Eq. (30)
〈p1 || p2〉 Kullback-Leibler divergence Eq. (35)

reduction with discrete cosine transform [11]. Graph neural
networks (GNNs) are based on message passing proto-
cols which contribute to the evolution of local information
stored in vertices [12] and thus rely heavily on topological
properties [13] [14]. Techniques in the face of topological
uncertainties are proposed in [15].

Matrix polar factorization [4] has been proposed as a
method on its own right [16] and as an alternative to singular
value decomposition (SVD) [17], which is been frequntly
used in methods assessing vertex importance as a hub or as
an authority as for instance in the tensor harmonic centrality
[18], the Gel-point centrality [19], and the HITS algorithm
in information retrieval (IR) [20]. The polar decomposition
is also related to the Cholesky factorization [21]. Incomplete
forms of the latter are the computational kenrels for an entire
class of machine learning (ML) methods [22] [23]. Also it is
the building block for symmetric matrix interpolation [24].
A distributed implementation is described in [25].

Approximation is a major challenge in graph mining and
various definitions can be found in the literature depending
on the task at hand such as flow reliability [26] and structural
resilience [27]. Proposed frameworks for replacing the entire
combinatorial structure range from Fourier transform based
methods [28], Markov chain approximation based on graph
spectra [29], low cost subgraphs of bidirected Steiner net-
works [30], and abstractions based on neighborhood systems
[2]. Another class of methodologies focuses on estimating
graph properties such as diameter and eccentricity [31] and
vertex set cardinality [32]. A space efficient data structure
supporting persistency in Scala is discussed in [33].

3. Polar Factorization

In this section the definition and the properties of the
polar factorization are described and intuition about them is
given. In the scalar case the polar factorization is tantamount
to casting a complex number z to the form of equation (1):

z = x+ iy = reiθ = r(cos θ + i sin θ) (1)

In (1) the magnitude r and the angle θ are given from
non-linear transforms as shown in equation (2). Since the
inversion of both sine and cosine yields each two possible
solutions, their intersection gives the correct angle.

r
4
=
√
x2 + y2

θ
4
= arcsin

(y
r

)
∩ arccos

(x
r

)
(2)

Definition 1 shows the fundamental properties of the
right polar factorization. There is also an alternative form
known as the left polar factorization, but it is less common
that the form used and explained in this work.
Definition 1 (Polar factorization). The polar factorization

of A ∈ Rn×n is the product of a symmetric positive
(semi)definite matrix P with an orthogonal matrix Q:

A = QP (3)

It should be noted that A−1 exists if and only if P is
positive definite. The orthogonality of Q implies (4):

QTQ = QQT = I (4)

Geometrically this means that Q is a product of rotations
and reflections. As a result Q maintains the length of any
vector is multiplied with and hence it is invariant under the
Euclidean norm. Also, since Q is of full rank by definition
any zero eigenvalues of A will be part of the spectrum of P.
Equation (4) also directly implies the fundamental identity
(5) for any orthogonal matrix U and any vector s:

‖Us‖2
4
=
√

(sTUT)Us =
√
sTUTUs =

√
sT s

4
= ‖s‖2 (5)

Equation (5) means that the length measured in the
Euclidean norm of any vector s remains invariant after
the multuplication with any orthogonal matrix U or by
induction with any sequence of orthogonal matrices for that
matter. This is paramout in the transformation of linear
systems to equivalent ones which are easier solved as for
instance in the case of linear least squares with QR [34].

In the remaining of this conference paper the spectra of
A and P will be respectively denoted as sp (A) and sp (P)
as shown in equation (6). Both sets consist of n elements
including the algebraic multiplicity of each eigenvalue.

sp (A)
4
= {λ1, . . . , λn}, |sp (A)| = n

sp (P)
4
= {µ1, . . . , µn}, |sp (P)| = n (6)

By definition sp (P) contains real and nonnegative val-
ues. Therefore without loss of generality it holds that:

µ1 > µ2 ≥ . . . ≥ µn ≥ 0 (7)

Since A is at least of rank one, as it is a non-zero matrix,
so is P since Q is of full rank. Thus, it always holds that
µ1 > 0 and λ1 6= 0. The corresponding eigenvectors of A
and P are denoted by gk and uk where 1 ≤ k ≤ n.

Some of the major properties of the polar factoriza-
tion follow. They establish upper and lower approximation
bounds as well as properties of spectrum sp (P).
Property 1. For any orthogonal matrix U ∈ Rn×n and for

any invariant under orthogonal transforms norm ‖·‖ such
as the Euclidean ‖·‖2 and the Frobenius ‖·‖F hold:

‖A−Q‖ ≤ ‖A−U‖ ≤ ‖A+Q‖ ⇔
‖P− I‖ ≤ ‖A−U‖ ≤ ‖P+ I‖ (8)

Property 1 means that under ‖·‖ the closest orthogonal
matrix to A is Q and the furthest is −Q. This establishes the
arguments for the bounds for a broad class of matrix norms.
In certain applications the actual bounds, namely the values
of the norms, are also of interest. The latter depend heavily
on the norm utilized. In the general case this is not always
straightforward as the computation of certain norms may
well be an NP-hard problem. However, in certain special
cases analytical bounds do exist. In the case of the Frobenius
norm ‖·‖F the lower and upper bounds can be found as
follows. A formula for the lower bound is given in (9):

