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Abstract

Storing information in memory efficiently is 
one of the most significant challenges in com-
puter science. The two main factors that con-
sist an efficient data structure is the reduction 
of space and time consumption. There is a 
plethora of different tools able to reduce the 
run-time of a process, and Apache Spark is 
one of these; it is a computing framework that 
is using clusters to execute a process. There 
are two key features in this software, a directed 
acyclic graph (DAG) that maps the execution 
process and the resilient distributed datasets 
(RDD), which allow large in-memory compu-
tations. In order to construct a data structure, 
which is space- and time-efficient, we have to 
utilize the corresponding framework. A com-
parison of the run-time improvement with the 
use of Spark is also provided. Finally, to prove 

the efficacy of this software tool, we construct 
a space-efficient data structure and compare 
the run-time with and without its use.
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1	 �Introduction

Modern applications demand the efficient pro-
cessing of information, and in com-bination with 
ever increasing data, scientists should find more 
efficient software that will reduce the time and 
space consumption. Two major problems arise 
for computer scientists, namely, how to store all 
this information and the way to process it. Major 
research works have been published in both fields 
to find algorithms that can solve these problems. 
In the area of space compaction, a large amount 
of data structures has been proposed like su x 
trees [17]. This data structure is a tree structure 
that can store data by storing all the su xes of the 
words [15]. Also, inverted index is a data struc-
ture that is able to store big texts with the use of a 
lexicon and inverted lists [1, 3]. There are also 
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many improvements which aim at reducing the 
space demand for storing big data.

On the other hand, many different software 
tools implementing different algorithms have 
been developed in the last years to reduce the 
time consumption of a process. One of these 
tools is Apache Spark [18], which uses a direct 
acyclic graph and resilient distributed datasets. 
This open-source software breaks the process 
into different parts, operates every different part 
at the same time, and concludes to the outcome. 
Except for Apache Spark, there are many differ-
ent tools, like Apache Hadoop, which use differ-
ent techniques and rapidly analyze the data.

The origin of the data, in our days, can be 
from almost everywhere. The rapid increase in 
technology use leads to a large amount of data in 
any field. In this paper, we are interested in bio-
logical data where, following [9] that construct a 
space-efficient data structure to store biological 
sequences, different lengths of biological 
sequences to provide the run-time improvement 
are processed.

Nowadays, there is an increasing interest in 
understanding the human genome as well as the 
way living organisms are functioning. As a result, 
different genomics faculties have been created to 
study this field; these faculties export a large 
amount of data that can be DNA sequences, pro-
tein sequences, etc. The aim is to export the infor-
mation from the organisms and then process and 
analyze them. In this paper, we want to provide 
the most efficient way for these faculties to work 
with and reduce their processing time by using 
the best tools.

The data structure that is constructed in this 
paper to compare the run-time is a combination 
of su x trees along with inverted indexes. Su x 
trees provide much information for a stored 
string, whereas the feature that we take advantage 
of is the number of occurrences of a subsequence 
inside the string. After that, we use inverted 
indexes and store each subsequence depending 
on the number of occurrences that were produced 
using the previous structure.

The remainder of the paper is structured as 
follows: Sect. 2 overviews work that has been 
published on run-time efficiency and Apache 

Spark. Section 3 presents in detail the data struc-
ture and the way it is constructed, while in Sect. 
4, implementation details along with dataset used 
and Spark configuration are introduced. The 
experiments conducted with the corresponding 
discussion are described in Sect. 5. Ultimately, 
Sect. 6 presents conclusions and directions for 
future work that may extend the current version 
and performance of this work.

2	 �Related Work

In [2], a set of efficient algorithms for string prob-
lems arising in the computational biology area 
were presented, adapting traditional pattern match-
ing techniques to the weighted scenario. There is a 
connection with the probabilistic su x tree, where 
every node is associated with a probability vector 
that stores the probability distribution for the next 
symbol, given the label of the node [14].

In addition, our representation of n-grams and 
our space compaction heuristics are of general 
nature concerning the efficient handling of multi-
lingual documents in web search engines and 
information retrieval applications. In [11], 
regarding some languages, the characters are 
more like syllables than letters, and most words 
are small in numbers of characters; so, it is better 
to use n-grams.

The rapid development of next-generation 
sequencing (NGS) technology has generated a 
large amount of sequence data, which has a tre-
mendous impact on sequence alignment and 
mapping processes. Specifically, for a detailed 
survey regarding Spark-based applications used 
in NGS and other biological domains, the work 
in [5] can be taken into consideration. Further 
applications include assembly, sequence analy-
sis, phylogeny, and single-cell RNA sequencing.

