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Abstract. Consensus protocols constitute an important part in vir-
tually any blockchain stack as they safeguard transaction validity and
uniqueness. This task is achieved in a distributed manner by delegating
it to certain nodes which, depending on the protocol, may further uti-
lize the computational resources of other nodes. As a tangible incentive
for nodes to verify transactions many protocols contain special reward
mechanisms. They are typically inducement prizes aiming at increasing
node engagement towards blockchain stability. This work presents the
fundamentals of a probabilistic blockchain simulation tool for studying
large transaction volumes over time. Two consensus protocols, the proof
of work and the delegate proof of stake, are compared on the basis of
the reward distribution and the probability bound of the reward exceed-
ing its expected value. Also, the reward probability as a function of the
network distance from the node initiating the transaction is studied.

Keywords: Blockchain simulation · Consensus protocols · Proof of
work · Proof of state · Stakeholder delegate · Behavioral economics

1 Introduction

After the introduction of Bitcoin research interest focused not only on cryptocur-
rencies but also on the consensus protocols used to verify transactions. The latter
are essential in achieving reward fairness, even approximately, and trust in the
respective cryptocurrency by actively engaging nodes. A blockchain with rein-
forced trust in addition to the ability of global secure payments independent of
the control of external parties is more attractive to potential stakeholders.

Since blockchain relies on massive peer-to-peer (p2p) network technology,
it is difficult to predict the exact action course during a transaction sequence
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as well as the resulting blockchain state. One way to overcome this limitation
is to probabilistically simulate the blockchain including the consensus protocol,
network rewards, and the nodes themselves in terms of computing power.

The primary research objective of this conference paper is a highly parameter-
ized node-level probabilistic blockchain simulation tool. As a concrete example,
it has been applied to two common blockchain consensus protocols, namely proof
of work (PoW) and proof of stake (PoS), and the results are analyzed.

The remainder of this conference paper is structured as follows. In Sect. 2
the recent scientific literature is briefly reviewed. Simulation in described in
Sect. 3. The results are outlined in Sect. 4, while in Sect. 5 possible future research
directions are given. Capital italic letters represent random variables and capital
boldface letters matrices. In function definitions parameters follow arguments
after a semi-colon. Finally, the notation is summarized in Table 1.

Table 1. Notation of this work.

Symbol Meaning First in
�
= Definition or equality by definition Eq. (1)

E [X ] Mean value of random variable X Eq. (8)

Var [X ] Variance of random variable X Eq. (9)

prob {Ω} Probability of event Ω occurring Eq. (3)

〈f || g〉 Kullback-Leibler divergence for f and g Eq. (22)

f (n)(x) n-th derivative of function f (x) Eq. (9)

i → j/(i → j)p Path of node i to j of any length/length p Eq. (7)

2 Previous Work

Consensus protocols are instrumental in any blockchain [21]. Among the most
widespread ones are proof of work [1] and proof of stake [19]. A recent sur-
vey is [6]. Algorithmic means for defending against rogue and powerful miners
[15]. Game theoretic attacks for proof of work are analyzed in [4]. Blockchain
applications include smart contracts [18], payments [13], and medical records [9].
Behavioral economics focus on the cognitive mechanisms for decision making [3]
like cognitive bias [11], cognitive dissonance [12], and inducement prizes [10].
Such techniques have increased engagement in cultural content delivery [5] and
prolonged the visiting times in cultural portals [8]. An important effect of con-
sensus protocols is that they reinforce Web trust in a distributed and stateless
environment where parties have no a priori reason to trust each other [20]. The
latter is critical for Web services including e-commerce [2], database architecture
selection [14], recommendation engines [16], and finding trusted candidates in
LinkedIn [7]. Recently blockchains have been used in sensor networks [17].
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3 Simulation of Consensus Protocols

Interested parties and stakeholders typically consider joining a blockchain in
order to obtain certain rewards, whether tangible or intangible. Still, this work
will deal in general with (network) rewards without further specialization.

This simulation aims to address the following fundamental questions:

– The reward distribution after a long transaction sequence, especially in terms
of reward fairness and final node wealth distribution.

– How the costs of joining a blockchain and verifying transactions influence the
wealth distribution and whether negate any initial incentives.

– The transaction initiation distribution after a large number of transactions.
In the long run it reveals the true chances a node has for collecting rewards.

