
Weighted Reservoir Sampling On Evolving Streams: A Sampling
Algorithmic Framework For Stream Event Identification

Christos Karras

CEID

University of Patras

Patras, Rion, Greece

c.karras@ceid.upatras.gr

Aristeidis Karras

CEID

University of Patras

Patras, Rion, Greece

akarras@ceid.upatras.gr

Georgios Drakopoulos

Department of Informatics

Ionian University

Corfu, Greece

c16drak@ionio.gr

Konstantinos Tsakalidis

Department of Computer Science

University of Liverpool

Liverpool, Merseyside, UK

k.tsakalidis@liverpool.ac.uk

Phivos Mylonas

Department of Informatics

Ionian University

Corfu, Greece

fmylonas@ionio.gr

Spyros Sioutas

CEID

University of Patras

Patras, Rion, Greece

sioutas@ceid.upatras.gr

ABSTRACT
Data streams are becoming increasingly important across a wide

array of fields and are generally expected to be the preferred form

of big data as aggregators and smart stream analytics in general

can efficiently yield stream descriptions in various levels. Among

them, event detection analytics are paramount since they typically

allow the identification of distinct cases of interest like the so called

black swans. Reservoir sampling refers to probabilistic class of tech-

niques for keeping representative values of a stream given limited

memory capacity. In the proposed framework event detection takes

place once reservoir sampling is complete by clustering its output.

The rationale behind this is that repeated representative values

correspond to normal stream states, whereas any outliers indicate

rare yet noteworthy events. With that information a probabilistic

stream state graph can be constructed in order to examine the tran-

sition dynamics between states and to evaluate the role black swans

play in the overall stream stability. A major part of the descriptive

power of said graph lies on its inherent geometric interpretation in

addition to the algebraic one. Results from two benchmark datasets,

one coming from real world and a random one, are encouraging.

The proposed framework is planned to be executed in Raspberry

Pi as part of an IoT stack since it is sufficiently lightweight.

CCS CONCEPTS
• Information systems; •Mathematics of computing→ Prob-
ability and statistics;

KEYWORDS
reservoir sampling, data streams, geometric analytics, clustering,

outlier discovery, probabilistic state graphs, black swan, IoT

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SETN 2022, September 7–9, 2022, Corfu, Greece
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9597-7/22/09. . . $15.00

https://doi.org/10.1145/3549737.3549767

ACM Reference Format:
Christos Karras, Aristeidis Karras, Georgios Drakopoulos, Konstantinos

Tsakalidis, Phivos Mylonas, and Spyros Sioutas. 2022. Weighted Reservoir

Sampling On Evolving Streams: A Sampling Algorithmic Framework For

Stream Event Identification. In 12th Hellenic Conference on Artificial Intelli-
gence (SETN 2022), September 7–9, 2022, Corfu, Greece. ACM, New York, NY,

USA, 9 pages. https://doi.org/10.1145/3549737.3549767

1 INTRODUCTION
Data streams are among the fundamental notions in the big data

field as in an overwhelming number of engineering scenarios, es-

pecially in the context of smart cities, data collection and broadcast

over streams from a plethora of heterogeneous IoT devices is stan-

dard practice in the field. Although streams are operationally quite

less than tractable as a rule since they contain data to be mined

and utilized within a short time frame, tailored stream analytics

including among others aggregators and adaptive schemes capture

at least the main characteristics of the underlying stream while

maintaining an acceptable level of computational complexity.

Reservoir sampling is a class of probabilistic methodologies de-

signed for identifying and storing significant stream values under

the hard constraint of limited available memory capacity, translat-

ing to a tight correctness requirement for any decision algorithm

designating stream values as important and progressively creating

a stream summary. However, there is no distinction as to whether

these values signify a normal condition or state of the underlying

steam or they are black swans, namely rarely occurring events de-

serving special handling, nor do they reveal transition dynamics.

The latter fact is the principal motivation behind this work.

The primary research objective of this paper is a three-phase

framework for constructing a probabilistic state graph summarizing

a stream. Specifically, once reservoir sampling is complete, the re-

sulting values are clustered with outliers deemed as singular events,

whereas in the final stage said graph is created based on transition

dynamics. Besides attaining reasonable space and time complexity,

the proposed framework has increased descriptive power driven

from both probability theory and geometry, given that the shape of

each individual cluster as well as the stream state graph topology

https://orcid.org/0000-0002-4253-7661
https://orcid.org/0000-0002-4632-6511
https://orcid.org/0000-0002-0975-1877
https://orcid.org/0000-0001-6470-9332
https://orcid.org/0000-0002-6916-3129
https://orcid.org/0000-0003-1825-5565
https://doi.org/10.1145/3549737.3549767
https://doi.org/10.1145/3549737.3549767

SETN 2022, September 7–9, 2022, Corfu, Greece C. Karras, et al.

play a major role. This not only does pave the way for advanced geo-

metric stream analytics, including heuristics, but also differentiate

this work from most previous approaches.

The remainder of this paper is structured as follows. In section 2

the recent scientific literature regarding reservoir sampling, data

streams, and geometric analytics is briefly overviewed. The pro-

posed framework is described in detail in section 3, whereas the

results obtained from the experiments are presented in section 4.

Future research directions are given in 5. Technical acronyms are

explained the first time they are encountered in the text. Finally in

table 1 the notation of this work is summarized.

Table 1: Notation of this paper.