StreamBWA is a streaming distributed strat-
egy where the input files were streamed into the 
Spark cluster [12]. This reduces the time required 
to preprocess data and combine the nal results. 
Meanwhile, authors in [10] introduced GATK-
Spark, a balanced parallelization approach that 
implements an in-memory version of GATK 
using Apache Spark. This paralleled the GATK 
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pipeline by taking full account of computation 
and workload. Another similar approach is pre-
sented in [6], where authors tried to migrate 
existing programs to multinode clusters without 
changing the original programs using Spark. The 
intermediate data are immediately consumed 
again on the nodes that generated the data, reduc-
ing time and network bandwidth consumption. In 
addition, a new assembling algorithm based on 
Spark, which aimed at simplifying the De Bruijn 
graph, was proposed in [13].

This paper builds up on the works presented in 
[4, 16], where a set of algorithmic techniques for 
efficiently handling weighted sequences by using 
inverted files were discussed. Specifically, these 
methods deal effectively with weighted sequences 
using the n-gram machinery and act as alterna-
tives to other techniques that mainly use su x 
trees. Furthermore, authors introduced a general 
framework that can be employed so as to reduce 
the space complexity of the two-level inverted 
files for n-grams.

3	 �Proposed Method

Initially, in our methodology, the data structure 
introduced in [9] is utilized. A biological 
sequence is inserted into a su x tree, which will 
store all the su xes of this sequence. It provides 
the number of occurrences for each selected sub-
sequence of a certain length. Based on each sub-
sequence calculated occurrences, Eq. 1 stores the 
subsequences on two different inverted indexes. 
This equation calculates the average amount of 
occurrences, namely, T, of a subsequence with 
length len in a string with N characters, where k 
is the size of the alphabet:

	
T

N

k
�

� �
len

len
len

2 1

	
(1)

In the following, we calculate the weight of each 
subsequence based on the product of the subse-
quence length and the number of times it occurs 
in the string. The subsequences that have a fewer 
number of occurrences than the threshold of 
Eq. 1 are stored in a classic inverted index. The 
subsequences that have a higher number of occur-

rences are stored in a two-level inverted index 
[8].

The classic inverted index is a structure that 
consists of two parts. Firstly, there is a dictionary, 
also called lexicon, which stores all the words of 
a text in alphabetical order. Each word of the dic-
tionary is then connected to a list, which consists 
the second part of the structure. This posting list 
contains the positions inside the text that this 
word occurs. By using this structure, we can 
time-efficiently reply to position queries for a 
certain word by reading the connected list for this 
word.

The two-level inverted index consists of dic-
tionary and posting lists but has a slightly differ-
ent structure as it stores the data in two phases. In 
the first phase, it builds an inverted index, also 
called back-end index, which stores the different 
subsequence and their occurrences. Following 
our previous work [9], we have utilized the same 
number of subsequences regarding the back-end 
index. Hence, it is built for seven different lengths 
of subsequences, from 4 to 10.

During the second phase of the algorithm, a 
second inverted index is constructed, also called 
the front-end index. The lexicon of the front-end 
index consists of all the n-grams extracted from 
the subsequences of the back-end index. The 
front-end index also consists of the inverted lists, 
which have the information of the subsequence 
that the relevant n-gram occurred. We construct 
three different front-end indexes for each back-
end index – a bigram, a trigram, and a four-gram 
for three different variations of n, which are two, 
three, and four, respectively.

3.1	 �Two-Level Inverted Index 
Example

To better understand the two-level inverted index, 
we present the following example in which there 
is a DNA sequence, with the letters A, G, C, and 
T.  Let us examine the sequence 
TGATGCAGGTCTG, with length N  =  13, and 
hence, all the subsequences with len = 4 will be 
produced. We have also elongated the subse-
quences by n 1 so as not to lose any n-gram.

Improving the Run-Time of Space-Efficient n-Gram Data Structures Using Apache Spark



168

Table 1 introduces the two-level inverted 
index, whereas Table  1a presents the back-end 
index created for this sequence. There are four 
different subsequences extracted for the examined 
length and elongation. The dictionary, which is 
con-structed for the back-end index, is in alpha-
betical order and for each subsequence, a posting 
list, which specifies the position of the word 
inside the sequence, exists. In particular, the first 
entry of the dictionary specifies that the subse-
quence “AGGT” occurs in position 6 of the first 
sequence (since we have only one sequence in our 
example, all subsequences have the same identi-
fier 0, and the first character is at position 0).

