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Abstract. One of the major challenges in Human Activity Recognition
(HAR) using cameras is occlusion of one or more body parts. However,
this problem is often underestimated in contemporary research works,
wherein training and evaluation is based on datasets shot under labo-
ratory conditions, i.e., without some kind of occlusion. In this work we
propose an approach for HAR in the presence of partial occlusion, i.e.,
in case of up to two occluded body parts. We solve this problem us-
ing regression, performed by a deep neural network. That is, given an
occluded sample, we attempt to reconstruct the missing information re-
garding the motion of the occluded part(s). We evaluate our approach
using a publicly available human motion dataset. Our experimental re-
sults indicate a significant increase of performance, when compared to a
baseline approach, wherein a network that has been trained using non-
occluded samples is evaluated using occluded samples. To the best of
our knowledge, this is the first research work that tackles the problem of
HAR under occlusion as a regression problem.
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1 Introduction

Human activity recognition (HAR) still remains one of the most challenging
computer vision-related problems. It may be defined as the recognition of some
human behaviour within an image or a video sequence. An activity (or “action”)
may be defined as a type of motion performed by a single human, taking place
within a relatively short time period (however, not instant) and involving mul-
tiple body parts [23]. This informal definition differentiates activities from ges-
tures; the latter are typically instant and involve at most a couple of body parts.
Similarly, interactions may involve either a human and an object or two humans
and group activities involve more than one humans. Typical HAR applications
include, yet are not limited to video surveillance, human-computer/robot interac-
tion, augmented reality (AR), ambient assisted environments, health monitoring,
intelligent driving, gaming and immersion, animation, etc. [23,20,3].
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There exist several HAR approaches that are based on either wearable sen-
sors or sensors installed within the subject’s environment.In the former case,
the most popular ones include smartwatches, hand/body worn sensors, smart-
phones, etc. Moreover, in the latter case, typical sensors include video/thermal
cameras microphones, infrared, pressure, magnetic, RFID sensors [5] etc. How-
ever, it has been shown that wearable sensors are not preferred by the users,
while their usability is below average [18,12]. Moreover, overloading the users’
environment with a plethora of sensors may be an expensive task, requiring in
some cases many interventions in home furniture and/or appliances, e.g., in case
of a home environment. Therefore, several low-cost solutions tend to be based
solely on cameras, detecting activities using the subjects’ motion. Although such
approaches are low-cost and demonstrate more than satisfactory performance in
laboratory conditions, in real-life situations they suffer from viewpoint and illu-
mination changes and occlusion.

In previous work [19] we dealt with the problem of viewpoint invariance and
demonstrated that the decrease of accuracy due to viewpoint changes may be
limited when using more than one cameras. Also, recent advances in technology
have allowed for camera sensors that also capture depth information and perform
significantly better in low-light conditions. Therefore, from the three aforemen-
tioned problems, occlusion is the one that introduces most limitations. Also in
previous work [7] we assessed how partial occlusion of the subject affects the
accuracy of recognition. We simulated occlusion by removing parts of captured
visual data and showed that partial occlusion of the subject, in certain cases sig-
nificantly affected the accuracy of recognition. To tackle this limitation, in this
work we aim to reconstruct occluded data, upon formulating this problem as a
regression task. We use a deep neural network approach, whose input is a human
skeleton, with one or more body parts removed, so as to simulate occlusion. The
network is trained to output the skeleton upon estimating the missing parts.
We demonstrate that this approach is effective and may significantly increase
accuracy.

The rest of this paper is organized as follows: In Section 2 we present research
works that aim to assess or even tackle the effect of occlusion in HAR-related
scenarios. Then, in section 3 we present the proposed regression methodology.
Experimental results of are presented in section 4. Finally, conclusions are drawn
in section 5, wherein plans for future work are also presented.