Note that the actual values of both the parameters discussed below and the
internal fine tuning options are given in Table 2. The primary parameters are:

– The number of blockchain nodes N0. It is the number of clients participating
to the p2p network, each performing an identical set of roles.

– The processing power Pi, namely the number of processors and their power.
They are identical, with factors like paging and caching policy ignored.

– The link capacity Ci,j ignoring factors such as network technology, signal to
noise (SNR) ratio, stack size, number of interfaces, and routing overhead.

– The node failure probability p0. It is independent of local resiliency technolo-
gies like backup power sources, network drives, and RAID arrays.

The simulation consists of R1 runs with the blockchain topology changing
after each run. Each such run has R0 rounds and each round has three steps:

– The initial transaction request and its propagation through the network.
– The transaction verification according to the consensus protocol.
– The verification propagation through the p2p network.

The number of rounds is determined as in Eq. (1). Each of the N0 nodes is
selected uniformly for a transaction. This in conjunction with R0 implies that
each node has on average γ0 chances to collect network rewards.

R0
�= �γ0N0� (1)

Blockchain topology plays a central role. In each run I0 randomly selected
links are created between the N0 nodes. The density ρ0 is defined as in (2):

I0
�= �ρ0N0� (2)

Each node starts with a fixed amount of W0 network reward units. In each
round a node, called the initiator for brevity, requests a transaction claiming
a randomly selected amount wi. The latter is chosen uniformly in the interval
between wlW0 and whW0. The uniform distribution expresses the generic nature
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of the network rewards and it is by no means fit for every case. For instance,
when the rewards are rare, the Poisson distribution might be more appropriate.

Network resiliency is expressed as the node failure probability p0. In the
context of the proposed simulation p0 is the probability of a node failing to receive
the request, process it, or send the reply. As each node operates independently,
the probability that k nodes fail simultaneously is given by Eq. (3):

πk
�= prob {k failures} =

(
N0

k

)
pk
0 (1 − p0)

N0−k (3)

Clearly πk in the above equation follows a binomial distribution defined over
a finite population N0 with a success probability 1 − p0. When p0 is very low,
as it was chosen here, then Eq. (3) can be approximated as in (4):

πk ≈ (p0N0)
k

k!
e−p0N0 =

λk
0

k!
e−λ0 , λ0

�= p0N0 (4)

Equation (4) is a Poisson distribution. This approximation is derived by (5).
Each of the k simultaneous failures in every simulation round is independent
and local as in a real p2p network there is no global failure knowledge.

(
N0

k

)
pk
0 ≈ Nk

0

k!
pk
0 =

(p0N0)
k

k!

(1 − p0)
N0−k ≈ (1 − p0)

N0 ≈ e−p0N0 (5)

The N0 × N0 random symmetric link capacity matrix C is an instrumental
parameter. Symmetry implies that the capacity in bits per second (bps) along
any link is the same in both directions. The time ti,i′ to transmit a packet of
length L0 in bits, complete with protocol headers and trailers, assuming that no
failures or retransmission attempts take place is shown in Eq. (6):

ti,i′ =
L0

Ci,i′
, link (i, i′) exists (6)

The distribution of link capacity Ci,j is log-normal with its variance taking
into account equipment technology, geographical distribution, and configuration
differences among other factors. The network packets carrying the transaction
verification request and the corresponding confirmation have length Lr and Lv

respectively. Typically Lr is long since it contains the information necessary to
verify the transaction. Additionally, both packets can be salted with crypto-
graphic data so that neither a random or fake transaction request can be gener-
ated nor a phony verification. Capacity essentially imposes a network topology
where the minimum distance between nodes i and j is the minimum weighted
sum over all connecting paths i → j. The minimum time Ti,j for a package is
(7), which lends itself among others to dynamic programming solutions:

Ti,j (L0)
�= min

i→j

⎡
⎣ ∑
(k,k′)

tk,k′

⎤
⎦ = min

i→j

⎡
⎣ ∑
(k,k′)

L0

Ck,k′

⎤
⎦ ≈ min

(i→j)p

⎡
⎣ ∑
(k,k′)

L0

Ck,k′

⎤
⎦ (7)
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In the simulation Ti,j is used, but in a real blockchain stack only local routing
information in a neighborhood of depth p is used as in the right hand side of (7).
The packet transmission times Ti,j depends on the link capacity distribution as
shown in (6). Since the latter is stochastic, so are Ti,j . This leads to the question
of what can be deduced about them given the probabilistic properties of C.