‖P− I‖2F
4
=tr

(
(P− I)

T
(P− I)

)
= tr

(
PTP

)
− 2 tr (P) + tr (I)

= ‖P‖2F − 2 tr (P) + n

= ‖A‖2F − 2

n∑
k=1

µk + n (9)

Along a similar line of reasoning the upper bound of
property 1 for the Frobenius norm is computed as in (10):

‖P+ I‖2F = ‖A‖2F + 2

n∑
k=1

µk + n

≤ ‖A‖2F + n(1 + 2µ1) (10)

The lower and upper bounds in the case of the Euclidean
‖·‖2 can be computed as follows. Both P±I are symmetric
and hence with real spectrum. Thus, their respective maxi-
mum singular values σmax equal radius (P± I) and so:

‖P+ I‖2 = µ1 + 1

‖P− I‖2 = max
1≤k≤n

|µk − 1| (11)

Recall that for any M ∈ Rm×n the Frobenius norm is
defined as the square root of the sum of the squared matrix
entries as shown in equation (12). One of its major advan-
tages is that it can be immediately and naturally extended
to tensors of literally any order, making it thus quite useful
among others in advanced social network analysis [35] or in
adaptive tensor-based non-linear system identification [36].

‖M‖F
4
=
√

tr (MTM) =

(
m∑
i=1

n∑
j=1

M[i, j]
2

) 1
2

(12)

Observe that the Frobenius norm is invariant under linear
orthogonal transforms as for any square matrices M and U
where the latter is orthogonal equation (13) yields:

‖UM‖F
4
=
√

tr (MTUTUM) =
√

tr (MTM)
4
= ‖M‖F

(13)
Intuitively the Frobenius norm is a measure of the total

energy of the elements of a matrix. However, in the con-
text of other applications this norm may have additional
interpretations as well. For instance from a graph mining
perspective the Frobenius norm of an adjacency matrix is
a measure of the graph density as it shows the vertex set

cardinality. Frobenius and Euclidean (or `2) norms have
the additional advantage of being differentiable, allowing
therefore gradient-based optimization techniques. In contrast
the Chebyshev (or `∞) and Manhattan (or `1) norms are not.

Another impoartant property relates P with ATA.

Property 2. P is the unique Cholesky factor of ATA.

Proof: Applying the right polar factorization to both
matrices A and AT the result follows immediately consid-
ering also he uniqueness of the Cholesky factorization [23].

ATA = PTQTQP = PTP = P2 (14)

As a consequence of (14) the factor P can be computed
from readily available algorithms for factoring ATA. This
may be desirable when one of more of the following hold:

• Matrix A is large and sparse [37], as is frequently
the case with social network adjacency matrices.

• Matrices A and AT can be computed from their ef-
fects on the output, leading to martrix free methods.

• Efficient kernels for the incomplete Cholesky factor-
ization of ATA are available [23] [38].

However, working directly with ATA leads to a more
difficult problem from a numerical viewpoint as it has
roughly the double condition number than A, meaning
that less digits of the result are to be considered as accu-
rate. Therefore, when numerical accuracy matters, especially
about the spectrum of P, other strategies should be explored.

Matrix ATA appears in applications such as the normal
equations in least squares fitting [39], regularization [40]
and inverse problems [41], or in ML algorithms which
are robust against noisy or even poisoned training datasets
[42]. Moreover, in graph mining this matrix appears often
in higher order vertex centrality metrics which take into
consideration graph connectivity patterns. At the very core
of these metrics there are linear algebraic kernels of the
respective adjacency matrix. For instance the eigenvectors of
ATA play a central role in some graph spectral partitioning
algorithms [43]. Also a broad class of centrality metrics
relies on a matrix power series of the form of (15):

W =

+∞∑
k=0

2k∑
j=1

γk,j
[
A,AT

]
k,j

= g
(
A,AT ; {γk,j}

)
(15)

In (15)
[
A,AT

]
k,j

denotes the j-th element of the set of
products containing k terms of either A or AT . For instance
when k equals two the corresponding set is that of (16):

π
[
A,AT

] 4
=
{
A2,AAT ,ATA,

(
AT
)2}

(16)

Evaluating the difference between such metrics applied
on the original and the new adjacency matrix leads directly
to a way to assess approximation goodness.

The spectra of A and P are connected in property 3.

Property 3. A and P have the same determinant up to sign.

Proof: Applying the polar factorization yields:

det
(
P2
)
= det

(
ATA

)
⇔

det (P)
2
= det

(
AT
)
det (A) ⇒

n∏
k=1

µ2
k =

n∏
k=1

λ2k ⇒
n∏
k=1

µk =

n∏
k=1

|λk|

Another way is to directly compute the determinant of
the two sides of the polar factorization as shown below:

QTQ = I ⇒ det (Q)
2
= 1

det (A) = det (QP) = det (Q) det (P)± det (P)(17)

The preceding property is a much weaker condition to
A and P representing two isospectral graphs. This can be
a termination criterion for iterative schemes.
Property 4. Matrices A and P have the same number of zero

eigenvalues. Also, their respective nullspaces coincide.