2 Related Work

During the last few years, a plethora of research works focusing on HAR, based
on 2D representations of skeletal data have been presented [6,22,9,14,15,11].
Moreover, a may be found in [23]. However, although it is widely accepted that
occlusion consists one of the most important factors that compromise the per-
formance of HAR approaches [10], resulting to poor or even unusable results,
few are those works that focus either on studied its effects on the performance
of recognition or even attempt to overcome them.
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To begin with, in the work of Iosifidis et al. [10], a multi-camera setup, sur-
rounding the subject was used for HAR. In order to simulate occlusion, they first
trained their algorithm using data from all available cameras and then evaluate
using a randomly chosen subset. More specifically, they made the assumption
that due to occlusion, not all cameras were simultaneously able to capture the
subject’s motion. However, we should note that in all cases more than one cam-
eras were able to capture the whole body of the subjects. Also, recognition of a
given activity took place upon combining results only from those cameras that
are not affected at any means by occlusion. In the work of Gu et al. [8], ran-
domly generated occlusion masks were used in both training and evaluation.
Note that each mask caused the occlusion of more than one 2D skeletal joints.
Then, and in order to reconstruct the skeleton, they used a regression network.
Liu et al. [17] studied two augmentation strategies for modelling the effect of oc-
clusion. The first discarded independent keypoints, while the second discarded
structured sets of keypoints, i.e., those composing main body parts. Note that
in this work occluded samples were included in the training process. Moreover,
the authors herein made the assumption that the torso and the hips were al-
ways visible. Their recognition approach was based on learning view-invariant,
occlusion-robust probabilistic embeddings. Similarly, Angelini et al. [2] also in-
cluded artificially occluded samples within the training process. In that case,
samples were created by randomly removing body landmarks according to a
binary Bernoulli distribution. Their recognition approach was based on pose li-
braries which included several pose prototypes. When dealing with missing body
parts, they exploited the aforementioned libraries either by matching occluded
sequences to pre-defined prototypes, based on high-level features, or by filling
missing parts upon searching through the pose libraries. In case of short-time
occlusions, they used an interpolation approach.

Finally, in previous work [7] we performed a study, wherein our main goal
was to assess the effect of occlusion of body parts, within a HAR approach. We
created artificial occluded activity samples, by manually removing one or two
body parts (i.e., upon removing subsets of skeleton joints). We made the follow-
ing assumption: occlusion was continuous during the whole duration of activity
and concerned the same part(s). For HAR, we used a deep neural network, that
had been trained using only non-occluded samples, i.e., contrary to [8], [17], [2].
Also, in our study the whole skeleton was never “visible” as it was in the work
presented in [10]. Finally, Gu et al. [8] proposed a regression-based approach
which was limited to pose estimation.

3 Methodology

3.1 Skeletal Data

As in previous work [19], [7], the proposed approach uses as input 3D trajectories
of human skeletons. In 3D HAR problems, subjects perform actions in space
and over time. We consider skeleton representations as sets of 3D joints. We use
skeleton data that have been captured using the Microsoft Kinect v2 RGB/depth
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camera.4 A human skeleton comprises of 25 joints, organized as a graph; each
node corresponds to a body part such as arms, legs, head, neck etc., while edges
follow the body structure, appropriately connecting pairs of joints. In Fig. 1 we
illustrate a skeleton extracted using Kinect. Note that joints are shown as being
grouped; each group corresponds to a body part, i.e., an arm, a leg or the torso.
In the context of this work, an activity is considered to be a temporal sequence
of 3D skeleton representations. For the sake of explanation, a visual example of
an activity is illustrated in Fig. 2.

01: Head
02: Neck
03: SpineShoulder
04: ShoulderLeft
05: ShoulderRight
06: ElbowLeft
07: ElbowRight
08: WristLeft
09: WristRight
10: ThumbLeft
11: ThumbRight
12: HandLeft
13: HandRight

14: HandTipLeft
15: HandTipRight
16: SpineMid
17: SpineBase
18: HipLeft
19: HipRight
20: KneeLeft
21: KneeRight
22: AnkleLeft
23: AnkleRight
24: FootLeft
25: FootRight
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Fig. 1: The 25 skeletal joints extracted by Microsoft Kinect, divided into five
main body parts – blue: torso, red: left hand, green: right hand, magenta: left
leg, orange: right leg.

