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Abstract: Exploring a community is an important aspect of social network analysis because it can be
seen as a crucial way to decompose specific graphs into smaller graphs based on interactions between
users. The process of discovering common features between groups of users, entitled “community
detection”, is a fundamental feature for social network analysis, wherein the vertices represent the
users and the edges their relationships. Our study focuses on identifying such phenomena on the
Twitter graph of posts and on determining communities, which contain users with similar features.
This paper presents the evaluation of six established community-discovery algorithms, namely
Breadth-First Search, CNM, Louvain, MaxToMin, Newman–Girvan and Propinquity Dynamics, in
terms of four widely used graphs and a collection of data fetched from Twitter about man-made
and physical data. Furthermore, the size of each community, expressed as a percentage of the total
number of vertices, is identified for the six particular algorithms, and corresponding results are
extracted. In terms of user-based evaluation, we indicated to some students the communities that
were extracted by every algorithm, with a corresponding user and their tweets in the grouping and
considered three different alternatives for the extracted communities: “dense community”, “sparse
community” and “in-between”. Our findings suggest that the community-detection algorithms can
assist in identifying dense group of users.

Keywords: CNM algorithm; community detection; graph mining; Louvain algorithm; MaxToMin;
modularity; Newman–Girvan algorithm; normalized mutual information (NMI); Propinquity
Dynamics; social networks; Twitter

1. Introduction

Social networks are a newly introduced concept of interconnected media for everyday
interaction. As an integral part of modern digital lives, they generate, through popular
social platforms (i.e., Facebook, Twitter etc.), a wealth of data and subsequently knowledge,
which may provide useful information, through topics concerning broadly social life, or
about a particular topic (i.e., politics). Its mesh-like structure reflects the interconnected
associations and relationships between the interacting actors in a network, as it interacts
across the world wide web. These are based on standards and technologies, enabling
processes of shaping and sharing information through a framework within which they
are supported by virtual communities and networks. This framework allows users to
communicate and share information, ideas, interests and aspects of their daily lives in a
dynamic and responsive way. It is worth mentioning that, given the potential of social
networks, information management can be specialised by domain of interest, such as in
culture, through the existing dissemination capabilities. Social networks have provided
new fields for analysis of unique data types, which depicts structures of the relations
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between the given entities, also known as a graph. In light of the above, the analytics of
graphs appears to address a multitude of practical applications.

The network, as a system with a complex structure, consists of interconnected sets of
objects operating under given objectives. To date, various types of networks have devel-
oped, usually reflecting social trends, namely social networks, and the widespread adoption
of web applications determines their absorptive capacity when they are created and their
further adoption by society [1]. In this context, the development of methods to identify
social trends from social media is of particular research interest. The present article focuses
on network entities and the relationships between them resulting from user interaction. For
instance, community detection can be used to support various other tasks by aligning social
networks and big data in everyday life. Moreover, the importance of leveraging graphs, i.e.,
analyzing unique data structure types that represent the relationships between entities [2],
has been highlighted while introducing graph analytics as a tool for this purpose [3].

Through their daily use of social networks, users produce and share digital content
and can also share opinions and keep up to date on issues that are relevant to them. With the
increasing diversity of social networks over the past decade, and thus their users, scientists
are challenged to produce high quality services for users. Through user clustering, new
patterns of interaction are emerging to identify commonalities between people in real-world
interactions. Moreover, social networks typically comprise individuals who communicate
with one another and belong to linked communities, and their analysis is a fundamental task
for a task called “social network analysis” [4]. Because those networks have a complex and
dynamic structure, these communities cannot be easily identified, leading to the conclusion
that this is an open and often difficult issue that can be characterized as an optimization
constraint. Thus, identifying node groups with more interfaces is an important research goal
that can equally work in identifying fewer interconnections between them. Consequently,
as a non-deterministic polynomial-time (NP-Hard) topic, community detection has in
recent years allowed evolutionary algorithms to develop a new field of research [5,6].

Nowadays, a wider range of social media has been developed, including Twitter, an
online social media service that allows users to manage profiles, which are made up of
larger interacting communities in the sense of achieving individual or group goals. In
particular, the popularity of online social networking among millions of people allows
service beneficiaries to stay connected to their immediate social circle. Furthermore, Twitter
offers the possibility of exchanging short messages (“tweets”), while contributing to the
enrichment of data mining methods thanks to its available API, which allows data to be
collected with minimal human input [7].

It is undoubted that a wealth of data is generated daily by user groups that require
new analysis methods to efficiently process with high frequency the diversity, complexity,
and characteristics that distinguish big data. Considering the above, social networks are
regarded as an integral part of modern life, as they typically express by graphs consisting
of tens of thousands of vertices and edges. More specifically, and in the context of the
interactive function of the media, we consider vertices as the operators and edges as
the interrelation between them. The process of discovering common features between
groups of users, called “community detection”, is a fundamental feature for social networks
analysis [8].