In the next phase, the front-end index is con-
structed based on the back-end index. More spe-
cifically, Table 1b displays all different n-grams 
extracted from Table  1a. For this example, we 
extract only the n-grams having a length equal to 
2, namely, bigrams. Each extracted n-gram exists 
in the front-end index in alphabetical order. For 
each n-gram, a posting list that specifies the sub-
sequence of the back-end index, and the position 
inside each subsequence is considered. In partic-
ular, the last entry of Table  1a, i.e., the bigram 
“TG”, occurs in three different subsequences of 
the back-end index, namely, in position 2 of the 
subsequence 1, in position 0 of the subsequence 
2, and in position 0 of the subsequence 3 (the 
starting position of the subsequences of the back-
end index starts at 0).

4	 �Implementation

We implemented our methods using the Python 
language, and the time consumption in each case 
is counted. In particular, we measure separately 
the construction of each one of the seven back-
end indexes as well as the generation and separa-
tion between the classic and two-level inverted 
index for each subsequence. In addition to that, 
we also calculated the time for each separate 
front-end index that was developed. As a result, 
for each process, we keep track of 35 different 
run-times, and we compare them with all the 
other multithreading processes.

4.1	 �Dataset

The above procedure was measured and com-
pared to the three different node levels. Apart 
from that, we study different file sizes as we take 
biological sequences from living organisms1 with 
sizes equal to 5 MB and 20 MB. Firstly, with the 
use of different sizes, we aim to study the fluctua-
tion of the run-time improvement for each one 
separately. In the following, we check if there is 
any difference in the improvement of different 
sizes to propose the best file sizes for such 
methods.

4.2	 �Apache Spark Framework

Apache Spark framework2 [7] is a newer frame-
work built in the same principles as Hadoop. 
While Hadoop is ideal for large batch processes, 
it drops in performance in certain scenarios, as in 
iterative or graph-based algorithms. Spark, in 
contrast to Hadoop, maintains the data in the 
workers’ memory, and as a result it outperforms 
the later in algorithms that require many 
operations.

Our cluster includes 16 computing nodes 
(VMs), each one of which has 4 2:4 GHz CPU 
processors, 16 GB of memory, and 120 GB hard 
disk. One of the VMs serves as the master node 
and the other 15 VMs as the slave nodes.

Moreover, we apply the following changes 
to the default Spark configurations: 12 total 
executor cores (4 for each slave machine) are 
used; the executor memory is set equal to 8 GB 
and the driver memory to 4  GB.  The above 
configurations were applied in the case of 
16-node experiments. Regarding the four-node 
experiments, one of the VMs serves as the mas-
ter node and the other three VMs as the slave 
nodes.

1 ftp://ftp.ncbi.nih.gov/genomes/
2 http://spark.apache.org/
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5	 �Results

In terms of a computer system, two major issues 
are program run-time along with space consump-
tion. So, the main goal of our paper is to reduce 
the time needed of a two-level inverted index, 
based on n-grams for a biological sequence [8]. 
In [9], a data structure was implemented to 
improve the space demand, and with the use of 
multithreading, this high space efficiency is kept 
by achieving a less time-consuming process.

Our approach is based on the comparison in 
terms of a cluster with a variety of nodes. 
Specifically, the experimental results of the clas-
sical approach using 1 node are compared with 
the results of a cluster with 4 and 16 nodes. As 
expected, as the number of nodes is increasing 
and the process is diverted in more threads, the 
run-time will be reduced, although the factor of 
improvement is not linear for all thresholds and 
input files. In the following, the results for 5 MB 
and 20 MB data files for seven different lengths 
of subsequences are discussed.

5.1	 �Dataset of 5 MB

Table 2 displays the time, for the different lengths 
of subsequences, the threshold equation, the 
back-end index, and the three different front-end 
indexes for the input file of 5 MB.

We observe that the execution time of the 
weight calculation and the separation of the sub-
sequences, namely, threshold equation, for length 
equal to 4 is reduced from 9:28 s for 1 node to 
5:15 s for 4 nodes and 3:22 s for 16 nodes. This 
leads to a 44% decrease between 1 and 4 nodes 
and a 37% decrease between 4 and 16 nodes. 
While the nodes are increasing by a factor equal 
to 4 in each node set, we observe that the percent-
age fluctuates and is not linear, i.e., 44% and 
37%. Moreover, this difference between the per-
centage decrease lies also between the different 
length of subsequences for the same node sets, 
i.e., in the threshold equation phase, for length 4, 
the percentage decrease between one and four 
nodes is 44%, while for length 10, we have a 
decrease of 29% (20,821:17 s and 14,794:61 s for 
1 and 4 nodes, respectively).