3.2 Occlusion

As it has already been mentioned in Section 1, occlusion may compromise the
performance of HAR, in real-life scenarios. Within the context of several appli-
cations such as ambient assisted environments, AR environments etc., occlusion
typically occurs due to e.g., activities taking place behind furniture, or e.g., due
to the presence of more than one people in the same room. Of course, it should
be obvious that occlusion of e.g., the legs when the subject performs the action
“kicking” results to a significant loss of visual information, which in turn may
result to failure of recognition. Although the aforementioned example is quite
extreme, it is common sense that partial occlusion may hinder the effectiveness
of HAR approaches. We should herein note that most large-scale public motion-
based datasets such as the PKU-MMD dataset [16] have been created under ideal
laboratory conditions, thus occlusion is prevented. Thus, since the creation of a
large scale dataset is a time consuming task, we decided to follow an approach
such as the one of Gu et al. [8]. More specifically, we manually discard subsets
of joints that correspond to body parts, assuming that the these parts remain

4 https://developer.microsoft.com/en-us/windows/kinect
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Fig. 2: Example skeleton sequences of the activity handshaking. First row: skele-
tons include all 25 joints; Second row: joints corresponding to left arm have been
discarded; Third row: joints corresponding left arm have been reconstructed.

occluded during the whole action. For the sake of explanation, a visual example
of an activity upon occlusion is illustrated in Fig. 2.

3.3 Regression of Skeletal Data

The input of our approach consists of temporal sequences of 3D skeleton data,
i.e., as described in subsection 3.1. Upon imposing a linear interpolation step
between consecutive timeframes so as to address temporal variability of activi-
ties, we set the length of all activity examples equal to Tm, i.e., to the size of the
longest one in duration. Note that if the desired length is not reached upon one
interpolation step, the process is repeated until the desired length is reached. As
we will mention in Section 4, we use a dataset that has been captured using 3
cameras. Therefore, as we wish to exploit all possible information, we use the
corresponding 3 skeleton sequences as input. We also assume that in every case
of occlusion, the same missing body part(s) is (are) occluded in all 3 sequences.

The core philosophy of our approach is that since occlusion practically causes
missing values (i.e., in our case some of joints of the skeleton are removed), we
may formulate the problem of “reconstructing” those missing values as a regres-
sion task. More specifically, let X denote the original skeleton sequence and Xo

the sequence resulting upon occlusion. The goal of regression is ideally to esti-
mate a function f , so that Xr = f(Xo)+ ϵ, where Xr denotes the reconstructed
skeleton sequence and ϵ is some error value, to be minimized.

To this goal, we use a Convolutional Recurrent Neural Network (CRNN)
model, whose aim is to estimate the missing (occluded) data (joints). Its archi-
tecture is illustrated in Fig. 3a and is described in short as follows: The input of
the network constitutes of sequential data from 3 cameras. Each camera provides
a skeletal sequence under a different viewpoint. Given that in every sequence up
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Fig. 3: (a) The CRNN that has been used for regression of skeletal joint se-
quences; (b) The RNN that has been used for classification. Layers have been
colored as follows: Gray: input/output, concatenated, Light Orange: 2D convo-
lutional, orange: max pooling, Light Blue: (input layer of) LSTM, Purple: fully
connected (dense). Figure best viewed in color.

to 2 skeletons are included (i.e., in case of interactions between 2 subjects), and
each skeleton comprises 25 3-D joints, and the duration of the sequence is Tm,
input layer size is Tm × 150. Those three input branches are each filtered by a
stack of 2 2-D convolutional layer, followed by a max-pooling layer that performs
1 × 2 sub-sampling. This process repeats after the three branches are concate-
nated into a single tensor. This single tensor is again filtered by a stack of 2
2-D convolutional layer, followed by a max-pooling layer that performs 1 × 2
sub-sampling. The output of this layer constitutes the input to an LSTM layer,
whose goal is to harness temporal information of skeletal data. Then, 3 paral-
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lel dense layers of size Tm × 150 follow. They are ultimately reshaped to three
Tm × 150 output layers. For loss computation, the Mean Square Error (MSE)
has been used.

At this point we would like to note that the reason for the use of an asymmet-
rical kernel (i.e., 1× 2) is that while being sub-sampled this way, information is
compressed only along the spatial coordinates’ axes, leaving temporal informa-
tion intact. We experimentally verified that this kernel choice led to a significant
improvement of the performance of the network.