A network, i.e., every intricately interacting and interlinked group, serves a specific
purpose, and is based on the notion that the allocation of a clustering factor obeys the rule
of strength within social networking, hence decreasing as the degree of nodes grows. In
this context, grouping procedures are also distinguished, the most basic of which is the
clustering coefficient, as it constitutes a key factor in calculating the propensity of the nodes
to be clustered with each other. This feature suggests that interconnected communities form
social networks, presupposing their discovery for the purpose of further understanding the
network architecture. In this, a community is thus considered to be a set of nodes having
multiple ties to each other, while fewer external connections further their kind.
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Cultural heritage management through social media engagement [9,10] can contribute
to the development of numerical graph segmentation and automatic topic detection algo-
rithms. In addition, they allow researchers to shed light on members’ personal preferences
on specific topics of interest related to culture in general. Based on the above, we examine
the evolution of graphs over time, by detecting the source nodes that initiated the evolution
on a purely site-specific (topological) basis. In addition, we examine whether it is achievable
to categorize nodes based on their age with no metrics. Social network analysis aims to
improve the comprehension of the concepts of connectivity, centrality, and relevance of
users in a social network. Other tasks that can be successfully implemented are predictive
analysis for link formation, evaluation of betweenness centrality, visual representation, etc.

Online social networking is a new paradigm within the framework of big data analysis,
where large volumes of data about heterogeneous social events and interactions are stored,
with a very high degree of variability. The present research work was motivated by the
important problems that arise, such as diffusion and influence maximization, community
detection, and user recommendation, which require the intervention of skilled users with
multidisciplinary backgrounds, making the current research activity quite challenging.
Furthermore, social network constructs are distinct among other communication system
configurations (natural, transit, and telecommunication) because of the occurrence of
positive grade correlations called assortativity [11].

Herein, we aim to evaluate different community discovery algorithms for effective
community discovery in social networks. Initially, six popular community detection
paradigms, i.e., Breadth-First Search, CNM, Louvain, MaxToMin, Newman–Girvan and
Propinquity Dynamics, are evaluated on four extensively exploited datasets based on
normalized mutual information (NMI), number of iterations as well as the modularity
metric. Moreover, we determined how large individual community sizes, expressed as a
proportion of the overall pool of vertices, are for the six specific algorithms. As a next step,
we used a set of data extracted from Twitter on cultural and natural heritage information
in the Greek domain, which is related to several heritage sites, certain tourist sites and
activities. Users evaluated the downloaded the Twitter dataset by selecting whether
every extracted community had users with comparable characteristics. Three different
options were considered for the exported communities, i.e., “dense community”, “sparse
community” and “in-between” [12]. We proved that the application of each algorithm is
directly proportional to its implementation domain as well as by the fundamental principles
that characterize the network under study.

The remainder of the paper is structured as follows: Section 2 presents the related
work regarding the community discovery algorithms, and Section 3 analyzes network cen-
tralities, such as centrality measures and modularity metric, and network indices. Section 4
presents the algorithms implemented in our paper along with their major characteristics.
Furthermore, in Section 5, the implementation details, the four graphs and the derived
Twitter dataset are highlighted, whereas Section 6 presents the evaluation experiments
conducted and the results gathered. Ultimately, Section 7 presents conclusions and draws
directions for future work.

2. Related Work

User relevance assessment appeared much earlier than the advent of social networks,
as social ties were discovered before the web and online communities. Betweenness-type
centrality is described in work specialised in centrality measures [13,14]. Instead, today’s
multitude of different types of networks pose many computational issues. As previously
mentioned, social network analytics is closely associated with graph clustering, whereas
predictive text extraction or text analytics incorporates natural language processing (NLP)
for thematic analysis. This section presents our brief overview of the work on community
detection and topic-modeling techniques, focusing on social networks, especially Twit-
ter. Recent studies have demonstrated that analytic sequences, through their integration
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into malleable information, aid researchers in harnessing and integrating user behavioral
concepts into synthetic graphs with the ultimate goal of automatic topic detection.

Authors in [15] introduce an actual task of developing methods for determining in-
formation support of the web community-members’ personal data verification system.
The level of information support of web community member personal data verification
system allows evaluating the effectiveness of verification system in web-community man-
agement. Also, for identifying possible threats reflected by the user’s behavior towards a
specific event, an approach for estimating aggression shown by different users in different
Facebook groups or community pages, is presented in [16]. The experimental evaluation
was conducted on a set of real data to prove that the method is efficient in extracting the
intensity of the aggression shown by the users.

In their work, the authors in [16] addressed community discovery for topic modeling
through a data store by employing a data analytics engine (i.e., Apache Spark) based on
a database structure (a NoSQL-type such as MongoDB). The solution is implemented by
using PSCAN [12,17], in tandem with LDA [18]. The latter topic modelling is of individuals
in exported groupings. The latter operates on topic modelling of users in the extracted
communities, which has an important role in their platform. For their research needs, they
have employed a Twitter dataset, accounting solely for users with followers to guarantee
that the respective graph for community detection is associated.

Subsequently, the social network analysis is inextricably linked to graph clustering
algorithms and web search algorithms [8,19–21]. In particular, high density of network
nodes has the characteristics of a community, which refers to several clusters of separate
nodes in a graph with shared attributes in the operation of a system. The domain is
associated with HITS [22], and web link analytics with the milestone of analyzing important
web pages exploiting PageRank [23] reporting measure, and countless other variations
suggested in [24]. On the other hand, HITS has two metrics, for use with a website as the
information authority and with a node. Also, the aforementioned algorithm, i.e., PageRank,
exploits one metric that relies on the level of importance of inbound links.