Proof: Let gk be an eigenvector of A corresponding
to a zero eigenvalue. Then by definition it holds that:

Agk = QPgk = 0 (18)

Since Q is by definition invertible, it follows that gk belongs
to the nullspace of P. Conversely, for every eigenvector uk
for which Puk = 0, it holds also that QPuk = 0.

4. Proposed Methodology

In this section the basic concepts underlying the pro-
posed graph approximation method will be explained. The
graph adjacency matrix is fundamental as the approxima-
tion process operates on this matrix rather than the on the
combinatorial graph structure. This allows for viewing both
global and local connectivity patterns and creating a balance
between them as needed, perhaps even adaptively as the ap-
proximation process progresses. This is especially appealing
when multiple graph abstraction levels are shought.

The proposed methodology differs from most existing
approximation techniques in the following directions:

• Directed graphs are algebraically approximated in-
stead of in a combinatorial fashion.

• It relies on high dimensional operations codified in
the graph adjacency matrix.

Definition 2 (Graph adjacency matrix). The adjacency
matrix A of an unweighted graph G = (V,E), whether
directed or undirected, is elementwise defined as in (19).

A[i, j]
4
=

{
1, (i, j) ∈ E
0, (i, j) 6∈ E

∈ {0, 1}|V |×|V | (19)

Definition 3 (Graph spectrum). The eigenvalues of the
respective adjacency matrix is the graph spectrum.

Graph spectra sp (A) have the following properties [35]:

• There is one large eigenvalue followed by a second
one, while the others have lower magnitudes accord-
ing to a power law decay. Thus there is a heavy tail
compared to the Gaussian or the Poisson kernels.

• Smaller eigenvalues tend to alternate in sign around
zero, canceling thus each other. Thus tr (A) and a
number of functions dependent on sp (A) can be
approximated using only the few largest ones.

• With the exception of the few larger ones, the eigen-
values tend to be clustered. This can be contribute
considerably to the acceleration of iterative methods
such as the proposed one or the conjugate gradient.

• The scree plot of the eigenvalues, namely the plot
of their (groupped) frequency vs their rank, also
has a power law decay. This facilitates spectrum
approximation as only a few ones are important.

By definition the adjacency matrix of an undirected
graph M is symmetric and so sp (M) is real. This is crucial
in a graph mining context as sp (M) is linked to properties
such as community structure through the Fiedler number
and expansion potential through the Cheeger number.

At the core of the proposed methodology is the iterative
scheme for finding the unitary factor Q shown in (20). As
stated in [4], it represents coupled Newton methods for the
square roots of one starting from the singular values of A.

Q[k+1] =
1

2

(
Q[k] +Q[k]−T

)
, Q[0] = A (20)

As an early Q[k] can be close to singular, the Moore-
Penrose inverse can replace the second term of the right
hand side of (20). The latter is a working solution for many
applications and it is acceptable since Q is invertible. The
iteration (20) can be accelerated by multiplying Q[k] by a
scalar γ[k]. A popular choice for γ[k] is given in [4]. It is
shown in (21) and it is a tight estimation of ‖Q‖2.

γ[k] =

(∥∥Q[k]
∥∥
1

∥∥Q[k]
∥∥
∞∥∥Q[k]

∥∥
1

∥∥Q[k]
∥∥
∞

)1
4

(21)

Another scheme for selecting γ[k] is shown in (22). It
moves along a similar line of reasoning with (21).

γ[k] =

∥∥∥Q[k]−1

∥∥∥
F∥∥Q[k]

∥∥
F

1
2

(22)

Regardless of the particular selection of the acceleration
scalar, the general iteration form is now that of (23) which
includes the previous one as a special case. As the iteration
progresses the two terms of (23) converge to each other as
a direct consequence of the orthogonalty of factor Q.

Q[k+1] =
1

2

(
γ[k]Q[k] +

1

γ[k]
Q[k]−T

)
(23)

The iteration terminates when the relative error of (24)
drops below a prespecified threshold τ0. This criterion also
relies heavily on the orthogonality of polar factor Q.∥∥∥Q[k] −Q[k]−T

∥∥∥
F
/
∥∥∥Q[k]

∥∥∥
F
≤ τ0 (24)

In algorithm 1 the proposed algorithm is described.
Notice that the inversion process is not specified. Therefore,
it can be the Newton inversion algorithm 2, the power
method, or any other suitable scheme for that matter such
as the Moore-Penrose inverse, the Drazin inverse, and the
pseudoinverse. Once Q is obtained, then P can be found.

Algorithm 1 Polar factorization [4] [17] - Outer iteration
Require: Matrix A and termination criterion τ0
Ensure: Polar factorization A = QP

1: set Q[0] ← A
2: repeat
3: compute γ[k] as in (21) or (22)
4: obtain Q[k]−1 from algorithm 2
5: compute Q[k+1] as in (23)
6: until τ0 is true
7: return

The Newton method of algorithm 2 is an efficient
method for computing the inverse M−1 of any invertible
matrix M. Moreover, when M is not invertible, then it
converges to the Moore-Penrose inverse [44], which may be
useful in the early outer iterations of algorithm 1 when Q[k]

may be close to singular. The starting matrix in each exe-
cution of algorithm 2 is Q[k]. The inner inversion iteration
terminates when the absolute error drops under threshold τ1.∥∥∥Q[k]V[j] − In

∥∥∥
F
≤ τ1 (25)

Algorithm 2 Newton matrix inversion [45] - Inner iteration

Require: Matrix Q[k] and termination criterion τ1
Ensure: Inverse Q[k]−1 or Moore-Penrose inverse

1: set V[0] ← Q[k]

2: repeat
3: set V[j+1] ← 2Q[j] −V[j]Q[k]V[j]

4: until τ1 is true
5: return V[j] as Q[k]−1

Given the above algorithm 1 in conjunction with 2 essen-
tially constitute a pair of nested loops. In the experiments of
section 5 the iterations for each loop are reported separately.