The mean values E [Ti,j ] of Ti,j can be computed as follows. If r.vs X and Y
are connected through the measurable, not necessarily invertible function h (·),
and if fX (·) is the probability density function (pdf) of X , then (8) holds:

E [Y] �= E [h (X )] =
∫

Ωf

h (x) fX (x) dx (8)

Concerning the variance Var [Ti,j ] the answer is not straightforward as the
variance is invariant in the general case only to linear transforms. Thus an esti-
mate by the delta method of Eq. (9) will be used which relies on a first order
Taylor approximation of Var [Y] around E [X]. Specifically:

Var [Y] ≈ Var [X ]
(
h(1)(E [X ])

)2

(9)

Given (8) and (9) the mean and variance of Ti,j are as in Eq. (10):

E [Ti,j ]
�=

L0

E [Ci,j ]
and Var [Ti,j ] ≈ Var [Ci,j ]

L2
0

E [Ci,j ]
4 (10)

Once a packet arrives at the destination node, it will be processed. Again
time is a critical factor, but it is computed in a different way. The processing
power Pi for each node is determined by the number and type of processors.
The memory is assumed to be sufficiently high so that it does not interfere with
thread or processor parallelism. Specifically, the processing power is given by
Amdahl’s law where each of the pi processors is assumed to have si cores for a
total of Pi = pisi cores. In this case Amdahl’s speedup becomes:

ζi
�=

1

(1 − ε0) +
ε0
Pi

=
1

(1 − ε0) +
ε0

pisi

(11)

In Eq. (11) 1 − ε0 is the part of the verification transaction which cannot be
parallelized and it is the same across nodes and runs. It has been determined
based on observations and literature recommendations [19,21]. Also, pi and ci

are uniformly selected among the respective number of possible choices.
The round trip time ri for node i from initiator i∗ is computed as in (12):

ri
�=

{
Ti,i∗ (Lr + Lv) + Tb/ζi, PoW/PoS I
Ti,i∗ (Lr + Lv) + max [Ti,j (Lr + Lv) + Tb/ζj ] , PoS II

(12)

The first branch in (12) represents the time required for the request packet to
reach i, to process it, and return the verification to i∗ for PoW. This is mechanism
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also works for the original version PoS of PoS I, although the verifiers are selected
in a specific probabilistic way. The second branch is the time under the delegate
version of PoS or PoS II required for the request packet to reach i and be relayed
to the witnesses, processing by the latter, return of the verifications from the
witnesses to i, and the subsequent retransmission to i∗. Tb is the base task
execution time which remains constant for every node and across runs.

3.1 Proof of Work

Under PoW the initiator is required to transmit a transaction verification
request. The latter is approved only when a sufficient number of responder nodes
approves the information the initiator has included in the request.

Algorithm 1. Consensus protocol simulation.
Require: The parameters of Table 2.
Ensure: The simulation objectives are achieved.
1: for all runs in the simulation do
2: select topology, capacities, processors, and cores
3: for all rounds in the current run do
4: select initiator node and reward
5: select responders or verifiers [and witness nodes]
6: compute times and rank nodes based on time
7: end for
8: end for
9: return

3.2 Proof of Stake

PoS relies on the principle that nodes which have accumulated more rewards are
also more eager to contribute to the blockchain stability. In the original version
(PoS I) η0 verifier nodes are selected with a probability proportional to their
rewards. To prevent rewards from being collected by a small group of nodes, in
the delegate version (PoS II) each verifier contracts a witness, selected with a
probability proportional to its computing power as shown in Eq. (13):

δi
�= prob {i is witness} =

Pi∑N0
k=1 Pk

(13)

Verifiers and witnesses each get a fraction τ0 of the reward. The selection
mechanism gives a chance to high power nodes in addition to the wealthier ones.
Advanced PoS versions of take into account network connections or memory size.
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4 Results

4.1 Rewards

In Table 2 the simulation parameters and their actual values are shown.

Table 2. Experimental setup.