Symbol Meaning First in

△
= Definition or equality by definition Eq. (1)

{s1, . . . , sn } Set with elements s1, . . . , sn Eq. (1)

|S | Set cardinality functional Alg. 1

S1 \ S2 Asymmetric set difference Alg. 1

prob {Ω} Probability of event Ω occurring Eq. (7)

⟨p1 | | p2⟩ Kullback-Leibler divergence Eq. (20)

∥x∥
2

Euclidean norm Eq. (13)

2 PREVIOUS WORK
Sampling across distributions is a significant concept in statistics,

probability, systems engineering, and other fields that make use

of stochastic models ([7, 33, 35, 38]). Markov Chain Monte Carlo

(MCMC) techniques [25, 26] are often utilized to generate samples

that closely approximate a given multivariate probability distribu-

tion. In particular, MCMC employs repeated random sampling to

exploit the law of large numbers. Samples are generated by running

a Markov Chain, which is created such that its stationary distribu-

tion follows the input function, for which a proposal distribution is

used. It is feasible to decrypt encrypted documents [11], optimize

functions [36], estimate integrals using generalized liner mixed

models, and discover approximate solutions to non-deterministic

polynomial-time (NP) hard problems using the Metropolis-Hastings

algorithm. Markov Chain sampling schemes are introduced in [31]

along with different possible combinations for sampling. Addition-

ally, MCMC methods can be utilized for parameter estimation [32]

while weighted stochastic versions of MCMC methods are intro-

duced in [16].

Mining complex data streams for non-trivial knowledge is chal-

lenging [34]. It can take a multitude of forms such as regular

event repetition discovery [8]. Window models are a viable alterna-

tive [22] with landmark window [13], sliding window [6, 41], and

damped window [39] being the main approaches. Another strategy

is to acquire representative samples with reservoir sampling [17, 28].

Another approach is to use neural networks for sampling user and

item reviews to construct recommendation systems [12, 23].

Clustering and outlier detection have been widely studied in

the recent years [5, 14, 29, 42]. The most frequently applied tech-

nique on clustering is k-means. Subsequent improvements include

estimates of the number of clusters through k-median [3] or unla-

beled multiclass SVMs [45]. STREAM relies on the notion of data

distribution [19]. CluStream was designed to exploit information

obtained by progressive clustering [2]. Due to the large number

of clusters that must be created or manually picked at each phase

human supervision is required [2]. As per [1], streamKM++ is a

stream processing clustering methodology that is the foundation

of the work in [4]. Cluster recovery can be done using data discrep-

ancies that are specific to them [20] while tracking patterns in real

time is proposed in [10].

Graph mining is a major driver across fields such as graph

databases [15], Industry 4.0 process mining, social media analy-

sis [9], logistics [21], and human omics [43, 44]. A related field is

that of geometric analytics have found their way to distributed

implementations such as the computational geometry pipelines for

Hadoop in [30]. Moreover, frameworks for computational geometry

have been introduced in MapReduce [18] while sampling across

complex geometric objects is outlined in [24]. Visual analytics as

well as heuristics for spatial clustering are presented in [37]. Finally,

the pre-print version of this work can be found in [27].

3 METHODOLOGY
3.1 Overview
In this section the proposed framework is described for the particu-

lar case where the k-means algorithm with the Euclidean norm as

distance metric for illustration purposes. Said framework operates

along a line of reasoning where outliers or black swans are unique

and exceptional events and consists of the following distinct steps:

• Reservoir sampling selects representative stream values.

• Clustering discovers outliers and unique events.

• The stream state graph is constructed.

The proposed framework is lightweight enough to be imple-

mented on Raspberry pi as part of an IoT operations stack.

3.2 Reservoir Sampling
Assume the n items xi being streamed come are drawn from a

countable population set V as shown in equation (1) according to a

fixed and known distribution. Moreover, to each xi corresponds a
not necessarily unique and known weightwi .

V
△
= {x1, . . . ,xn } (1)

Random sampling without replacement requires selecting k dis-

tinct random items from a population of n individuals and equally

distributing them among them. When all items have an equal prob-

ability of being picked, this is referred to as homogeneous random

sampling. Weighted random sampling is a strategy whereabouts

items are weighed, and the probability of any item being picked is

indicated by the relative weight of the sample.

Algorithm 1 performs weighted random sampling without re-

placement. In particular let πj (i) denote the probability of selecting
the j-th item in V \ S in the t-th round

πj (t)
△
=

w j∑
st ∈V \S wt

(2)

The algorithm 2 performs non-replacement weighted random

sampling in line with the approach of the algorithm 1.

Proof. Consider the case when k = 1. Calculate the likelihood

that the first item will be chosen. This necessitates the satisfaction

Weighted Reservoir Sampling On Evolving Streams SETN 2022, September 7–9, 2022, Corfu, Greece

Algorithm 1Weight Based Sampling

Require: A set V of n weighted items.

Ensure: Obtain S ⊂ V such that |S | = k .
1: For values ranging from t = 1 to k
2: Assign πi (t) as in (2).

3: Choose a random item vj from V \ S and insert it into the S .

Algorithm 2Weight Based Random Sampling

Require: A set V of n weighted items.

Ensure: Ascertain the existence of S ⊂ V such that |S | = k .
1: xi is a sample from an unbiased uniform distribution spanning

the interval [0, 1], and the key for each vi in V is specified as

ki = x
1/wi
i .

2: xi is a sample from an unbiased uniform distribution spanning

the interval [0, 1], and the key for each vi in V is specified as

ki = xi1/wi
.

of the following inequality:

x
1/w1

1
> max

[
x
1/wi
i

]
, 2 ≤ i ≤ n (3)

Assume that pi is the likelihood that the very first element is

chosen whenever condition (4) is satisfied:

i = argmax

[
x
1/w j
j

]
, 2 ≤ j ≤ n (4)

As a result, we have:

pi
△
=

∫
1

0

(
1 − xw1/wi

)
x

∑wj
i, 1̂
wi dx (5)

In (5) the following shorthand notation is used:∑
î, ĵ

△
= 1 + . . . + i − 1 + i + 1 + . . . + j − 1 + j + 1 + . . . + n (6)

As a result, p =
∑
1̂
pi is the probability of such scenario.