5. Results

5.1. Data Synopsis

The proposed methodology was applied to three bench-
mark social graphs constructed with a topic sampling from
Twitter [18] which was selected for the following reasons:

• The follow relationship is inherently directed, which
forms the basis of many Twitter influence metrics.

• Twitter graphs, and the majority of social graphs for
that matter, have a recursive community structure.

• Twitter API provides access to a vast number of data
allowing their study as well as experiments on them.

The three benchmark graphs were created by collecting
tweets from the US Twitter using the hashtags #Julia, #Win-
dows11, and #BlackList for a period of two months, namely
during June and July of 2021. The follow relationships were
codified in directed unweighted social adjacency matrices.
The structural and functional properties of the three Twitter
benchmark social graphs are shown in table 2.

Observe that except from the tweet polarity profile the
graphs have similar characteristics, facilitating conclusion
drawing. Each topic was selected on the following grounds:

• Julia is a computing language for data intensive
computations. Its official conference JuliaCon1 2021
in July attracted a high number of participations.
It is a mostly neutral and positive tweets since
they are generated by closely interlinked community
members or enthusiasts.

• The release of Windows 11 scheduled for Octo-
ber 20212 has already created considerable dispute
among its user base because of features such as
UEFI secure boot and memory requirements. This
can explain the large number of neutral tweets as
well as the loose interconnection.

• The Blacklist3 is a series known for the non-binary
moral code of the characters and plot twists. The
final season is expected in October 2021 among
rampant fanbase arguments. The latter may be the
cause of the emotional polarization and the high
number of replies and mentions.

The tri-state, namely positive, negative, or neutral, emo-
tional polarity of each tweet was derived from Python
module textblob. Specifically, said polarity was calculated
based on the majority of the polarity of their words.

The abovementioned graphs we stored in a free on-
line MongoDB instance in the Atlas cloud4, the mainstay
of the MongoDB digital ecosystem offering Database-as-
a-Service. Specifically Atlas offers among others visual
dataset overview, access to a number of analytics as well as
to monitoring tools, and connections to the stored collections
based on the MongoDB shell. The proposed methodology
was coded in Python 3.9 with the help of numpy module.

In table 3 the results from the various evaluation metrics
of the proposed technique are shown and are marked with
P. These metrics are described in detail in the remainder of
this section. Moreover, the corresponding results of approx-
imating the original graph by ignoring edge direction are
also shown for comparison purposes marked with F.

From the entries of table 3 the following can be said:

• The scaled scheme of (21) terminates quicker sys-
tematically, even by a few iterations. However, in
large scale applications even that may well be a sig-
nificant performance advantage. The most likely ex-

1. https://juliacon.org
2. https://blogs.windows.com/windowsexperience/2021/08/31/windows-

11-available-on-october-5/
3. https://www.imdb.com/title/tt2741602
4. https://www.mongodb.com/cloud/atlas

TABLE 2. TWITTER SOCIAL GRAPH PROPERTIES.

Graph #Julia #Win11 #BlackList Graph #Julia #Win11 #BlackList
Property Value Value Value Tweet property Value Value Value
Vertices 143019 152231 122535 Polarity% (pos/neg) 45.11/2.67 27.25/29.13 45.67/52.77
Edges 9232117 8536771 8425224 Length (mean/std) 167.33/45.12 145.17/37.83 154.86/41.84
Mean in-degree 66.21 61.89 72.43 Distinct hashtags 1182 1263 1314
Mean out-degree 71.36 63.18 76.08 Hashtags (mean/std) 5.13/0.89 8.42/1.17 7.18/1.01
Triangles 2458114 2282375 2946268 Replies (mean/std) 14.22/5.17 11.22/3.76 19.46/6.22
Squares 1034216 100736 117874 Mentions (mean/std) 17.63/4.38 13.38/3.29 15.49/5.34
Diameter 17 21 16 Density (linear/log) 64.55/1.35 56.08/1.38 68.76/1.36

TABLE 3. RESULTS FOR THE TWITTER GRAPHS.

Metric Def. #Julia #Win11 #BlackList
Iterations (basic) Eq. (20) 15 16 18
Iterations (`2) Eq. (21) 10 11 12
Iterations (Frob.) Eq. (22) 10 12 13
Density error P Eq. (28) 0.1531 0.1835 0.2346
Density error F 0.3103 0.3562 0.4737
Logdensity error P 0.1833 0.2093 0.2274
Logdensity error F 0.2145 0.2566 0.2736
Fiedler error P Eq. (31) 0.1744 0.1902 0.2016
Fiedler error F 0.1953 0.2353 0.2687
Hub Odd P Eq. (35) 4.3418 5.0402 7.7519
Hub Odd F 6.8117 8.5562 11.8516
Auth. Odd P 4.1154 5.4572 8.4776
Auth. Odd F 6.2442 9.1374 12.0033
Hub Mercator P 5.7216 5.0333 7.3653
Hub Mercator F 6.5574 7.6470 10.4988
Auth. Mercator P 5.254 6.2221 7.9832
Auth. Mercator F 6.5519 7.4266 11.3321

planation is that this scheme often generates matches
closer to the true orthogonal factor.