Parameter Value Parameter Value

Number of nodes N0 16384 Delegate selection prob. δi Eq. (13)

Node failure probability p0 0.05 Rounds coefficient γ0 16

Network density ρ0 0.6 Percentage of parallelism ε0 0.85

Number of links I0 Eq. (2) Model fit method ML

Initial reward distribution Fixed Verification time Tb Eq. (12)

Initial balance W0 1000 Witness reward fraction τ0 0.005

Reward limits wl/wh 0.05/0.1 Link capacity distribution Lognormal

Simulation rounds R0 Eq. (1) Request packet length Lr 2048

Node selection distribution Uniform Verification packet length Lv 512

Number of delegates η0 51 Distribution of processors pi Uniform

Number of runs R1 10000 Distribution of cores si Uniform

An important description of a blockchain is its reward distribution. If it is
balanced enough, it may appeal to potential stakeholders seeking security. If
not, it may attract high risk takers. Thus, each distribution is compatible with
different behavioral stakeholder profiles, which is a key design factor.

For each node the rewards over each run and round are averaged, eliminating
thus the effect of topology and keeping that of consensus protocol. To construct
the empirical rewards distribution B0 bins as in Eq. (14) will be used. This allows
a large amount of bins each with a statistically safe numbers of samples.

B0
�= 0.25

⌈√
N0

⌉
(14)

The resulting empirical mean reward distribution in logarithmic scale is
shown in Fig. 1, which suggests a power law and that PoS seems to distribute
network rewards more evenly than PoW.

A second way to decide whether a particular blockchain is worth joining is the
probability of deviating from the expected reward. If the latter is high, then the
payoff for the initial cost may be significant. The Chebyshev inequality of (15)
provides upper bounds for this probability in the scale of standard deviations:

prob
{

|R − E [R]| ≥ ξ0
√

Var [R]
}

≤ 1
ξ20

(15)
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Table 3. Chebyshev upper bounds.

ξ0
√

Var [R] 0.2 E [R] 0.3 E [R] 0.5 E [R] 0.75 E [R] E [R]

PoW 2.83 · 10−1 1.45 · 10−1 7.09 · 10−2 1.08 · 10−2 9.81 · 10−3

PoS I (original) 1.83 · 10−1 1.17 · 10−1 4.18 · 10−2 8.14 · 10−3 7.79 · 10−3

PoS II (delegate) 1.22 · 10−1 9.62 · 10−2 3.26 · 10−2 7.66 · 10−3 6.33 · 10−3

Fig. 1. Mean reward distribution for the three scenario.

From Table 3 it can be seen that PoW attains higher upper bounds, which
is consistent with the less balanced reward distribution compared to the PoS
variants. Therefore, a potential stakeholder may be motivated by the prospect
of gaining additional rewards compared to the expected ones.

A third way to gain insight into the way the consensus protocols work is to
fit a distribution to the expected network rewards. In this case more protocol
properties can be derived, assuming the chosen distribution has a considerable
degree of accuracy. Since from Fig. 1 the empirical distribution of the average
reward appears to be a power law, three such models will be fit. Additionally,
the models were selected based on the number and type of scenaria they explain.

The log-normal distribution of (16) models long scale mobile signal scatter,
digital post length, and quantities made from the product of independent factors.

fl (x;σl, μl)
�=

1
xσl

√
2π

exp

(
− (ln x − μl)

2

2σ2
l

)
(16)
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The maximum likelihood (ML) estimators for μl and σ2
l are given in (17):

μ̂l =
1

B0

B0∑
k=1

ln xk and σ̂2
l =

1
B0

B0∑
k=1

(lnxk − μ̂l)
2 (17)

The Weibull distribution of (18) describes the time spent reading an Internet
post, measuring therefore indirectly reader engagement as well.

fw (x; k0, λ0)
�=

k0
λ0

(
x

λ0

)k0

exp
(

− x

λ0

)k0

(18)

The ML estimators for λ̂0 and k̂0 are given in Eq. (19):

λ̂0 =

(
1

B0

B0∑
k=1

xk̂0
k

)k̂−1
0

and
∑B0

k=1 xk̂0
k ln xk∑B0

k=1 xk̂0
k

− 1

k̂0
=

1
B0

B0∑
k=1

ln xk (19)

The Pareto type I distribution is frequently used to model physical and social
phenomena including income distributions. It is defined for x ≥ x0 as in (20):

fp (x;β0, x0)
�=

β0x
β0
0

x1+β0
=

β0

x0

(
x

x0

)−(1+β0)

(20)

The maximum likelihood (ML) estimators x̂0 and β̂0 are shown in (21):

x̂0 = min {xk} and β̂0 =
B0∑B0

k=1 ln
(

xk

x̂0

) (21)

The Kullback-Leibler divergence 〈f || g〉 between two continuous distributions
f (x) and g (x) is shown in (22) defined over the union Ω of the their domains.