The equation (5) is derived as follows. Let c0 be a constant value
for the sample xi . Then the condition (7) holds with probability:

prob

{
x
1/w1

1
> c

1/wi
0

}
= 1 − c

w1/wi
0

(7)

Similarly, the condition (8) holds with probability:

prob

{
x
1/w j
j < c

1/wi
0

}
= c

w j /wi
0

, ∀j, 2 ≤ j , i ≤ n (8)

Then, since the samples are generated stochastically indepen-

dently, the likelihood of any scenario can be computed by multi-

plying the above probabilities and integrating over the probability

space of the samples xi . The latter is the standard interval I0 = [0, 1]

with constant density function equal to one.

We obtain the following by solving the integral from (5) :

pi
△
=

1

1 +

∑
i,1w j

wi

−
1

1 +

∑
i w j
wi

=
wi∑
1̂
w j

−
wi∑
w j

(9)

Immediately it follows that:

p =
∑
1̂

pi =

∑
1̂
wi∑

1̂
w j

−

∑
1̂
wi∑n

j=1w j
=

wi∑n
j=1w j

(10)

This outcome is identical to the second phase of algorithm 1, under

the critical assumption that in each round the item with the largest

key in V \ S will be picked. □

Algorithm 3 is the reservoir sampling variant directly derived

from algorithm 2. It should be noted that in steps 2 and 5 of al-

gorithm 3 the key ki for each random sample xi drawn from an

unbiased uniform distribution over I0 which is weighted bywi is

computed as shown in equation (11):

ki
△
= x

1/wi
i (11)

As a sidenote, in some computational models the length of num-

bers in bits is a significant parameter determining the complexity

of elementary operations. The length li of ki is then given in (12):

li
△
=

⌈
log

2
ki
⌉
=

⌈
log

2
xi

wi

⌉
(12)

Algorithm 3 Weight Based Reservoir Sampling

Require: A set V of n weighted items and reservoir R.
Ensure: Ensure that exists a S ⊂ V such that |S | = k .
1: Initialize the R with the first k entries of V .

2: Compute key ki of xi ∈ R as in (11).

3: For any vi ∈ V \ R, do the following:

4: Let km ∈ R be the smallest key.

5: Calculate the key for vi as in (11).

6: If ki > km , swap the xi and xm .

The algorithms 2 and 3 are equivalent because the algorithm

3 ensures that the items with the greatest k keys remain in the

reservoir, either because they were originally began to be processed

or because they will eventually be exchanged for an item with a

lower key value.

3.3 Data Stream Clustering
The distance metric used in the context of this work for the k-means

scheme was the Euclidean norm given in equation (13):

g

(
xi ,x j

) △
=

xi − x j

2

(13)

The geometric interpretation of (13) is that when the Euclidean

distance is constant and equal to r0, then xi moves along the cir-

cumference of the circle whose center is x j and its radius is r0.
Moreover, the Euclidean norm is invariant to linear translations

and matrix unitary transforms but sensitive to scaling.

Apart from the conventional stages that are analogous to the

class k-means method, the initial execution of the algorithm speci-

fies the positions of k cluster centers premised on the positions of

the k arbitrarily defined medoids, that is, on the spots of k database

entries, in contrast to the conventional stages that are analogous

to the class k-means mechanisms. As a result of performing the

k-means procedure, we are able to maintain the resulting cluster

centres for each cluster as well as the collection of samples, the Sum

Squared Error (SSE) of each dimension of the individual clusters,

and the SSE of the overall clustering. As a consequence, the items

are eliminated to make room for new ones, allowing for the restart

of the clustering process. The SSE [40] statistic is a frequently used

SETN 2022, September 7–9, 2022, Corfu, Greece C. Karras, et al.

statistic for evaluating clustering techniques. The equation (14) is

used to determine the SSE of a group.

SSEgroup =
∑
x ∈Ci

g (x ,mi)
2

(14)

An element in the clusterCi is denoted by x , and the centroid of
a group is denoted bymi . Due to the nature of clustering, the SSE

of the whole clustering is defined as the summation of all k SSE

values discovered in the subgroups, as seen in equation (15).

SSE
total

△
=

k∑
j=1

∑
x ∈Ci

g (x ,mi)
2

(15)

Each dimension of a feature in our application has its own SSE,

which is computed separately. For instance, while dealing with 2D

data, we maintain the SSE for each group, as defined in Equation

(14), as well as the SSE for each 1D and 2D, as provided in Equation

(14). The SSE of a single dimension is calculated using the equation

(16), as shown in the following expression. The width of a vector

t divided by the sum of the squared differences among distances

between a point x and its cluster centremi . This computation is

carried out for each of the data set’s d dimensions.

SSE
dim

(t) =
∑
x ∈Ct

g

(
xt ,mit

)
2 ∀ t ∈ d (16)

Equation (16) is paramount as it is indicative of the overall clus-

tering performance. In general, the lower the standard deviation of a

group, the more tightly distributed the points are, and the better the

group. The SSE is also computed for each dimension since it enables

us to identify whether or not the data is more equally distributed in

that dimension. Apart from the SSE, a number of additional cluster

quality indicators are provided, including homogeneity, group den-

sity, intragroup maximum and lowest, and a variety of others. With

the second cluster of the data stream, it seems as if the baseline

centroids are no longer fully random. This approach will use the

final centroids locations from the previous clustering phase. This

prevents the simultaneous exchange of locations between two or

more centroids. This enables visualisation of the development of

a particular cluster throughout the course of a data stream, for

example.

3.4 Probabilistic Graph Representation
In this subsection the final step of the proposed algorithmic frame-

work is proposed, namely the construction of the probabilistic state

graph representing the underlying stream. To this end, the vertices

of the graph are required along with the edges between them and

the respective transition probabilities. Vertex loops are allowed and

in fact in certain scenarios expected for both mainstream and rare

events. The former from their very definition cover considerable

stream parts and the latter may indicate an irrecoverable situation.

Once clustering yields the set of actual eventsQ in the stream as

shown in (17), it gets to serve as the graph vertex set. In this way,

the bijection between the event set and the vertex set is guaranteed

by construction, avoiding thus any matching issues.