The occluded data Xo are given as input in both training and testing phases
of the network. Also, the targets of the network are the non-occluded data X;
these data are to be estimated by the network, i.e., its output are reconstructed
data Xr. Thus, the network is train to learn f , while minimizing ϵ. As we men-
tioned in subsection 3.1, each skeleton joint has its own id. Therefore, in a
real-life application, we could easily identify missing (occluded) joints. Bearing
this in mind, we opted to train one network per occlusion case, ending up with
8 different networks. Therefore, given an input skeletal sequence, it is fed to the
appropriate network, upon identifying missing joints.

At this point, the trained network serves as a mean to reconstruct missing
skeletal data of a given skeletal sequence. For the sake of explanation, a visual
example of an activity upon reconstruction is illustrated in Fig. 2. Thus, we are
able to proceed with its classification into one of the pre-defined classes. This
is performed using a second network, whose architecture is based on an LSTM
layer and is illustrated in Fig. 3b. As expected, data collected from three cameras
constitute again the input of this network. The three branches are concatenated
into a single tensor, serving as input to the LSTM layer. The latter is followed by
another dense layer of size 11, i.e., equal to the number of classes and constitutes
the output layer of the network. During training, the non-occluded data X serve
as input data to the network, thus no occlusion information is used. During
testing, its input is a reconstructed skeletal sequence Xr.

4 Experiments and Results

4.1 Dataset

Since to the best of our knowledge such a large scale dataset consisting of 3D
skeletal data does not exist, we used part of the PKU-MMD dataset [16]. Note
that this dataset consists of activities that have been recorded using Microsoft
Kinect v2 sensor. In order to produce results comparable to the ones of our
previous work [7], we have selected the same 11 classes, i.e.: eat meal snack (10),
falling (11), handshaking (14), hugging other person (16), make a phone call
answer phone (20), playing with phone tablet (23), reading (30), sitting down
(33), standing up (34), typing on a keyboard (46) and wearing a jacket (48).
Numbers in parentheses denote the corresponding class ids and will be used at
the remaining of this paper. A total number of 1100 samples has been used for
training, while 400 samples have been used for testing.
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4.2 Experimental Setup and Network Training

Experiments were performed on a personal workstation with an Intel™i7 4770
4-core processor on 3.40 GHz and 16GB RAM, using NVIDIA™Geforce GTX
1050Ti GPU with 4 GB VRAM and Ubuntu 20.04 (64 bit). The deep archi-
tecture has been implemented in Python, using Keras 2.4.3 [4] with the Ten-
sorflow 2.5 [1] backend. All data pre-processing and processing steps have been
implemented in Python 3.9 using NumPy and SciPy. For the training of the
estimator, we used the LeakyReLU activation function, except from the LSTM
layer wherein the tanh function was used, and the last dense layer wherein linear
activation function was used. For the training of the classifier, the LeakyReLU
and tanh activation functions were used respectively, except from the last layer,
wherein the softmax activation function was used. Moreover, we set the batch
size to 5 and 10 for the training of the classifier and the estimator respectively.
The Adam optimizer was utilized in both cases, the dropout was set to 0.3, set
the learning rate to 0.001 and trained for 50 epochs, using the loss of the val-
idation set calculated via MSE as an early stopping method, in order to avert
overfitting. Moreover, since the duration of each activity was set to 150 frames,
upon interpolation, the size of the input data was 3×150×150.

4.3 Results

For the experimental evaluation of the proposed methodology, we considered
eight cases of body part removal, so as to simulate occlusion. More specifically, we
removed one arm/leg, both arms/legs, one arm and one leg from the same side.
For comparison, we also performed experiments without any body part removal,
for comparisons. In every case we evaluated classification upon removal and upon
reconstruction. Experimental results are depicted in Table 4.3. The weighted
accuracy (WA) was 0.92 without any body part removal. Moreover, it ranged
between 0.21–0.90 in case of some body part removal, while it ranged between
0.70–0.91 upon reconstruction. In 7 out of 8 cases, significant improvement was
observed, in terms of WA, while performance was almost equal in case of removal
of Left Leg. Intuitively, one should observe that the majority of the activities
we used to evaluate our approach mainly consists of upper body motion (i.e.,
left and/or right arm). Upon careful observation of the samples of the datasets,
this assumption has been verified. This is also reflected to the results of Table
4.3, wherein it may observed that in cases of occluded arms the improvement is
significantly large, with most notable example the case of both arms, wherein
WA improves from 0.21 to 0.70.