〈f || g〉 �=
∫

Ω

f (x) logb

(
f (x)
g (x)

)
dx (22)

In Table 4 the normalized Kullback-Leibler divergence between the empirical
and the fitted models is shown. Rows were normalized to their respective minima.

Table 4. Divergence for reward models (Normalized).

Model/Protocol Log-normal Weibull Pareto

PoW 1.6426 1.4318 1

PoS I (original) 1.8665 1.6612 1

PoS II (delegate) 2.0114 1.7344 1
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The results of Table 4 can be interpreted based on the dependencies under-
lying the node interaction, which works differently across protocols. Under PoW
the verification packets of nodes closer to the initiator are more likely to reach
it first. In the PoS I case only current node rewards count, while PoS II adds
computing power as a factor and hence as an extra dependency layer. Therefore,
given that these simulation parameters remain constant, there is dependency in
the form of memory. This is better modeled by power law distributions, while
memoryless interactions by exponential ones. The log-normal distribution is the
closest to an exponential distribution, the Weibull distribution balances between
these two cases, and the Pareto distribution is a power law. This explains the
relative scores achieved by each of these three models.

4.2 Distance from the Initiator

From Fig. 2 it can be seen that under PoW nodes closer to the initiator have
considerably more chances of receiving a reward. This can be attributed to the
fact that packet propagation is one of the main latency factors. In sharp con-
trast, the verifier selection mechanism in PoS I is topology-independent. Hence
the respective curves are much different despite the round trip time being com-
puted by the same branch of (12). The PoW II relies on an additional selection
process for the witnesses which introduces additional skew compared to PoS I
but remains also topology-independent. The distance from a network focal point
is exploited in other applications such as high frequency trading (HFT).
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Fig. 2. Reward probability (log scale) vs network distance.
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4.3 Analysis

The need for a comprehensive blockchain simulation tool is clear since to the best
of the knowledge of the authors current tools focus on specific aspects. The open
source SimBlock takes into consideration network parameters such as bandwidth
and latency but not node reward. The very recent modular BlockSim also does
not support PoS. Shadow-Bitcoin as its name suggests was created for Bitcoin
simulation. Vibes as of 2017 supported only PoW. Solidity is intended only for
the creation of smart contracts over the Ethereum virtual machine (EVM).

The proposed simulation has a number of limitations. A more detailed model
can take into account aspects like dedicated application specific integrated cir-
cuits (ASIC) chips intended for mining rewards. Additionally, more distributions
for initiator selection, rewards, and capacities can be implemented and tested.

Behavior motivation of the stakeholders and how they influence blockchain
operations is vital to understanding blockchain stability. In particular, PoS can
be seen as an inducement price which should be weighted against an estimate
of the resources required. The reward fairness achieved by PoS may motivate
stakeholders with a strong tendency for loss aversion, whereas PoW may appeal
to stakeholders with powerful equipment. Furthermore, the connection of the
Pareto family of distributions to the least effort principle may hint at the
prospect of quick rewards as an incentive to join a blockchain.

One final note is that like any simulation the one proposed here is as accu-
rate as the assumptions and the models allow. As real data are collected from
deployed systems, their validity can be re-evaluated.

5 Conclusions and Future Work

This conference paper focuses on the probabilistic simulation of proof of work and
proof of stake in blockchains. Probabilistic analysis indicates the latter achieves a
more balanced reward distribution. Moreover, the probability of reward depends
heavily on the distance from the initiator under the proof of work protocol.

Future research directions include more runs with a larger number of nodes
and with more sophisticated consensus protocols. Moreover, failures can be
extended to involve a random number of rounds, possibly relying on resiliency
results from the field of temporal graphs, or neighborhoods of random radii.

Acknowledgment. This conference paper is part of Project 451, a long term research
iniative whose primary objective is the development of novel, scalable, numerically
stable, and interpretable tensor analytics.
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