Q
△
= {q1, . . . ,qn } (17)

The softmax score, which is extensively used as a Bayesian esti-

mator of the true values of long observation vectors and, moreover,

can be interpreted as an inherent distribution of that vector, shown

in (18) is used to compute the state transition probabilities.

prob

{
qi → qj

} △
=

exp

(
ni, j

)∑
u,v exp

(
nu,v

) = exp

(
ni, j

)
exp (n)

(18)

In (18) ni, j is the number of transitions between any item of

the i-th cluster to any of the j-th one. Therefore, cluster connec-

tivity patterns are reflected in the stream graph. Notice that by

construction the graph is not symmetric in the sense that the tran-

sition probability from qi to qj is in the general case different than

that of the reverse transition. This is especially useful in the easy

identification of black swan states by examining the ratio of (19).

max

[
prob

{
qi → qj

}
prob

{
qj → qi

}] = max

[
exp

(
ni, j − nj,i

)]
(19)

The representation explained above has the advantage of summa-

rizing a potentially very long stream to a very compact form which

nevertheless maintains the original information regarding event

occurrences in an intuitive manner. Moreover, it allows the easy

and efficient comparison of streams while avoiding massive compu-

tations. Third, state graphs focus on stream mechanics rather than

on their populations, allowing therefore transfer learning method-

ologies. Thus, two streams of comparable parameters coming from

different populations but having the same stochastic behavior in

terms of event dynamics will result in two identical state graphs.

A last key point is that a stream may contain more than one such

events, being generated by mechanisms engineered to reflect real

life including unexpected or exceptional events and even having

their own flaws. This leads to the question of whether there is

a connection between these rare events and whether there is an

intrinsic connection between them, revealing thus the true cause

of their occurrence. Consider for instance the case of very large

object oriented software systems deployed as part of a critical in-

frastructure and operating in real time. Then, the reason for the

appearance of an exception can be a previous one, revealing thus a

hidden fatal code flaw which could be otherwise overlooked.

However, the proposed methodology requires knowledge of the

steady state stream distribution, namely of the true distribution

over the items being streamed. This can be obtained only by appro-

priate sketches of the stream or at least of large segments thereof

which are of statistical importance. Additionally, said distribution

may be evolving over time according to dynamics dictated by the

underlying original data generation processes. This stochastic evo-

lution may well range from changing distribution parameters to

jumping to a different one or even cycling through distributions.

4 RESULTS
4.1 Overview
The proposed reservoir sampling approach was tested using the

Python 3.9 programming language and the development tool Py-

Charm. The following packages are needed for setup: choice and

numpy. The trials were done on the following hardware: CPU i9-

10850k, 32GB RAM, Firecuda 530 NVMe disc, and Windows 11

operating system. We refer to samples obtained as r .

Weighted Reservoir Sampling On Evolving Streams SETN 2022, September 7–9, 2022, Corfu, Greece

The results of uniform sampling with and without replacement

are represented in section 4.2, while the results of weighted sam-

pling with or without replacement are given in section 4.3.

In this section comparing two discrete distributions is necessary.

The Kullback-Leibler divergence of equation (20) is an established

probabilistic asymmetric measure of the loss incurred when a dis-

crete distribution p substitutes a reference one q defined as:

⟨p | | q⟩
△
=

∑
k

pk logb

(
pk
qk

)
(20)

The logarithm base b determines the units the aforementioned

loss is measured in, bits in this case. For the special case when

the reference distribution is the uniform one, the Kullback-Leibler

divergence takes the special form of (21), which is the difference

between the entropy of the uniform distribution u and that of p.

⟨p | |u⟩
△
=

n∑
k=1

pk logb (npk) = logb n +
∑
k=1

pk logb pk (21)

4.2 Uniform Based Sampling
We first create a continuous tensor x of size 10. For r = 3 of number

of samples we perform:

(1) Sampling with Replacement

(2) Sampling without Replacement

The tensor obtained by scenario (1) is as follows:

tensor([3, 3, 9])

tensor([3, 9, 3])

tensor([3, 9, 3])

tensor([0, 3, 6])

tensor([9, 3, 6])

While for scenario (2) we obtain:

tensor([0, 3, 6])

tensor([0, 3, 6])

tensor([0, 3, 6])

tensor([0, 3, 9])

tensor([0, 3, 9])

We therefore define a tensor of size 10 on CUDA/GPU and it

should be a contiguous tensor as shown in result below. Again for

scenario (1) and (2) we obtain:

tensor([0, 0, 9], device=’cuda:0’)

tensor([3, 3, 9], device=’cuda:0’)

tensor([3, 6, 6], device=’cuda:0’)

tensor([0, 3, 9], device=’cuda:0’)

tensor([3, 0, 9], device=’cuda:0’)

and

tensor([0, 3, 6], device=’cuda:0’)

tensor([9, 3, 6], device=’cuda:0’)

tensor([0, 3, 9], device=’cuda:0’)

tensor([0, 9, 6], device=’cuda:0’)

tensor([0, 3, 9], device=’cuda:0’)

While we evaluate the sampling method against two libraries,

torch and numpy. The evaluation metric for time is the average time

per loop ± mean std.

The two assessment tools used for development and outcomes

are CUDA, a parallel computing platform powered by NVIDIA, and

CPP, a C++ API. The reservoir sampling code was built in C++, and

the benchmarks in Python. Figures were created using matplotlib.

For the CPP run, the findings for r = 2 are presented in 1. We

have a uniform distribution with substitution on 1a, while we have

a uniform distribution without substitution on 1b.

200

150

100

50

0 1 2 3 4 5 6 7 8 9

(a) Uniform Based Sampling with Substitution

200

150

100

50

0 1 2 3 4 5 6 7 8 9

(b) Uniform Based Sampling without Substitution

Figure 1: Uniform Based Sampling with r=2 on CPP

The findings for r = 8 are presented in 2. We have a uniform

distribution with replacement on 2a, while we have a uniform

distribution without replacement on 2b.