• Additionally the scaled scheme of (22) is a close
second to the abovementioned one. Therefore, it may
be advisable to seek a scaling scheme in order to ac-
celerate the convergence of (20) as in the Richardson
method. This may be a line search, a heuristic, a
prediction filter, or an adaptive one.

• Based on the total number of outer iterations, the
convergence speed of algorithm 1 seems to depend
at least in part on the structural complexity of the ap-
proximated graph. More complex vertex interaction
patterns take longer to be discovered and encoded
in the polar factors in addition to their own.

• For the #Blacklist graph in spite of the different
number of iterations there is basic pattern of an
initial large error followed by a quick drop in all
three variations of the iterative scheme as seen in
figure 2. This can be attributed to the quadratic
convergence rate of the Newton method.

• Ignoring edge direction introduces significant spuri-
ous graph structure in the form of additional edges.
In turn, this translates to distorted community struc-
ture and density. On the contrary, the proposed
methodology may delete some directed edges to
preserve a structural balance up to a point.

• Vertex centrality, which is a global property, is also
heavily influenced by this addition of spurious edges
and it changes considerably. On the other hand, the

L2

L1

Figure 1. Removing an edge from a directed cycle.

proposed technique respects centrality up to a certain
degree resulting in a much better approximation.

In order to understand the distortion caused by obliter-
ating edge direction consider the case of a directed graph
bridge. Almost by definition is a weak link, especially if
there is no way to return to one of the two partitions it
connects. Removing the direction information results in a
much reinforced link which furthermore may not even have
a meaning in the underlying domain. Thus, in such a case
not only graph structure but also semantics are strongly
violated. A similar scenario is that of a directed cycle
which may represent a set of interdependent restrictions
which are essentially lifted in the resulting undirected graph.
The proposed technique may break this cycle by removing
one or more of its edges, essentially respecting at least
the condition that the cycle cannot be traversed from the
proper direction. Of course the cycle remains inaccessible
from the other side, but the original restriction is still in
place. However, if said cycle is part of the critical graph
paths as for instance in the scenario of figure 1, then both
the proposed and the baseline approximation methodologies
severely undermine the graph overall structural integrity.

Finally, regarding the parameters used in the experiments
of this work thresholds τ1, τ2, and τ3 were set to 5%. Notice
that P cannot be readily used since its entries do not in the
general case are not either 0 or 1. In this work a threshold
of 0.5 is used to determine the final values. Also let AF

denote the matrix obtained from removing edge direction
information in the original adjacency graph. The Kullback-
Leibler logarithm base b in equation (35) is two.

5.2. Number Of Iterations

In figure 2 is shown the graph reconstruction error E[k]
r

of (26) in terms of the Frobenius norm vs the iterations

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Iteration index

R
ec

on
st

ru
ct

io
n

er
ro

r
Reconstruction error vs iteration index, t0 = 0.05, #Blacklist

bas

frob

l2

Figure 2. Number of outer iterations for the #Blacklist graph.

is shown. It represents the root mean square (rms) error
between the original adjacency matrix and its factored form.

E[k]
r

4
=

1

n

∥∥∥A−Q[k]P[k]
∥∥∥
F

(26)

Because of the square root the Frobenius norm is divided
by n instead of n2, namely the total number of elements
of A. The interpretation of (26) is that it represents the
residual energy between the original adjacency matrix and
its approximation during the k-th iteration of algorithm 1.

5.3. Sparsity

In order to evaluate the performance of the approxima-
tion process a number of benchmarks will be used. One
of the most indicative is the pair of density and logdensity
which reveal up to an extent the graph expension potential as
graphs with low both values can be easily enlarged through
strategic edge addition. Additionally, density is frequently a
good estimate of the mean in- and out-degrees.
Definition 4 (Density and logdensity). The density ρ0 of

a graph is defined as the ratio of the number of edges
to the number of vertices. Similarly the logdensity ρ′0 is
the logarithm, in any base, of the number of edges to the
logarithm in the same base of the number of vertices.

ρ0
4
=
|E|
|V |

and ρ′0
4
=

log |E|
log |V |

(27)

One approximation evaluation metric is the relative error
between the (log)density of the original adjacency matrix
and its symmetric polar factor as shown in (28). Similar
relative errors can be defined for the (log)density of the
graph resulting from the baseline methodology.∣∣∣∣ρ0 − ρ0,pρ0

∣∣∣∣ and
∣∣∣∣ρ′0 − ρ′0,pρ′0

∣∣∣∣ (28)

Two alternative measures of graph density, namely the
(log)completeness, are described in definition 5.

Definition 5 (Completeness and logcompleteness). The
(log)completeness of a directed graph is the ratio of (the
logarithm of) its number of edges to the (logarithm of
the) number of edges of the full graph with the same
number of vertices as shown in equation (29).