As previously mentioned, we refer to a community as a set of nodes in a communi-
cation system with strong ties between them [25], where various techniques have been
introduced to detect the complex structures of the corresponding communities with ap-
plication to social networks [8,20,21]. Some of the existing approaches for data clustering
(segmental, spectral and hierarchical clustering) are commonly adapted for clustering of
graphs [1,20,26,27]. Authors in [28] chose to use feature selection methods as a common
approach to identify communities on Twitter. The PSCAN algorithm is usually imple-
mented in the context of a Hadoop cloud, as a parallel scheme for the MapReduce model in
extended applications (e.g., Twitter) [17]. Also, the superimposed topics can be identified;
the identification of the desired topics is implemented via a generative statistical model
(Latent Dirichlet allocation (LDA)) [29].

A plethora of automata have been reported in the context of community detection in
the bibliography [1,20,26,30]. In particular, the HITS-type algorithm can be exploited in
community computation when employed for the examination of non-major latent vectors.
In the literature, we have also encountered the graph-partitioning problem related to
communities, based on algorithms dealing primarily with spectral distribution approaches
for partitioning objects via matrix eigenvectors [31,32]. At this point, it is worth noting that
spectral partitioning was proposed in [27,33]. However, the study in [34] highlights the use
of hierarchical clustering for graph partitioning.

Furthermore, Hong et al. proposed the use of various performance metrics for topic
modelling under an empirical study [7]. More to this point, authors in [35] addressed the
issue of topic modeling through LDA, which is a widely used probabilistic method. In par-
ticular, this is a standard tool and in this context, several extensions are proposed to address
its limitations, especially in the field of social networks. Addressing the inadequacy of LDA
in the sparseness of short documents in the tweet, several types of aggregation techniques
were proposed in [36]. Consequently, it was demonstrated that clustering of similar tweets
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in individual documents significantly increases thematic coherence. Alvarez et al. [37]
introduced the concept of aggregation techniques in thematic modeling by aggregating
tweets from conversations.

Moreover, in the context of community detection, authors in [38] proposed the concept
of modularity, which, alongside the divisive method, represents an initiative for further
research. In addition, some works [39–41] lie in the context of exploiting a partitioning
algorithm that can maximize modularity. In particular, the algorithm applies it as a quality
indicator of the segmentation based on the modularity criterion, and by extension it is
distinguished as an essential tool for locating community structures, as it quantifies the
perceived community quality. It is noteworthy that dense internal connections and the
small number of inter-connections are identified as the main criteria for the separation
of communities. Moreover, existing research [42–45] has considered different algorithms
under the notion of modularity; for example, intricate network structures determine the
degree of performance of these algorithms, in contrast to other cases where network state
is a necessary condition.

It is worth noting that through the works [44,46,47], it becomes clear that the signifi-
cance and notion of leverage beyond the user perspective to the communication system
perspective, as well as personality is the main criterion for the identification of influential
communication systems. This results in the creation of such communities within the graphs
of Twitter, using a grouping detection strategy based on modularity, which takes into
consideration the individual personality traits of users. In addition, graph vertices derived
from the above personality-based algorithms are discarded by introducing pre-processing
sequences. Additionally, the user behaviour is highlighted on an emotional dimension,
as it is reinforced by the introduction of a novel methodology, which effectively helps to
identify communities [48–50].

Similarly, the existence of a multitude of methods for evaluating the quality of clus-
tering, i.e., the coherence of the community [51], is apparent. Nevertheless, the majority
of current cohesion metrics remain prohibitively expensive (i.e., peak distance among ver-
tices) or susceptible to value extremes, such as metrics based on the graph diameter [52,53].
Finally, the works of [54,55] describe some of the realizations derived from standard com-
munity discovery, and researchers focus mainly on the graph partitioning resulting from
this type of algorithm and how it maps to Twitter operational field rather than to other
structural criteria more broadly. The aforementioned problematic is related to dedicated
analytical methods such as CNM, Louvain, Walktrap, and Newman–Girvan’s Neo4j, and
Edge Betweeness, in order to effectively evaluate their use in the field.

In addition, there are a number of studies which aim at improving suggestion-mining
results; one of them considered the word-embedding approach and the XGBoost classifier
in order to capture context and similarity with other words [56]. Authors contribute by
improving the classifier performance through the XGBoost classifier, as compared with
Naive Bayes and Random Forest.

3. Preliminaries
3.1. Analysis of Network Centrality

The network power based on the relationship between each node can be measured
by network centrality, which shows independence, autonomy, dominance, and influence
in a network. The network centrality is measured by several different metrics, i.e., degree
centrality, closeness centrality, and betweenness centrality, among others [12,57].

Degree centrality denotes the degree to which a node is connected, and betweenness
centrality denotes the extent to to which a node can easily reach out to other nodes [58].
There is therefore a need for efficient annotation of the measurements obtained from each
node, an effect that follows from degree centrality [59]. It has been observed that a network
is most affected among nodes, by positioning them in a state of interconnection with each
other. On the other hand, betweenness centrality points as a mediating factor of the network
across nodes. In particular, a node is considered to be in an optimal situation only if it is
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on the most direct route among a couple of nodes in the network. Similarly, the degree
centrality, i.e., a node having the greatest betweenness centrality, has the real power to
influence other nodes.