For the CUDA run, the findings for r = 2 are presented in 3.

We have a uniform distribution with replacement on 3a, while a

uniform distribution without replacement is on 3b.

The findings for r=8 are presented in 4. We have a uniform dis-

tribution on 4a, while a uniform distribution without replacement

is in 4b.

The results of evaluating the uniform distribution without using

a substitute for r = 100 are displayed in table 2.

Table 2: Evaluation of Uniform Sampling for r=100.

r Method Substitution Time Range

100 Torch True 5.72 µs ± 15.89 ns

100 Numpy True 17.4 µs ± 73.21 ns

100 Torch False 14.3 µs ± 101 ns

100 Numpy False 129 µs ± 2.08 µs

The results of evaluating the uniform distribution without using

a substitute for r = 4500 are displayed in table 3.

SETN 2022, September 7–9, 2022, Corfu, Greece C. Karras, et al.

800

700

600

500

400

300

200

100

0 ----

0 1 2 3 4 5 6 7 8 9

(a) Uniform Based Sampling with Substitution

800

700

600

500

400

300

200

100

0 ----

0 1 2 3 4 5 6 7 8 9

(b) Uniform Based Sampling without Substitution

Figure 2: Uniform Based Sampling with r=8 on CPP

200

175

150

125

100

75

50

25

0 ----

0 1 2 3 4 5 6 7 8 9

(a) Uniform Based Sampling with Substitution

200

150

100

50

0 1 2 3 4 5 6 7 8 9

(b) Uniform Based Sampling without Substitution

Figure 3: Uniform Based Sampling r=2 on CUDA

800

700

600

500

400

300

200

100

0 ----

0 1 2 3 4 5 6 7 8 9

(a) Uniform Based Sampling with Substitution

800

700

600

500

400

300

200

100

0 ----

0 1 2 3 4 5 6 7 8 9

(b) Uniform Based Sampling without Substitution

Figure 4: Uniform Based Sampling with r=8 on CUDA

Table 3: Evaluation of Uniform Sampling for r=4500.

r Method Substitution Time Range

4500 Torch True 53.21 µs ± 1.43 µs
4500 Numpy True 71.92 µs ± 152 ns

4500 Torch False 72.57 µs ± 93.59 ns

4500 Numpy False 71.71µs ± 257 ns

The results of evaluating the uniform distribution without using

a substitute for r = 9000 are displayed in table 4.

Table 4: Evaluation of Uniform Sampling for r=9000.

r Method Substitution Time Range

9000 Torch True 95.41 µs ± 488 ns

9000 Numpy True 125 µs ± 1.15 µs
9000 Torch False 48.42 µs ± 674 ns

9000 Numpy False 137 µs ± 1.41 µs

4.3 Weight Based Sampling
For the CPP run the results of assessing weighted sampling without

substitution for r = 100 are summarised in table 5.

The results of assessing weighted sampling without substitution

for r = 4500 are summarised in table 6.

Weighted Reservoir Sampling On Evolving Streams SETN 2022, September 7–9, 2022, Corfu, Greece

Table 5: Evaluation of Weighted Sampling for r=100.

r Method Substitution Time Range

100 Torch True 43.7 µs ± 536 ns

100 Numpy True 110 µs ± 903 ns
100 Torch False 235 µs ± 3.67 ns

100 Numpy False 172 µs ± 2.3 µs

Table 6: Evaluation of Weighted Sampling for r=4500.

r Method Substitution Time Range

4500 Torch True 407 µs ± 4.7 µs
4500 Numpy True 495 µs ± 8.65 µs
4500 Torch False 295 µs ± 600 ns

4500 Numpy False 1.27ms ± 4.14 µs

The results of assessing weighted sampling without substitution

for r = 9000 are summarised in table 7.

Table 7: Evaluation of Weighted Sampling for r=9000.

r Method Substitution Time Range

9000 Torch True 773 µs ± 1.3 µs
9000 Numpy True 872 µs ± 1.14 µs
9000 Torch False 373 µs ± 999 ns

9000 Numpy False 2.92ms ± 6.24 µs

The findings for r=1 are shown in 5. We have weighted sampling

with replacement in 5a, while we have weighted sampling without

replacement in 5b.

For the CUDA run The findings for r = 1 are shown in 6. We

have weighted sampling with replacement in 6a, while we have

weighted sampling without replacement in 6b.

In case of weighted sampling, the time take is directly propor-

tional to number of samples to take. So for k=9000, time is highest

and for k = 100, time is lowest as shown in table 5.

4.4 Performance for multi-d tensors
By creating a two-dimensional tensor of 10000 elements we run

the experiments for (3) scenarios.

(1) r is small → r = 100

(2) r is medium → r = 4500

(3) r is large → r = 9000

Then we evaluate the running times. The results are shown in

table 8.

As shown in the preceding table, the time to perform sampling

on tensor(x) was low for small number of samples with elemental

substitution while for r = 9000 the best time achieved was without

substitution.

The overall results for the proposed sampling technique are

shown in table 10. The best sampling times are depicted in bold.

We can observe that the best results come from torch tensors while

they outperform numpy in both uniform and weighted methods

2000

1500

1000

500

0 1 2 3 4 5 6 7 8 9

(a) Weight Based Sampling with Substitution

2500

2000

1500

1000

500

0 1 2 3 4 5 6 7 8 9

(b) Weight Based Sampling without Substitution

Figure 5: Weight Based Sampling with r=1 on CPP

2500

2000

1500

1000

500

0 1 2 3 4 5 6 7 8 9

(a) Weight Based Sampling with Substitution

2500

2000

1500

1000

500

0 1 2 3 4 5 6 7 8 9

(b) Weight Based Sampling without Substitution

Figure 6: Weight Based Sampling with r=1 on CUDA

SETN 2022, September 7–9, 2022, Corfu, Greece C. Karras, et al.