σ0
4
=

|E|
|V |(|V | − 1)

≈ |E|
|V |2

=
ρ0
|V |

σ′0
4
=

log |E|
log (|V |(|V | − 1))

≈ log |E|
2 log |V |

=
ρ′0
2

(29)

From the connection between equations (28) and (29) it
follows that only the former needs to be computed.

5.4. Fiedler Value

A scalar associated with the community structure of each
graph is the Fiedler value λ∗ which is defined as the smallest
non-zero eigenvalue of the graph Laplacian. The latter is an
important matrix describing normalized second order graph
connectivity and its form is given in definition 6.
Definition 6 (Graph Laplacian matrix). The Laplacian

matrix L ∈ Rn×n of a graph is defined as in (30).

L
4
= I− diag [deg (v1) , . . . ,deg (vn)]

−1
A (30)

The Laplacian spectrum has the following properties:

• The smallest eigenvalue always equals zero. Each
non-empty graph has at least one component.

• Each additional zero eigenvalue denotes a connected
component, signifying a disconnected graph.

• The smallest non-zero eigenvalue λ∗ is a measure
of the overall graph partitioning potential.

• The eigenexpansion of the graph Laplacian matrix
is defined as the Laplace transform of the graph.

Once the polar factor P is available, the relative error
between the Fiedler value of the original adjacency matrix
λ∗ and the corresponding of said factor λ∗p is given in (31):∣∣∣∣λ∗ − λ∗pλ∗

∣∣∣∣ (31)

Given graph Laplacian L how can its Fiedler value be
efficiently computed? One possible answer is the inverse
power method, a matrix free iterative method shown in 3. It
works by iteratively estimating the eigenvector correspond-
ing to the smallest eigenvalue. Then the Rayleigh quotient is
used to obtain an estimate of the corresponding eigenvalue.
A rank one downdate is subsequently used to exclude the
estimated eigenvalue from the spectral decomposition of L.

In order to accelerate convergence it is possible to select
a small number of starting points and operate on the until
one of them starts converging. No matrix inversions are
necessary and they are replaced by linear system solvers.

Since the Laplacian of the polar factor is symmetric, the
respective right and left eigenvectors coincide. On the other
hand, the Laplacian of the original adjacency matrix is non-
symmetric and hence the right and left eigenvectors need

Algorithm 3 Inverse power method
Require: Matrix M and termination criterion τ2
Ensure: Return the smallest eigenvalue and its eigenvector

select random starting point g[0]

set g[0] ← g[0]/
∥∥g[0]

∥∥
1

repeat
set g[k+1] ← M−1g[k]

set g[k+1] ← g[k+1]/
∥∥g[k+1]

∥∥
1

until τ2 is true
set λ ←

(
g[k+1]TM−1g[k+1]

)
/
(
g[k+1]Tg[k+1]

)
return λ, g[k+1]

to be separately computed as they are different from each
other. Hence a connected graph, like the benchmark Twitter
graphs, requires six inverse matrix iterations in total.

5.5. Vertex Centrality Distribution

In order to evaluate the effect of replacing the original
directed adjacency matrix A with the respective undirected
polar factor P on the certain centality metrics two common
matrix power series based methods will be used here.

In the case of the odd power centrality or Estrada
centrality the power series of equation (32) is formed:

We
4
=

+∞∑
k=0

1

2k + 1
A2k+1 = sinhA (32)

The rationale behind selecting only odd powers of the
adjacency matrix is that closed paths of even length are more
probable to correspond to oscillations of length two. On the
other hand, closed paths of odd length are much less likely
to. Once We is computed, the i-th diagonal element of its
inverse is the centrality of the i-th vertex.

The Mercator power series is among the few vertex
centality metrics which have negative terms. It is inspired
from the Mercator projection commonly used in topological
transforms as well as in real world maps. In a graph mining
context the Mercator projection is useful since it preserves
local properties including connectivity patterns.

Wm
4
=

+∞∑
k=1

(−1)k+1

k
Ak 4

= ln (In +A) (33)

Similarly to (32) the centrality of the i-th vertex is the
i-th diagonal element of the inverse of matrix Wm.

Since in a directed graph a vertex has a distinct role as
a hub and an authority which is respectively codified by the
adjacency matrix and its transpose, the above metrics should
be computed for both A and AT . On the contrary, for P
and AF these metrics need only be computed once.

One way to compare the centrality values of (32) or
(33) when computed for A, AT , P, and AF is to create
the distribution of (34) for each possible case. For instance,
for the Estrada metric and A the distribution is:

pi
4
=

W−1
e [i, i]∑n

j=1 W
−1
e [j, j]

=
W−1

e [i, i]

tr
(
W−1

e

) (34)

When the distributions to be compared, they can be
compared with the Kullback-Leibler divergence of (35):

〈p || q〉 4
=
∑
i

pi logb

(
pi
qi

)
(35)

In (35) the cost of replacing the probability mass func-
tion p1 with p2 is computed. The sum therein ranges over
the support of p1 with i denoting the i-th event, while the
logarithm base b determines the divergence units.

6. Conclusions

This conference paper focuses on approximating large
directed graphs with directed ones. Specifically, the original
adjacency matrix is replaced by the symmetric and positive
(semi)definite factor of its polar factorization. To this end
three variations of an existing iterative scheme are used.
Intuituion is provided by interpreting the linear algebraic
properties of polar factorization in a graph signal processing
context. The convergence in terms of iterations as well as the
goodness of approximation based on graph density, Fiedler
value and primary eigenvector, and power series vertex
centrality using as benchmarks three directed Twitter graphs
obtained with topic sampling. The proposed approximation
can be applied to higher dimensionality problems such as
community structure discovery and friend recommendation.