3.1.1. Centrality Measures

Centrality measures are one of the commonly exploited indicators in relation to
network data analysis. They indicate the need for certain variables to be to parameterised,
such as status, visibility, structural strength or prestige, through the dominance of the unit
as a determinant in centrality analysis [60]. The measures on which the analysis is based
can be categorised as listed below:

1. The number of directly interlinked nodes is expressed by degree centrality of a node
v formed as

CD(v) = deg(v). (1)

2. The closeness centrality describes the adjacency of a vertex v, which then highlights the
proximity of a node in relation the existing set of nodes in the group. It is defined as

CC(u) = ∑
v∈V

d(u, v). (2)

This is referred to as the geodetic distance, in the case of d(u, v), which describes the
total vertices along the faster route that links the vertices u and v.

3. To calculate the shortcut paths between random pairs of nodes in a graph containing
the target node v, we need to know whether a vector lies between them. This is
implemented by betweenness centrality and is defined as

CB(v) = ∑
y 6=z∈N

pst(v)
pst

(3)

where pst(v) stands for the total number of shortest paths containing v from s to t,
and pst represents the sum of the number of different shortcuts across s and t within
the underlying communication system.

3.1.2. Modularity

This captures the network structure, exploiting the dynamics of the partition of a
communication system into communities [61], which is captured as follows:

Q(V) =
1

2M ∑
vi ,vj∈V

(
Ai,j −

deg(vi)deg(vj)

2M

)
δci ,cj . (4)

The matrix of adjacency of the given graph can be observed above, which displays
values equal to 0 and 1; Aij = 1 in the case where two nodes are linked by an edge
with eij inE. Note that the matrix is denoted by M = 1

2 sumideg(vi) and A = [Aij] ∈
NN × N. Furthermore, the set of expected edges between nodes vi and vj is captured via
deg(vi)deg(vj)

2M , especially in the case where the aforementioned edges exhibit randomness in
the distribution. The quality optimization of community-detection methods is underlined
by high modularity values. This can be illustrated by the case where ci = cj and δci ,cj = 1,
or if ci 6= cj and δci ,cj = 0, where ci indicates the fact vi is a part of the community c.

Notably, this type of method is limited by the inability to identify small-scale com-
munities. Consequently, the identification of communities in networks, via the Louvain
algorithm, cannot optimize articulation at a lower scale.
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3.2. Network Indices

In principle, the Laplace matrix sets out the fundamental elements for understanding
the proposed framework for defining network indices

L = D− A (5)

where L is the Laplace matrix, D refers to the transverse rank matrix, and A refers to the
contiguity matrix. Note that aij = 1 if there is a link i− j and 0 in the opposite case.

In addition, the eigenvector displays standardization for each component of the
component being examined through

vi = |
vi

max(vi)
|. (6)

The number of nodes corresponds to N and, consequently, i ranges from 1 to N.
Furthermore, at a particular eigenvalue, the temporal context of the associated eigen-

vector is the mean relative weight of all nodes in the vector, which is weighted by the
corresponding components of the eigenvector. This occurs because network eigenvectors
do not grow exponentially. Instead, the corresponding eigenvalue increases accordingly.

In a given graph, the contained eigenvalues are decomposed by the following computation:

A(ti) = V(ti)Λ(ti)V(ti)
′. (7)

In the above formula, the eigenvector matrix is expressed via V, while V′ shows its
transformation respectively. The above are determined in terms of time by ti.

Also, eigenvalues are important in the reaction between eigenvectors, because, for
the interval between ti and ti+1, the latter remain constant during the change in the trace.
This is where the subgraph centrality [38] comes in, it is a variable that each node i can
contribute accordingly to the function

SCi = ∑
j
(vi

j)
2eλj . (8)

It is worth noting the importance of the i-th dimension of the eigenvector vj, which is
expressed by means of λj = λj(ti + 1) and vi

j.
It is also emphasized that the parameter SCi is tightly associated with the metric of

communicability index [62], which may be evaluated as follows:

ECI = eA. (9)

A probabilistic interpretation is that SCi is commensurate with the likelihood of a
random walker crossing near node i.

In the above formula, the equality i = j determines the diagonal entries of the ECI
table that refer to the data points SCi. Also, where i 6= j, the communicability of the i and j
nodes is indicated. Moreover, ECIi is proportionally related to node i, i.e., the age of the
latter is influenced by the size of the former. This is probably explained in the fact that SCi
is directly analogous to the likelihood of a casual walker approaching node i.

Subsequently, to assess the efficiency of the algorithm by using a commonly avail-
able global index averaged over the number of nodes [38,63], a rough calculation has
been proposed:

EIN =
1
N ∑

i
eλi . (10)

The eigenvalues of each node are represented by λ.
In this respect, it is worth noting the possibility that the eigenvalues are the alge-

braic equivalent of the attributes given by the geodesic graph. Considering that EIN is a
benchmark for the overall connectivity of the graph that impacts the communicability, the
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eigenvalues should indicate the efficiency of the algorithm. Therefore, it is evident that a
high value of EIN is potentially correlated with sound performance of this algorithm.

3.3. Community Facility

In general, an undirected graph G = (V, E) contains vertices (V = {vi|i ∈ [1, 2, . . . , N]})
and edges (E = {eij|i, j ∈ [1, 2, . . . , N]}). The v ranges according to deg(v) in a graph G,
where in fact it can be considered as a network.