Table 8: Performance for multi-d tensors.

r Method Substitution Time Range

100 Tensor(x) True 5.79 µs ± 5.46 ns

100 Tensor(x) False 14.3 µs ± 16.1 ns

100 2D-Tensor(x) None 130 µs ± 209 ns

4500 Tensor(x) True 52.5 µs ± 32.5 ns

4500 Tensor(x) False 72.9 µs ± 681 ns

4500 2D-Tensor(x) None 151 µs ± 389 ns

9000 Tensor(x) True 95.4 µs ± 75.5 ns

9000 Tensor(x) False 45.8 µs ± 56.6 ns

9000 2D-Tensor(x) None 167 µs ± 3.14 µs

Table 9: Evaluation of Weighted Sampling for r=9000.

r Method Substitution Time Range

100 Torch True 5.79 µs ± 5.46 ns
100 Numpy True 872 µs ± 1.14 µs
100 Torch False 373 µs ± 999 ns

100 Numpy False 2.92ms ± 6.24 µs

except for r=4500 where numpy outperformed torch for about one

microsecond.

Table 10: Overall comparison across all methods.

Method Type Size Samples Replacement Time

Numpy Uniform 10
5

9 × 10
3

True 126 µs
Numpy Weighted 10

5
9 × 10

3
True 872 µs

Torch Tensor 10
5

9 × 10
3

True 95.4 µs
Numpy Uniform 10

5
1 × 10

2
True 17.3 µs

Numpy Weighted 10
5

1 × 10
2

True 110 µs
Torch Tensor 10

5
1 × 10

2
True 5.79 µs

Numpy Uniform 10
5

45 × 10
2

True 71.9 µs
Numpy Weighted 10

5
45 × 10

2
True 495 µs

Torch Tensor 10
5

45 × 10
2

True 52.7 µs
Numpy Uniform 10

5
9 × 10

3
False 138 µs

Numpy Weighted 10
5

9 × 10
3

False 2920 µs
Torch Tensor 10

5
9 × 10

3
False 45.8 µs

Numpy Uniform 10
5

1 × 10
2

False 130 µs
Numpy Weighted 10

5
1 × 10

2
False 172 µs

Torch Tensor 10
5

1 × 10
2

False 14.3 µs
Numpy Uniform 10

5
45 × 10

2
False 71.7 µs

Numpy Weighted 10
5

45 × 10
2

False 1270 µs
Torch Tensor 10

5
45 × 10

2
False 72.9 µs

4.5 Proposed Method for Clustering
For training and testing, the suggested alternative of k-means was

utilized to detect events from IoT sensors using the SENSORS data

set. The suggested res-means algorithm detects events as indicated

in the table 13.

Table 11: Overall results of tensors across two different tools.

Tensor Tool Size Samples Replacement Time

Uniform CPU 10
7

10
5

True 208 µs
Uniform CUDA 10

7
10

5
True 27.1 µs

Uniform CPU 10
7

10
5

False 6.87 µs
Uniform CUDA 10

7
10

5
False 3.33 µs

Weighted CPU 10
7

10
5

False 335 µs
Weighted CUDA 10

7
10

5
False 84 µs

4.5.1 Evaluation. Three distinct methodologies were examined

to evaluate the suggested k-meas alternative. DBSCAN and E-

DBSCAN are the typical k-means. The findings are tabulated in 12.

The evaluation metrics used in this work are precision, recall, and

F-score.

Table 12: Performance evaluation of the proposed method.

Metrics K-means DBSCAN E-DBSCAN Res-Means

Precision 39.7 49.1 53.23 51.2

Recall 25.7 40.8 50.1 44.8

F-Score 30.46 44.64 51.45 47.7

4.5.2 Event Detection. The table 13 lists the detected events. The

event-detection frameworks CM, BoW, and EBoW are all quite sim-

ilar. The data set was classified into several categories, and the

suggested approach clustered all of the characteristics. Following

that, the four characteristics are shown as four clusters with cen-

troids and outliers. The events shown here are the total of the

outliers divided by the cluster center’s distance. Once again, our

technique surpasses the other three in each of the four areas.

Table 13: Events detected with the proposed method.

Event Detected CM BoW EBoW Res-means

Faulty sensor 4.81 7.12 7.91 8.44
Noisy data 9.23 9.8 11.29 12.71
Asynchronous intervals 4.38 5.23 7.8 9.47
Communication intangibility 5.62 6.45 8.4 11.25

5 CONCLUSIONS AND FUTUREWORK
In the context of this work, the inner workings of weighted reservoir

sampling are presented along with an algorithmic framework for

constructing probabilistic state graphs from events discovered in

evolving streams consisting of three distinct steps. First, weighted

reservoir sampling identifies important values in the stream. Then,

they are clustered either with k-means or DBSCAN so that regular

values are grouped together in mainstream events, whereas outliers

are considered as black swan events. The procedure is further made

simpler by supplying just a small number of data bits that are

indicative of the data set being used. Finally, a probabilistic state

Weighted Reservoir Sampling On Evolving Streams SETN 2022, September 7–9, 2022, Corfu, Greece

graph is constructed based on these events so that streams can be

efficiently represented and compared between them.

Improving reservoir sampling accuracy and precision while keep-

ing complexity within reasonable levels is a long range research

goal. Future enhancements may involve sophisticated clustering

or even consensus clustering taking place in the second step. The

ability to compute the two algorithms at the same time might be a

significant gain in overall performance and efficiency. Also worthy

of mention is the extension of the proposed framework so that it can

track changes in the distribution of the data. Ultimately, lightweight

implementations as the one presented can adapt to IoT scenarios.