This work can be extended in a number of ways. First,
approximation techniques for graph multiresolution abstrac-
tion scenaria can be developed. Additionally, graph approx-
imation criteria explicity taking into consideration graph
density or other structural or even functional properties
can be designed. This can be extended to techniques for
multiple and perhaps competing criteria in order to achieve
a balanced result as the final graph. From a computational
perspective higher order iterative methods for the orthogonal
factor can achieve the same result with fewer iterations.

Acknowledgment

This work was supported by the Research Initiative Fund
(RIF) Grant R18087 by Zayed University, UAE.

References

[1] M. Shao, J. Li, F. Chen, H. Huang, S. Zhang, and X. Chen, “An
efficient approach to event detection and forecasting in dynamic
multivariate social media networks,” in WWW, 2017, pp. 1631–1639.

[2] E. Atik, A. El Fattah, A. Nawar, and M. Atef, “Rough approxima-
tion models via graphs based on neighborhood systems,” Granular
computing, vol. 6, no. 4, pp. 1025–1035, 2021.

[3] N. Entezari, S. A. Al-Sayouri, A. Darvishzadeh, and E. E. Papalex-
akis, “All you need is low (rank) defending against adversarial attacks
on graphs,” in The 13th International Conference on Web Search and
Data Mining, 2020, pp. 169–177.

[4] N. J. Higham, “Computing polar decompositon with applications,” J.
Sci. Stat. Comput., vol. 7, no. 4, pp. 1160–1174, 1986.

[5] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Van-
dergheynst, “Graph signal processing: Overview, challenges, and
applications,” Proceedings of the IEEE, vol. 106, no. 5, pp. 808–828,
2018.

[6] X. Dong, D. Thanou, L. Toni, M. Bronstein, and P. Frossard, “Graph
signal processing for machine learning: A review and new perspec-
tives,” IEEE Signal processing magazine, vol. 37, no. 6, pp. 117–127,
2020.

[7] V. N. Ekambaram, G. C. Fanti, B. Ayazifar, and K. Ramchandran,
“Multiresolution graph signal processing via circulant structures,” in
DSP/SPE. IEEE, 2013, pp. 112–117.

[8] Y. Bai, F. Wang, G. Cheung, Y. Nakatsukasa, and W. Gao, “Fast
graph sampling set selection using Gershgorin disc alignment,” IEEE
Transactions on signal processing, vol. 68, pp. 2419–2434, 2020.

[9] L. Chen, Y. Xie, Z. Zheng, H. Zheng, and J. Xie, “Friend recom-
mendation based on multi-social graph convolutional network,” IEEE
Access, vol. 8, pp. 43 618–43 629, 2020.

[10] L. Stanković, D. Mandic, M. Daković, B. Scalzo, M. Brajović,
E. Sejdić, and A. G. Constantinides, “Vertex-frequency graph sig-
nal processing: A comprehensive review,” Digital signal processing,
2020.

[11] G. Drakopoulos, E. Kafeza, P. Mylonas, and L. Iliadis, “Transform-
based graph topology similarity metrics,” NCAA, vol. 1, no. 1, 2021.

[12] G. Drakopoulos, I. Giannoukou, P. Mylonas, and S. Sioutas, “A
graph neural network for assessing the affective coherence of Twitter
graphs,” in IEEE Big Data. IEEE, 2020, pp. 3618–3627.

[13] W. Cong, R. Forsati, M. Kandemir, and M. Mahdavi, “Minimal
variance sampling with provable guarantees for fast training of graph
neural networks,” in KDD, 2020, pp. 1393–1403.

[14] Z. Guo, L. Tang, T. Guo, K. Yu, M. Alazab, and A. Shalaginov, “Deep
graph neural network-based spammer detection under the perspective
of heterogeneous cyberspace,” Future generation computer systems,
vol. 117, pp. 205–218, 2021.

[15] E. Ceci and S. Barbarossa, “Graph signal processing in the presence
of topology uncertainties,” IEEE Transactions on signal processing,
vol. 68, pp. 1558–1573, 2020.

[16] Y. Brenier, “Polar factorization and monotone rearrangement of
vector-valued functions,” Communications on pure and applied math-
ematics, vol. 44, no. 4, pp. 375–417, 1991.

[17] N. J. Higham and R. S. Schreiber, “Fast polar decomposition of an
arbitrary matrix,” J. Sci. Stat. Comput., vol. 11, no. 4, pp. 648–655,
1990.

[18] G. Drakopoulos, “Tensor fusion of social structural and functional
analytics over Neo4j,” in IISA. IEEE, 2016.

[19] H. Tong, B. A. Prakash, T. Eliassi-Rad, M. Faloutsos, and C. Falout-
sos, “Gelling, and melting, large graphs by edge manipulation,” in
CIKM, 2012, pp. 245–254.

[20] J. Fang and F. Y. Partovi, “A hits-based model for facility location
decision,” Expert Systems with Applications, vol. 159, 2020.