4. Algorithms for Community Detection

This section takes a look at five common community-detection techniques. Note that
these algorithms are based on higher-order information that is discovered in the form of
graph constructs. The latter is denoted as the count of vertices or edges that the graph
computational function needs to address or cross, respectively. Standard applications
involve the dimension or the actual amount of traces linking two specified vertices. This is
justified, still partially, to the inherent need for link graphs for balancing local and global
information. Graph-processing systems will therefore need to have comparable qualities if
relevant information is to be derived.

A highest-class manifestation of the graph-community detection task is given by the
fact that the smallest grouping is a triangular formation. From a vertex point of view, it can
be considered as a tertiary level of quantity ordering. Furthermore, if a triangular formation
is surrounded, that is also a tertiary quantity. This follows from the point that a simple
association between subjects (an edge on a social graph) does not qualify as a community.
Therefore, within a group, there must a minimum of one shared knowledge that connects
the persons belonging to that team. Therefore, the above is mirrored in the conception that
succeeding community-detection methodology is based directly or indirectly on higher-
order measures. Graph-aggregation or spectral graph-separation algorithms, for example,
use high-order constructs like principal eigenvectors or graph adjacency matrices [64].

4.1. Clauset–Newman–Moore Analysis

Clauset Newman Moore’s proposed algorithm (CNM) suggests a methodology for
partitioning vertices, each of which is distinguished as a separate community. Sequentially,
the algorithm allows analysis from “local” to “international” level up to the point of being
constrained by the criterion a. That is, at a single vertex vi, ai neighboring communities can
be incrementally fused into larger communities via

ai =
degree(vi)

2|E| . (11)

Next, in the case of two adjacent peaks, ∆ai,j is as follows:

∆ai,j =
1

2|E| −
degree(vi)degree(vj)

4|E|2 . (12)

The above shows a null value for non-adjacent vertices. That is, where ∆ai,j we see the
dimensional change that arises from introducing (i, j) into the community. The introduction
of a sparse matrix allows tracking of ∆ai,j, alongside the import of the communities in
a binary tree, where each leaf is implicit in each vertex respectively. It is a given that in
such a relationship it is necessary to determine the parent of the tree, which is the arising
community in each individual case where two communities merge with each other. In
addition, the two matching columns of the sparse matrix ∆ai,j are fused and their data
are updated.

4.2. Louvain Algorithm

The Louvain algorithm or multilevel [39] algorithm is a hypervisor-based grouping
analysis that works on weighted graphs. At first, every vertex is a community. Hereafter,
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according to the change in local edge density, the community gradually merges with its
neighbors. The goal is to create neighborhoods with high fringe density, whereas in the
inter-community the concentration is still limited.

Louvain’s type analysis represents the perceptual notion of edge density in terms of
modularity and the scale m from −1 to +1 is set as follows:

m =

 1
2|E| ∑(i,j)(wi,j −

degree(vi)degree(vj)

2|E| ), vi ∈ ci ∧ vj ∈ cj

0, vi, vj ∈ ci
. (13)

In (13), ci and cj represent the community to which vi and vj belong, and wi,j is the
weight of (i, j). Although Louvain’s type of analysis applies to non-weighted graphs, the
outcome is invariably a weighted graph, in which the weights are dependent on the local
densities of the edges. Non-weighted graphs are considered graphs with original weight
of 1.

The maximisation of modularity is implemented through a set of two distinct stages.
During the initial stage, every vi is joined with each one of its adjacents in a grouping C,
and the change in the modularity ∆m is computed as the change of the new type minus the
old. Eventually, vi is delegated to cj, resulting in a larger ∆m. Note that in the second stage,
we build a new graph which merges the vertices that belong to the common grouping to
one vertex. Moreover, all vertices linking both groupings together create an vertex of which
the weight is the total of the many.

4.3. Max-Min Analysis

First, the MaxToMin method is proposed; however, the Propinquity Dynamics (PD)
and Breadth-First Search (BFS) algorithms could potentially be applied in this analysis. The
latter aims to identify communities, while the former acts by constructing a graph topology
with multiple communities. Note that BFS is also limited to finding nodes that do not exist
exclusively in a community.

Therefore, the size of the neighbourhood is considered as the edge with the highest
weight, as the “powerful” edge in the graph is associated with the random node where the
analysis starts. Then, the MaxToMin algorithm tries to connect a community to the nodes
that hold the strongest neighboring edges.

This technique allows the algorithm to move along the length of the graph. In effect,
it goes from the edges of the strongest to the least strong, but it cannot do the reverse.
The repetition of the process succeeds in discovering the community and the algorithm
stops only in the case where no other weak edges related to the graph access are com-
puted. Also, if a node is reachable by the algorithm execution of L-independent, it is
assigned to its respective community L, which in turn is considered as overlapping with
these communities.