REFERENCES
[1] Marcel R Ackermann, Marcus Märtens, Christoph Raupach, Kamil Swierkot,

Christiane Lammersen, and Christian Sohler. 2012. Streamkm++ a clustering

algorithm for data streams. Journal of Experimental Algorithmics (JEA) 17 (2012),
2–1.

[2] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. 2003. A

Framework for Clustering Evolving Data Streams. In Proceedings of the 29th
International Conference on Very Large Data Bases - Volume 29 (VLDB ’03). VLDB
Endowment, Berlin, Germany, 81–92.

[3] B Angelin and A Geetha. 2020. Outlier Detection using Clustering Techniques–K-

means and K-median. In 2020 4th International Conference on Intelligent Computing
and Control Systems (ICICCS). IEEE, 373–378.

[4] David Arthur and Sergei Vassilvitskii. 2006. k-means++: The advantages of careful
seeding. Technical Report. Stanford.

[5] Azzedine Boukerche, Lining Zheng, and Omar Alfandi. 2020. Outlier detection:

Methods, models, and classification. ACM Computing Surveys (CSUR) 53, 3 (2020),
1–37.

[6] Vladimir Braverman, Rafail Ostrovsky, and Carlo Zaniolo. 2009. Optimal sampling

from sliding windows. In Proceedings of the twenty-eighth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems. 147–156.

[7] Pierre Brémaud. 2013. Markov chains: Gibbs fields, Monte Carlo simulation, and
queues. Vol. 31. Springer Science & Business Media.

[8] Toon Calders, Nele Dexters, Joris JM Gillis, and Bart Goethals. 2014. Mining

frequent itemsets in a stream. Information Systems 39 (2014), 233–255.
[9] David Camacho, Ma Victoria Luzón, and Erik Cambria. 2021. New research

methods and algorithms in social network analysis. , 290–293 pages.

[10] Feng Cao, Martin Estert, Weining Qian, and Aoying Zhou. 2006. Density-based

clustering over an evolving data stream with noise. In Proceedings of the Sixth
SIAM International Conference on Data Mining. SIAM, SIAM, Bethesda, MD, USA,

328–339.

[11] Jian Chen and Jeffrey S Rosenthal. 2012. Decrypting classical cipher text using

Markov chain Monte Carlo. Statistics and Computing 22, 2 (2012), 397–413.

https://doi.org/10.1007/s11222-011-9232-5

[12] Ting Chen, Yizhou Sun, Yue Shi, and Liangjie Hong. 2017. On sampling strategies

for neural network-based collaborative filtering. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. 767–
776.

[13] Yun Chi, Haixun Wang, P.S. Yu, and R.R. Muntz. 2004. Moment: maintain-

ing closed frequent itemsets over a stream sliding window. In Fourth IEEE In-
ternational Conference on Data Mining (ICDM’04). IEEE, Brighton, UK, 59–66.
https://doi.org/10.1109/ICDM.2004.10084

[14] Mark Ming-Tso Chiang and Boris Mirkin. 2010. Intelligent choice of the number

of clusters in k-means clustering: an experimental study with different cluster

spreads. Journal of classification 27, 1 (2010), 3–40.

[15] Ariel Debrouvier et al. 2021. A model and query language for temporal graph

databases. VLDB Journal 30, 5 (2021), 825–858.
[16] Wei Deng, Guang Lin, and Faming Liang. 2022. An adaptively weighted stochastic

gradient MCMC algorithm for Monte Carlo simulation and global optimization.

Statistics and Computing 32, 4 (2022), 1–24.

[17] Pavlos S Efraimidis and Paul G Spirakis. 2006. Weighted random sampling with

a reservoir. Information processing letters 97, 5 (2006), 181–185.
[18] Ahmed Eldawy, Yuan Li, Mohamed F. Mokbel, and Ravi Janardan. 2013.

CG_Hadoop: Computational Geometry in MapReduce. In SIGSPATIAL. ACM, NY,

USA, 294–303. https://doi.org/10.1145/2525314.2525349

[19] S. Guha, N.Mishra, R. Motwani, and L. O’Callaghan. 2000. Clustering data streams.

In Proceedings 41st Annual Symposium on Foundations of Computer Science. IEEE,
Redondo Beach, CA, USA, 359–366. https://doi.org/10.1109/SFCS.2000.892124

[20] John A. Hartigan. 1975. Clustering Algorithms (99th ed.). John Wiley & Sons,

Inc., USA.

[21] Saeid Iranmanesh et al. 2019. Novel DTN mobility-driven routing in autonomous

drone logistics networks. IEEE Access 8 (2019), 13661–13673.

[22] Ruoming Jin and Gagan Agrawal. 2007. Frequent Pattern Mining in Data Streams.
Springer US, Boston, MA, 61–84. https://doi.org/10.1007/978-0-387-47534-9_4

[23] Aristeidis Karras and Christos Karras. 2022. Integrating User and Item Reviews in

Deep Cooperative Neural Networks for Movie Recommendation. arXiv preprint
arXiv:2205.06296 (2022).

[24] Christos Karras and Aristeidis Karras. 2022. DBSOP: An Efficient Heuristic for

Speedy MCMC Sampling on Polytopes. arXiv preprint arXiv:2203.10916 (2022).
[25] Christos Karras, Aristeidis Karras, Markos Avlonitis, Ioanna Giannoukou, and

Spyros Sioutas. 2022. Maximum Likelihood Estimators on MCMC Sampling

Algorithms for Decision Making. In IFIP International Conference on Artificial
Intelligence Applications and Innovations. Springer, Cham, 345–356.

[26] Christos Karras, Aristeidis Karras, Markos Avlonitis, and Spyros Sioutas. 2022. An

Overview of MCMC Methods: From Theory to Applications. In IFIP International
Conference on Artificial Intelligence Applications and Innovations. Springer, Cham,

319–332.

[27] Christos Karras, Aristeidis Karras, and Spyros Sioutas. 2022. Pattern Recognition

and Event Detection on IoT Data-streams. arXiv preprint arXiv:2203.01114 (2022).
[28] George Lagogiannis, Stavros Kontopoulos, and Christos Makris. 2019. On the

randomness that generates biased samples: The limited randomness approach.