[21] X. Yu, N. Lei, X. Zheng, and X. Gu, “Surface parameterization
based on polar factorization,” Journal of computational and applied
mathematics, vol. 329, pp. 24–36, 2018.

[22] M. T. Jones and P. E. Plassmann, “An improved incomplete Cholesky
factorization,” TOMS, vol. 21, no. 1, pp. 5–17, 1995.

[23] T. A. Nhan and N. Madden, “An analysis of diagonal and incomplete
Cholesky preconditioners for singularly perturbed problems on layer-
adapted meshes,” Journal of Applied Mathematics and Computing,
vol. 65, no. 1, pp. 245–272, 2021.

[24] E. S. Gawlik and M. Leok, “Interpolation on symmetric spaces via
the generalized polar decomposition,” Foundations of computational
mathematics, vol. 18, no. 3, pp. 757–788, 2018.

[25] D. Sukkari, H. Ltaief, M. Faverge, and D. Keyes, “Asynchronous task-
based polar decomposition on single node manycore architectures,”
IEEE Transactions on parallel and distributed systems, vol. 29, no. 2,
pp. 312– 323, 2017.

[26] H. Guo and M. Jerrum, “A polynomial-time approximation algorithm
for all-terminal network reliability,” SIAM Journal on computing,
vol. 48, no. 3, pp. 964–978, 2019.

[27] Z. Wu, H. R. Karimi, and C. Dang, “An approximation algorithm
for graph partitioning via deterministic annealing neural network,”
Neural networks, vol. 117, pp. 191–200, 2019.

[28] R. Shafipour, A. Khodabakhsh, G. Mateos, and E. Nikolova, “A
directed graph Fourier transform with spread frequency components,”
IEEE Transactions on signal processing, vol. 67, no. 4, pp. 946–960,
2018.

[29] M. B. Cohen, J. Kelner, J. Peebles, R. Peng, A. B. Rao, A. Sidford,
and A. Vladu, “Almost-linear-time algorithms for Markov chains and
new spectral primitives for directed graphs,” in Symposium on theory
of computing, 2017, pp. 410–419.

[30] R. Chitnis, A. E. Feldmann, and P. Manurangsi, “Parameterized
approximation algorithms for bidirected Steiner network problems,”
ACM TALG, vol. 17, no. 2, pp. 1–68, 2021.

[31] A. Backurs, L. Roditty, G. Segal, V. V. Williams, and N. Wein,
“Toward tight approximation bounds for graph diameter and eccen-
tricities,” SIAM Journal on computing, vol. 50, no. 4, pp. 1155–1199,
2021.

[32] G. Drakopoulos, S. Kontopoulos, and C. Makris, “Eventually con-
sistent cardinality estimation with applications in biodata mining,” in
SAC. ACM, 2016.

[33] S. Kontopoulos and G. Drakopoulos, “A space efficient scheme for
graph representation,” in ICTAI. IEEE, 2014.

[34] J. Scott and M. Tuma, “A computational study of using black-box QR
solvers for large-scale sparse-dense linear least squares problems,”
ACM TOMS, 2020.

[35] J. Cape, “Spectral analysis of networks with latent space dynamics
and signs,” Stat, vol. 10, no. 1, 2021.

[36] G. Drakopoulos, P. Mylonas, and S. Sioutas, “A case of adaptive non-
linear system identification with third order tensors in TensorFlow,”
in INISTA. IEEE, 2019.

[37] F. Schäfer, M. Katzfuss, and H. Owhadi, “Sparse Cholesky factoriza-
tion by Kullback–Leibler minimization,” SIAM Journal on scientific
computing, vol. 43, no. 3, pp. A2019–A2046, 2021.

[38] L. Chen, S. Zhou, J. Ma, and M. Xu, “Fast kernel k-means clustering
using incomplete Cholesky factorization,” Applied Mathematics and
Computation, vol. 402, 2021.

[39] S. E. Ahmed, D. Aydin, and E. Yilmaz, “Estimating the nonparametric
regression function by using Padé approximation based on total least
squares,” Numerical functional analysis and optimization, vol. 41,
no. 15, pp. 1827–1870, 2020.

[40] Y. Ding, J. Tang, and F. Guo, “Identification of drug–target interac-
tions via dual Laplacian regularized least squares with multiple kernel
fusion,” Knowledge-Based Systems, vol. 204, 2020.

[41] S. Dittmer, T. Kluth, P. Maass, and D. O. Baguer, “Regularization by
architecture: A deep prior approach for inverse problems,” Journal of
Mathematical Imaging and Vision, vol. 62, no. 3, pp. 456–470, 2020.

[42] F. Farokhi, “Why does regularization help with mitigating poisoning
attacks?” Neural Processing Letters, pp. 1–13, 2021.

[43] X. Zhu, S. Zhang, Y. Li, J. Zhang, L. Yang, and Y. Fang, “Low-
rank sparse subspace for spectral clustering,” IEEE Transactions on
knowledge and data engineering, vol. 31, no. 8, pp. 1532–1543, 2018.

[44] H. Akaike, “Block Toeplitz matrix inversion,” Journal on applied
mathematics, vol. 24, no. 2, pp. 234–241, 1973.

[45] R. Byers and H. Xu, “A new scaling for Newton’s iteration for the
polar decomposition and its backward stability,” Journal on matrix
analysis and applications, vol. 30, no. 2, pp. 822–843, 2008.