4.4. NG Algorithm

The Newman–Girvan (NG) or edge betweeness algorithm [38] relies on betweenness
centrality, an edge centrality measure that computes the fraction of the number of shortest
paths connecting two vertices vi and vj, given an edge ek is a part, denoted by ζk

i,j, and the
total number of shortest paths connecting vi and vj, denoted by ζi,j. Then the betweenness
centrality of ek, denoted by Bk, is calculated by averaging each vertex pair:

Bk =

 1
(|V|2 )

∑(vi ,vj)∈V×V
ζk

i,j
ζi,j

, vi 6= vj

1, vi = vj

. (14)

In [38], the process of computing Bk for each ek thereby similar to breadth-first search is
described. The logic lies in the fact that vertices that belong to linking groupings should be
based on the vertices that connect the groupings to exchange data, without the opposite to
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be always a valid scenario. Moreover, based on the topology of the graph, certain grouping-
linked extremes might not score high on betweenness centrality, because other extremes
might be preferred. Hence, the e∗ edge of the highest rate of betweenness centrality should
be subtracted, and subsequently the procedure must be reapplied to the newly created
graph. Ultimately, the edges joining the communities will be traced. In the case that the
graph is disconnected, the repetition of the aforementioned the process for each connected
component is required.

4.5. PD Algorithm

The name of the PD algorithm is derived from the sociological term “propinquity”,
which refers to the proximity between individuals, either physiological or emotional. Its
application in community-detection methodology is by determining the likelihood between
two vertices to be part of a coherent community. Note that the PD algorithm accepts
similarity information from the graph topology via a spontaneous procedure [65], without
presupposing any information about the layout of a community.

The performance of the algorithm is based on incremental proximity computation,
as community constructs are formed through reciprocal reinforcement of the concepts of
proximity and topology. It is worth noting that the nodes of multiple communities can be
later identified (e.g., in case of overlap).

The PD algorithm can effectively discern communities from euphonious graph data
and its computational sophistication is equivalent to O(k|V|) in dilute plots, with V and k
being the total node number in the graph and the number of iterations, respectively. Yet
this algorithm has another benefit in that it puts the focus on scalability while maintaining
the quality of the community.

Coherent Neighborhood Propinquity: This similarity only considers local 2-hop neigh-
bourhoods, supposing that the dimension in the consistent graph is not greater than 2,
also presuming that the ensuing community is consistent. Given this, the amount of mu-
tual neighbors of a junction pair is an essential criterion for determining its adjacencies.
Thus, when evaluating a neighbourhood, the overall network connectedness of the overall
vicinity should be taken into account.

Propinquity Calculation: Similarity calculation can be achieved by finding the intersec-
tion of their neighbours for each pair of nodes and thereafter calculates the edges connecting
its mutual adjacents. The sophistication of this computation is about O((|V|+ |E|)|E|),
with E the number of the extremes.

5. Implementation

In this study, we analyzed degree and betweenness centrality measures of a co-
occurrence network to examine how a node is related to the overall network and to
investigate the node’s position. Additionally, we also analyzed the network position, and
we used degree and betweenness centrality measures. The hub position means highly
connected with others and is important in connecting others. The core position is highly
connected with others but relatively less important in interconnecting.

The Estrada communicability and sub-graph centrality indices consider not only the
direct impacts of the nearest possible nodes, as well as the long-term impacts propagated
through a node’s participation in all sub-graphs traversing across the entire collection of
routes [66,67].

5.1. Graph Development

To begin with, we selected the four most popular graphs to exploit for our pilot
evaluation, i.e., Zachary Karate Club, Dolphin Network, Polbooks and American College
Football [68,69]. A summary of those networks is shown in Table 1 in increasing sequence
by the count of their vertices.

Initially, the Dolphin Network is an unguided network of frequent social interactions
among 62 dolphins in a colony living off Doubtful Sound (NZ). The dataset consisting of



Information 2022, 13, 209 11 of 19

American College Football is viewed as a set of American-type football matches among
divisional colleges across the 2000 standard fall season. It consists of 115 teams divided into
12 categories, where each category comprises 8 to 12 teams. In addition, the Zachary Karate
Club considers a social friendship based network among 34 members of a karate club at a
1970s North American university. A dispute between the president and instructor led to
a split of the club into two associations of roughly the same caliber. Lastly, the Polbooks
dataset is composed of a 2005 guided network of hyperlinks across political blogs in the US.
Moreover, this grid is segmented by the political focus of the blogs, i.e., either conservative
or liberal.

Table 1. Summary of Graphs.

Title Description Number of Vertices Number of Edges

Dolphins Dolphin Social Network 62 159
Football American College Football 115 613
Karate Zachary’s Karate Club 34 78

Polbooks Books about US Politics 105 441

5.2. Twitter Dataset

Moreover, we have downloaded a corresponding dataset with the use of Twitter4j
(http://twitter4j.org/en/index.html, accessed on 15 March 2022), a Java based platform
utilized for interacting with the Twitter API. The Twitter subgraph was collected in a time
interval of two months, that is 01/07/2021–30/09/2021. A topic-based sampling approach
was used where tweets are collected via a keyword search query. More specifically, we
have downloaded keywords which have relevance with cultural and natural heritage in
the domain of Greece; these keywords are related to different heritages, specific tourist
destinations and activities.

The properties of the dataset are presented in Table 2. The first column has funda-
mental graph structure properties such as the number of vertices and edges, whereas the
second column has Twitter specific properties such as the average tweet length and the
average number of followers. Note that the vertices are accounts and the directed edges
represent “following” relationships.

Table 2. Subgraph Properties.

Property Value Property Value

Vertices 8205 Retweets 98,565
Edges 33,125 Avg. Following 4.55
Hashtags 15 Avg. Followers 6.33
Tweets 21,315 Avg. Tweets 80.25

Numerous pre-processing techniques were implemented during the mining
strategy [70,71]. These steps include the utilization of regular expressions to remove,
for example, unnecessary URLs or the representation of emoticons with their equivalent
form, e.g., “lol” as “laugh out loud”. The removal of punctuation marks and stop-words is
another important step. Also, the lemmatization and tokenization processes were employed
for removing complex suffixes and retrieving the lexical form of each individual term.