Upon careful observation of the confusion matrices depicted in Fig. 4, for
each occlusion case we should notice the following, when comparing with the
case where all joints had been used: a) in case of any occluded arm, class make
a phone call/answer phone is often confused with playing with phone/tablet and
class eat meal/snack is often confused with reading ; b) in case of occluded left
leg, class wear jacket is often confused with reading or standing up; and c) finally,
in case of both arms occluded, 7 classes show adequate performance.
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0.87 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00

0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.94 0.00 0.00 0.00 0.00 0.00 0.00 0.06

0.00 0.00 0.00 0.00 0.79 0.12 0.00 0.00 0.00 0.00 0.09

0.00 0.00 0.00 0.00 0.00 0.93 0.00 0.00 0.00 0.00 0.07

0.08 0.00 0.00 0.00 0.00 0.00 0.89 0.00 0.00 0.03 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.02 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.88 0.00 0.12

0.08 0.00 0.00 0.00 0.03 0.03 0.00 0.00 0.00 0.86 0.00

0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.90

(g) Left Leg & Right Leg
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0.68 0.00 0.00 0.00 0.00 0.00 0.29 0.00 0.00 0.03 0.00

0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.94 0.00 0.00 0.00 0.00 0.00 0.00 0.06

0.00 0.00 0.00 0.00 0.30 0.61 0.00 0.00 0.00 0.00 0.09

0.00 0.00 0.00 0.00 0.02 0.90 0.00 0.00 0.00 0.00 0.07

0.16 0.00 0.00 0.00 0.00 0.00 0.81 0.00 0.00 0.03 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.94 0.04 0.02 0.00

0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00

0.08 0.00 0.00 0.00 0.00 0.03 0.05 0.00 0.00 0.84 0.00

0.03 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.03 0.00 0.90

(h) Left Arm & Left Leg
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0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.39 0.55 0.00 0.00 0.00 0.00 0.06

0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.02

0.19 0.00 0.00 0.00 0.00 0.00 0.76 0.00 0.00 0.05 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.02 0.02 0.00

0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.96 0.00 0.02

0.03 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.03 0.86 0.00

0.03 0.00 0.00 0.00 0.00 0.03 0.05 0.00 0.03 0.00 0.87

(i) Right Arm & Right Leg

Fig. 4: Normalized confusion matrices for classification (a) without removing any
body part, (b)–(i) upon removing the body part(s) denoted in the caption of the
corresponding subfigure.

5 Conclusions and Future Work

In this paper we presented an approach for human activity recognition under oc-
clusion, which was based on a convolutional recurrent neural network model and
used as input 3D skeleton joint sequences. We simulated occlusion by removing
one or two body parts (i.e., sets of joints corresponding to arms and/or legs).
By using the aforementioned model, we managed to reconstruct missing joints
using regression. We showed that this way, we could achieve a significant boost
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Table 1: Experimental results of the proposed approach. “Rec.” and “Ref.” denote
reconstructed and reference case (see section 3). Acc, P, R, F1, WA denote
Accuracy, Precision, Recall, F1 score and Weighted Accuracy, respectively. By
“None” we denote the case wherein all body parts are included. LA, RA, LL,
RL denote the occlusion of left arm, right arm, left leg, right leg, respectively.
Numbers in bold indicate cases where the performance of the reconstructed data
is improved over the one of the reference case.

None LA RA LA&RA LL RL LL&RL LA&LL RA&RL
Class Metric Baseline Rec. Ref. Rec. Ref. Rec. Ref. Rec. Ref. Rec. Ref. Rec. Ref. Rec. Ref. Rec. Ref.