Computer Science and Information Systems 16, 1 (2019), 205–225.
[29] Aihua Li, Weijia Xu, Zhidong Liu, and Yong Shi. 2021. Improved incremental

local outlier detection for data streams based on the landmark window model.

Knowledge and Information Systems 63, 8 (2021), 2129–2155.
[30] Yuan Li, Ahmed Eldawy, Jie Xue, Nadezda Knorozova, Mohamed F Mokbel, and

Ravi Janardan. 2019. Scalable computational geometry in MapReduce. VLDB
Journal 28, 4 (2019), 523–548.

[31] Fernando Llorente, E Curbelo, Luca Martino, Victor Elvira, and David Delgado.

2022. MCMC-driven importance samplers. Applied Mathematical Modelling
(2022).

[32] David Luengo, Luca Martino, Mónica Bugallo, Víctor Elvira, and Simo Särkkä.

2020. A survey of Monte Carlo methods for parameter estimation. EURASIP
Journal on Advances in Signal Processing 2020, 1 (2020), 1–62.

[33] Mohammad Sultan Mahmud, Joshua Zhexue Huang, Salman Salloum, Tamer Z

Emara, and Kuanishbay Sadatdiynov. 2020. A survey of data partitioning and

sampling methods to support big data analysis. Big Data Mining and Analytics 3,
2 (2020), 85–101.

[34] Tomas Martin, Guy Francoeur, and Petko Valtchev. 2020. CICLAD: A Fast and

Memory-Efficient Closed Itemset Miner for Streams. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(Virtual Event, CA, USA) (KDD ’20). Association for Computing Machinery, New

York, NY, USA, 1810–1818. https://doi.org/10.1145/3394486.3403232

[35] Luca Martino, Víctor Elvira, David Luengo, Jukka Corander, and Francisco

Louzada. 2016. Orthogonal parallel MCMC methods for sampling and opti-

mization. Digital Signal Processing 58 (2016), 64–84.

[36] L. Martino, V. Elvira, D. Luengo, J. Corander, and F. Louzada. 2016. Orthogonal

parallel MCMC methods for sampling and optimization. Digital Signal Processing
58 (2016), 64–84. https://doi.org/10.1016/j.dsp.2016.07.013

[37] Eli Packer, Peter Bak, Mikko Nikkilä, Valentin Polishchuk, and Harold J. Ship.

2013. Visual analytics for spatial clustering: Using a heuristic approach for guided

exploration. IEEE Transactions on Visualization and Computer Graphics 19, 12
(2013), 2179–2188. https://doi.org/10.1109/TVCG.2013.224

[38] Marcelo Pereyra, Philip Schniter, Emilie Chouzenoux, Jean-Christophe Pesquet,

Jean-Yves Tourneret, Alfred O Hero, and Steve McLaughlin. 2015. A survey

of stochastic simulation and optimization methods in signal processing. IEEE
Journal of Selected Topics in Signal Processing 10, 2 (2015), 224–241.

[39] Chedy Raissi and Pascal Poncelet. 2007. Sampling for Sequential Pattern Mining:

From Static Databases to Data Streams. In Seventh IEEE International Conference
on Data Mining (ICDM 2007). IEEE, Omaha, NE, USA, 631–636. https://doi.org/

10.1109/ICDM.2007.82

[40] Pang-Ning Tan, Michael S. Steinbach, and Vipin Kumar. 2022. Introduction to

Data Mining. Data Mining and Machine Learning Applications (2022).
[41] Syed Khairuzzaman Tanbeer, Chowdhury Farhan Ahmed, Byeong-Soo Jeong,

and Young-Koo Lee. 2009. Sliding window-based frequent pattern mining over

data streams. Information sciences 179, 22 (2009), 3843–3865.
[42] Hongzhi Wang, Mohamed Jaward Bah, and Mohamed Hammad. 2019. Progress

in outlier detection techniques: A survey. Ieee Access 7 (2019), 107964–108000.
[43] Tongxin Wang et al. 2021. MOGONET integrates multi-omics data using graph

convolutional networks allowing patient classification and biomarker identifica-

tion. Nature Communications 12, 1 (2021), 1–13.
[44] Ming-Juan Wu et al. 2019. Integrative hypergraph regularization principal com-

ponent analysis for sample clustering and co-expression genes network analysis

on multi-omics data. IEEE Journal of Biomedical and Health Informatics 24, 6
(2019), 1823–1834.

[45] Linli Xu and Dale Schuurmans. 2005. Unsupervised and Semi-Supervised Multi-

Class Support Vector Machines. In Proceedings of the 20th National Conference on
Artificial Intelligence - Volume 2 (AAAI’05). AAAI Press, Pittsburgh, Pennsylvania,
904–910.

https://doi.org/10.1007/s11222-011-9232-5
https://doi.org/10.1109/ICDM.2004.10084
https://doi.org/10.1145/2525314.2525349
https://doi.org/10.1109/SFCS.2000.892124
https://doi.org/10.1007/978-0-387-47534-9_4
https://doi.org/10.1145/3394486.3403232
https://doi.org/10.1016/j.dsp.2016.07.013
https://doi.org/10.1109/TVCG.2013.224
https://doi.org/10.1109/ICDM.2007.82
https://doi.org/10.1109/ICDM.2007.82

	Abstract
	1 Introduction
	2 Previous Work
	3 Methodology
	3.1 Overview
	3.2 Reservoir Sampling
	3.3 Data Stream Clustering
	3.4 Probabilistic Graph Representation

	4 Results
	4.1 Overview
	4.2 Uniform Based Sampling
	4.3 Weight Based Sampling
	4.4 Performance for multi-d tensors
	4.5 Proposed Method for Clustering

	5 Conclusions and Future Work
	References