6. Assessment

This section is dedicated to evaluating the results of the five community detection
methods (as well as the well-known Breadth-First Search) on the same four graphs and on
the Twitter dataset.

http://twitter4j.org/en/index.html


Information 2022, 13, 209 12 of 19

6.1. Graph Analytics

In the following Table 3, the results of the tested algorithms in respect to the NMI
metric for the four distinct datasets are given. Newman–Girvan and Propinquity Dynamics
achieve the best performance in almost all datasets whereas Breadth-First Search and CNM
have the lower values. Concretely, regarding the dolphins dataset, Propinquity Dynamics
and Newman–Girvan have the higher values and MaxToMin with Breadth-First Search
have the lower ones. In terms of the football dataset, all the algorithms have almost the
same performance with values ranging from 0.903 to 0.926. In the karate dataset, MaxToMin
along with Propinquity Dynamics and Newman–Girvan perform equally well, and Breadth-
First Search has the worst value, e.g., 0.309. Finally, in Polbooks dataset, the six algorithms
have the lowest values in contrast to the other three datasets, with Newman–Girvan having
the best value. These results are also illustrated in Figure 1.

Table 3. Normalized Mutual Information.

Graph Breadth-First Search CNM Louvain MaxToMin Newman-Girvan Propinquity Dynamics

Dolphins 0.468 0.675 0.632 0.598 0.910 0.942
Football 0.909 0.903 0.911 0.926 0.915 0.926
Karate 0.309 0.624 0.699 0.924 0.885 0.924
Polbooks 0.494 0.544 0.553 0.577 0.865 0.638

Figure 1. Graphical representation of Normalized Mutual Information.

Table 4 and Figure 2 present the performance of the examined algorithms in terms of
the number of iterations for the four different graphs. The highest number of iterations
in the dolphins dataset is achieved by the Breadth-First Search while the lowest number,
equal to 1, is by MaxToMin. Regarding the football and karate graphs, the number of
iterations is relatively low for all algorithms, whereas in Polbooks, Propinquity Dynamics
needs 8 iterations for completing the community detection. It has to be noted that Newman–
Girvan seems to perform equally well in all datasets as the number of iterations is extremely
small, i.e., 1 and 2.

Table 4. Number of Iterations.

Graph Breadth-First Search CNM Louvain MaxToMin Newman-Girvan Propinquity Dynamics

Dolphins 22 5 4 1 1 6
Football 4 3 3 4 2 6
Karate 3 2 2 1 1 5
Polbooks 4 3 3 4 2 8
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Figure 2. Graphical representation of the number of iterations.

Table 5 contains the derived analysis related to the modularity metric, which are
derived from the six algorithms mentioned above. The Newman–Girvan algorithm out-
performs all other algorithms in all the datasets, with values ranging from 0.586 to 0.655.
On the other hand, Breadth-First Search and MaxToMin perform poorly in contrast to the
other three community-detection algorithms. It is worth mentioning that higher values of
modularity are in the football and dolphins datasets, followed by Polbooks and, lastly, the
karate graph. The modularity metric results are also depicted in Figure 3.

Table 5. Modularity.

Graph Breadth-First Search CNM Louvain MaxToMin Newman-Girvan Propinquity Dynamics

Dolphins 0.415 0.538 0.517 0.515 0.655 0.514
Football 0.422 0.626 0.581 0.539 0.635 0.601
Karate 0.343 0.425 0.402 0.395 0.611 0.371
Polbooks 0.419 0.563 0.522 0.487 0.586 0.512

Figure 3. Graphical representation of Modularity.

6.2. Twitter Graph Analysis

Table 6 depicts the extent of every individual community, expressed as a proportion of
the sum of all vertices, as derived from the six specific algorithms. The CNM and Louvain
algorithms yield fewer communities than the other four algorithms. Another observation
is that in Breadth-First Search and CNM, bigger communities tend have a large fraction of
the overall number of vertices, as opposed to other algorithms that generally lean toward
being grouped by size.
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Table 6. Community range (%) of Twitter Graph.

ID Breadth-First Search CNM Louvain MaxToMin Newman-Girvan Propinquity Dynamics

1 20.2 21.4 13.8 12.3 15.7 12.5
2 14.7 17.2 13.4 11.7 13.4 11.5
3 13.2 13.4 12.4 11.2 12.9 11.1
4 11.6 11.5 12.1 10.6 12.2 10.5
5 10.1 10.5 11.3 10.1 11.2 10.1
6 5.2 9.8 7.9 8.1 9.5 8.4
7 4.6 8.1 6.7 7.3 6.1 7.2
8 4.2 5.2 6.4 7.1 5.2 7.1
9 3.9 2.9 6.3 6.5 4.4 6.3
10 3.7 - 5.1 5.2 3.3 5.4
11 3.3 - 4.6 4.1 2.6 4.3
12 2.9 - - 3.5 2.4 3.5
13 2.4 - - 2.3 1.1 2.1

The aforementioned results from Table 6 can also be illustrated in Figure 4. The find-
ings are analytically shown with use of the corresponding figure as the larger communities,
i.e., the first ones with the lower community ID, seem to constitute a high portion of the
total number of vertices, especially in Breadth-First Search and CNM algorithms.