10

Acc. 0.90 0.84 0.11 0.45 0.03 0.58 0.00 0.79 0.92 0.79 0.66 0.87 0.74 0.68 0.21 0.66 0.24
P 0.83 0.68 0.29 0.77 0.17 0.52 0.00 0.94 0.78 0.83 0.81 0.79 0.82 0.72 0.31 0.74 0.75
R 0.89 0.84 0.11 0.45 0.03 0.58 0.00 0.79 0.92 0.79 0.66 0.87 0.74 0.68 0.21 0.66 0.24
F1 0.86 0.75 0.15 0.57 0.05 0.55 0.00 0.86 0.84 0.81 0.72 0.82 0.78 0.70 0.25 0.69 0.36

11

Acc. 0.97 0.97 0.97 0.97 0.97 0.97 0.00 0.97 0.97 0.95 0.97 0.97 0.97 0.97 1.00 0.97 0.97
P 1.00 1.00 0.84 0.97 1.00 0.92 0.00 0.86 1.00 1.00 1.00 1.00 1.00 0.97 0.54 1.00 0.88
R 0.97 0.97 0.97 0.97 0.97 0.97 0.00 0.97 0.97 0.95 0.97 0.97 0.97 0.97 1.00 0.97 0.97
F1 0.99 0.99 0.90 0.97 0.99 0.95 0.00 0.91 0.99 0.97 0.99 0.99 0.99 0.97 0.70 0.99 0.92

14

Acc. 1.00 0.88 1.00 1.00 1.00 1.00 0.81 1.00 0.94 1.00 1.00 1.00 1.00 1.00 0.94 1.00 1.00
P 1.00 1.00 0.94 1.00 1.00 0.94 1.00 0.94 0.94 1.00 0.84 1.00 0.84 1.00 0.88 0.94 0.76
R 1.00 0.88 1.00 1.00 1.00 1.00 0.81 1.00 0.94 1.00 1.00 1.00 1.00 1.00 0.94 1.00 1.00
F1 1.00 0.93 0.97 1.00 1.00 0.97 0.90 0.97 0.94 1.00 0.91 1.00 0.91 1.00 0.91 0.97 0.86

16

Acc. 0.88 0.94 0.88 0.94 0.88 0.88 0.69 1.00 0.88 1.00 0.88 0.94 0.88 0.94 0.81 1.00 0.88
P 1.00 0.88 0.93 0.94 1.00 0.93 0.85 0.94 1.00 0.94 0.93 1.00 0.93 1.00 0.76 1.00 0.82
R 0.88 0.94 0.88 0.94 0.88 0.88 0.69 1.00 0.88 1.00 0.88 0.94 0.88 0.94 0.81 1.00 0.88
F1 0.93 0.91 0.90 0.94 0.93 0.90 0.76 0.97 0.93 0.97 0.90 0.97 0.90 0.97 0.79 1.00 0.85

20

Acc. 0.82 0.18 0.03 0.61 0.39 0.00 0.00 0.85 0.79 0.82 0.88 0.79 0.88 0.30 0.00 0.39 0.97
P 0.96 1.00 1.00 0.87 0.13 0.00 0.00 0.97 0.96 0.90 0.48 0.96 0.47 0.91 0.00 1.00 0.16
R 0.82 0.18 0.03 0.61 0.39 0.00 0.00 0.85 0.79 0.82 0.88 0.79 0.88 0.30 0.00 0.39 0.97
F1 0.89 0.31 0.06 0.71 0.19 0.00 0.00 0.90 0.87 0.86 0.62 0.87 0.90 0.45 0.00 0.57 0.27

23

Acc. 0.95 0.93 0.98 0.95 0.83 0.98 0.05 0.95 0.93 0.95 0.02 0.93 0.05 0.91 1.00 0.98 0.05
P 0.85 0.61 0.55 0.74 0.27 0.39 0.06 0.89 0.93 0.87 1.00 0.89 1.00 0.64 0.45 0.67 0.17
R 0.95 0.93 0.98 0.95 0.83 0.98 0.05 0.95 0.93 0.95 0.02 0.93 0.05 0.90 1.00 0.98 0.05
F1 0.90 0.74 0.70 0.83 0.40 0.56 0.05 0.92 0.93 0.91 0.05 0.91 0.09 0.75 0.62 0.80 0.07

30

Acc. 0.84 0.60 0.70 0.87 0.24 0.16 0.00 0.97 0.76 0.87 0.89 0.89 0.84 0.81 0.30 0.76 0.70
P 0.84 0.79 0.36 0.54 0.69 0.33 0.00 0.64 0.80 0.71 0.65 0.87 0.67 0.67 0.24 0.62 0.65
R 0.84 0.59 0.70 0.86 0.24 0.16 0.00 0.97 0.76 0.86 0.89 0.89 0.84 0.81 0.30 0.76 0.70
F1 0.84 0.68 0.48 0.67 0.36 0.22 0.00 0.77 0.78 0.78 0.75 0.88 0.75 0.73 0.27 0.68 0.68

33

Acc. 0.98 0.96 0.74 0.94 0.06 0.91 0.00 0.85 0.98 0.94 0.98 0.98 0.98 0.94 0.11 0.96 0.00
P 0.98 0.96 0.97 0.98 0.75 0.98 0.00 0.98 0.98 0.96 0.98 0.98 0.98 0.98 1.00 0.98 0.00
R 0.98 0.96 0.74 0.94 0.06 0.91 0.00 0.85 0.98 0.94 0.98 0.98 0.98 0.94 0.11 0.96 0.00
F1 0.98 0.96 0.84 0.96 0.11 0.94 0.00 0.91 0.98 0.95 0.98 0.98 0.98 0.96 0.20 0.97 0.00

34

Acc. 0.96 0.89 0.96 0.96 0.19 0.46 0.00 1.00 0.94 0.94 0.90 0.89 0.85 0.98 0.54 0.96 0.00
P 0.96 0.94 0.96 0.93 0.10 0.94 0.00 0.87 0.96 0.94 0.96 0.96 0.98 0.94 1.00 0.94 0.00
R 0.96 0.88 0.96 0.96 0.19 0.85 0.00 1.00 0.94 0.94 0.90 0.88 0.85 0.98 0.54 0.96 0.00
F1 0.96 0.91 0.96 0.94 0.32 0.89 0.00 0.93 0.95 0.94 0.93 0.92 0.91 0.96 0.70 0.95 0.00

46

Acc. 0.87 0.84 0.89 0.87 0.49 0.84 0.65 0.87 0.84 0.87 0.87 0.87 0.87 0.84 0.87 0.87 0.65
P 0.97 0.94 0.56 0.89 0.31 0.97 0.08 0.97 0.97 0.94 1.00 0.97 0.97 0.91 0.33 0.91 0.49
R 0.86 0.84 0.89 0.86 0.49 0.84 0.65 0.86 0.84 0.86 0.86 0.86 0.86 0.84 0.86 0.86 0.65
F1 0.91 0.89 0.69 0.88 0.38 0.90 0.14 0.91 0.90 0.90 0.93 0.91 0.91 0.87 0.48 0.89 0.56

48

Acc. 0.92 0.92 0.28 0.69 0.13 0.56 0.00 0.59 0.85 0.85 0.85 0.90 0.90 0.90 0.05 0.87 0.13
P 0.84 0.68 0.82 0.84 0.71 0.59 0.00 1.00 0.89 0.89 0.62 0.73 0.64 0.83 0.67 0.89 1.00
R 0.92 0.92 0.28 0.69 0.13 0.56 0.00 0.59 0.85 0.85 0.85 0.90 0.90 0.90 0.05 0.87 0.13
F1 0.88 0.78 0.43 0.76 0.22 0.58 0.00 0.74 0.87 0.87 0.72 0.80 0.74 0.86 0.10 0.88 0.23

all WA 0.92 0.82 0.68 0.84 0.40 0.70 0.21 0.89 0.90 0.90 0.80 0.91 0.80 0.84 0.48 0.86 0.41
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of performance in a classification task of 11 activities. This could be of great
utilization e.g., in AR environments and applications, where such performance
plays a significant and important role for the overall user experience and also
may act as a means of assessing user engagement, e.g., when a visitor of a mu-
seum makes a phone call while interacting with an AR application, this should
be an indicator of low engagement, while when she/he is reading in front of an
AR screen, this should be an indicator of high engagement. Moreover, another
important field of application would be an ambient assisted environment, where
the goal is to detect activities of daily living (ADLs) [13].

Future research work may focus on several aspects of the problem of oc-
clusion. Firstly, we would like to investigate cases such as temporally partial
occlusion. Then we would like to investigate the use of other deep neural net-
work architectures, such as generative adversarial networks (GANs). Moreover,
we would like to perform experiments using full PKU-MMD and possibly other
datasets. We would like to perform comparisons of the given approach to one
that uses occluded samples for training the neural network that we have herein
used for classification, without a regression step. Finally, we plan to perform
real-life experiments within the AR environment of the Mon Repo project5.
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