Figure 4. Chart of community Sizes (%) of Twitter Graph.

6.3. User Evaluation

Aiming at getting users to assess the Twitter dataset, we conducted web-based research
and asked students of the Ionian University to rate the communities derived from each of
our proposed algorithms.

In particular, we indicated to users the communities that were extracted by every
algorithm, with a corresponding user and their tweets in the grouping. Following naviga-
tion of the set of data employed, people had to decide if each grouping contained users
with comparable characteristics. They then considered three different alternatives for the
extracted communities: “dense community”, “sparse community” and “in-between” [12],
based on their own convictions.

Table 7 and Figure 5 indicate the community percentages, in which users rate the
communities found by the six algorithms. Similarly to the previous experiment used for
Twitter graph community sizes, the CNM and Louvain algorithms yield fewer communities
and therefore produce the highest community density. As a result, the six algorithms all
perform almost identically in the amount of sparse groupings, where prices range from
15 to 24, except for Newman–Girvan which has a rate equal to 27. At this point, we
emphasize that we take into account the fact that finer attributes can enhance the efficiency
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of the community detection process further, except the nodal properties, in addition to key
properties like the amount of followers or even the total tweets per individual.

Table 7. Communities % with comparable Users-Nodes.

Analysis Density Sparsity In-Betweenes

CNM 38 15 47
Louvain 34 18 48
MaxToMin 27 22 51
Newman-Girvan 29 27 44
Propinquity Dynamics 28 24 48
Breadth-First Search 22 23 55

Figure 5. Graphical depiction of communities % with comparable Users-Nodes.

6.4. Discussion

Due to degree centrality’s simplicity, sometimes it is helpful to consider in-degree and out-
degree metrics differently, for instance when looking at transaction data or account activity.

In addition, betweenness centrality is valuable for the analysis of the interaction
potential. Specifically, the high number of this measure might suggest a person who has
dominance in different clusters in a communtication group or indicate that he or she is at
the circumference of either cluster.

Closeness centrality can help in identifying effective “broadcasters” as long as we are
dealing with a common network. However, assuming a highly connected network, then all
nodes will often achieve a similar score. Another remark is that it will be useful to utilize
this metric in order to extract influencers within a single cluster.

Eigenvector centrality constitutes an effective social networks analysis score, which
can be ideal for gaining an insight into man-made social networks, but also for learning
about such communication groups as the spread of malicious software. In addition, it is
therefore a possibility to calculate the eigencentricity of each vertex by converging to a
latent vector by the method of power iteration.

In our study, we consider community detection has been implemented into the net-
work analysis on the assumption that edges are pre-identified as a feature class that allows
grouping algorithms to distinguish peripheral nodes. Despite this particular niche and its
applicability on a case-by-case basis, community detection techniques are applicable to
specific network analysis issues over clustering methods, in that the latter are optimized
on a set of specific features. It is pointed out that this paper provides a proof of concept
as the applicability of each algorithm is directly proportional to its implementation do-
main (cf. Figure 5) as well as by the fundamental principles that characterize the network
under study.

Subsequently, it is shown from our work that Newman–Girvan and Propinquity
Dynamics methods are verified and proven to produce optimal performance on almost
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all datasets. Furthermore, the Breadth-First Search and CNM methods show the lowest
values. Note that in the case of the dolphins graph, Propinquity Dynamics and Newman–
Girvan have the highest values and MaxToMin with Breadth-First Search have the lowest
values respectively.

7. Conclusions and Future Work

It becomes apparent that the successful detection of communities in social networks
is the result of evaluation processes of different types of algorithms. In this context, six
mainstream community-detection methodologies, namely Breadth-First Search, CNM,
Louvain, MaxToMin, Newman–Girvan and Propinquity Dynamics, were evaluated against
four most prevalent graphs based on the normalized mutual information (NMI), the number
of iterations as well as the modularity metric. Experiments showed that for the NMI metric,
Newman–Girvan and Propinquity Dynamics achieve the best performance in almost all
graphs, whereas for the modularity metric, the Newman–Girvan algorithm outperforms all
other algorithms in all graphs.

Additionally, this paper contributes to the use of contextual knowledge obtained from
Twitter, including the evaluation of some popular community-detection algorithms that
identify groups of people with comparable attitudes and characteristics with respect to
this dataset. Another stage of this study is to suggest to some students the groupings
elicited by each algorithm and in accordance with their own convictions, they considered
making three different choices for the elicited communities: “dense community”, “sparse
community” and “in-between”. Consequently, it turns out that the algorithms with the
fewest communities are CNM and Louvain. They therefore tend to get the largest number
of dense communities, and all six alternatives have approximately the same number of
sparse groupings.

In future work, it is of strong motivation for us to explore the scaling problems ad-
dressed by more comprehensive graphs.More specifically, we plan to perform an extensive
set of further experiments with other conditions (thematics) in order to determine the fac-
tors that affect the results of the paradigms at a more detailed level of detail. The adaptation
of efficient heuristics to time-varying graphs is highly prospective and, hence, applicable
to our suggested project. Experimental, analytical from the theory of dynamic systems or
even different analytical algorithmic tools can be embedded into our further research.
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