Similar to the threshold equation phase, the 
execution time to construct the back-end index 
reduces as the number of nodes increases. Based 
on that, for each node set, the higher the length of 
the subsequence, the more the execution time. 
More specifically, for one node and length of sub-
sequence equal to 6, the execution time is 40; 
81  s, which is lower than length 10, i.e., 7421; 
36  s. The corresponding values for 4 nodes are 
28:45 s and 6292:14 s, while for 16 nodes 19:82 s 
and 4198:78 s. This substantiates our expectation 
for lower execution time as the number of nodes 
increase. However, the percentage of the decrease 
between each node set fluctuates more than one 

Table 1  Two-level 
inverted index
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would expect. In particular, there is a 33% 
decrease for length 4 between one and four nodes 
(7:68  s and 5:08  s, respectively), while for the 
same nodes, the percentage for length 10 is 15%.

In contrast to the robust behavior of the thresh-
old equation and back-end index phase, the front-
end construction phase execution times vary. For 
each node set, the execution time increases as the 
length of the subsequence increases, although 
this does not stand for the increase of the number 
of nodes. In particular, the execution time using 
one node, for length of subsequence equal to 5 
and the front-end consists of 4 grams, is 0:03 s. 
For the same features and length equal to 10, the 
execution time increases to 11:34  s. When the 
number of nodes increases to four, the respective 
times are 0:04  s and 6:34  s. This shows that 
regarding length 10, the execution time reduces, 
whereas regarding length 5, the execution time 

increases. This can be explained by the fact that 
the run time for such small subsequences is really 
small and the overhead cost varies leading to 
such results. The same fluctuated behavior is 
observed for the 16 nodes set where the time for 
the length of subsequence 5 is 0:09 s and for 10 is 
3:65 s.

The same behavior is noticed for all front-end 
indexes. When the execution time is very low, the 
results may not be as robust as expected. Our 
final observation is that as the length of the 
n-gram increases, the execution time reduces. 
This is an expected behavior based on the con-
struction phase of the front-end index; to con-
struct the front-end index, each of its subsequence 
is split into the desired n-grams, and as a result, 
the higher the n-gram, the fewer the splits on the 
subsequence.

Table 2  Execution time for 5 MB (in seconds)

Length of substring
Threshold equation Back-end Front-end Front-end Front-end

2-gram 3-gram 4-gram
1 node

4 9.28101 7.6873 0.03127 0.01562 0.01562
5 22.87442 14.9684 0.03121 0.01564 0.03127
6 79.88853 40.81274 0.09374 0.0625 0.0625
7 309.02449 135.29478 0.31246 0.18749 0.14065
8 1245.51827 500.14972 1.14055 0.79689 0.82807
9 5073.25390 1873.86071 4.7499 3.43738 2.74993
10 20821.17229 7421.36633 19.03075 16.10894 11.34345

4 nodes
4 5.15471 5.08626 0.07064 0.04040 0.03893
5 16.25639 10.44123 0.17678 0.10057 0.0418
6 56.31926 28.45171 0.12700 0.06289 0.05842
7 215.99530 94.85067 0.22914 0.12222 0.10695
8 872.44428 357.68164 0.77126 0.44001 0.45133
9 3564.83482 1394.52719 2.77309 1.85139 1.48160
10 14794.6182 6292.14491 11.86227 9.13899 6.34939

16 nodes
4 3.224 2.86304 0.062154 0.03541 0.05124
5 11.93713 6.90567 0.10548 0.085694 0.09548
6 30.91816 19.82573 0.01025 0.03986 0.04553
7 156.03783 62.21554 0.18422 0.07931 0.076
8 573.19352 234.42779 0.47523 0.25477 0.3172
9 2661.85641 978.50024 1.95494 1.19603 1.09481
10 10727.26266 4198.78216 8.39711 5.08691 3.6512
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5.2	 �Dataset of 20 MB

Table 3 displays the time for the different lengths 
of subsequences, the threshold equation, the 
back-end index, and the three different front-end 
indexes for the input file of 20 MB.

Initially, we notice that the behavior for the 
threshold equation and back-end index is robust 
and similar to the 5  MB file. For example, the 
execution time in the threshold equation phase 
for length of subsequence equal to 4 and one 
node is 9:28 s, while for length 10 is 20,821:17 s. 
In addition, we can identify a steep increase in 
the execution time as the length increases. In 
addition to that, for four nodes and length of sub-
sequence equal to 4 and 10, the execution time is 
5:15 s and 14,974:61 s, respectively. This steep 
increase of the execution time between the differ-
ent lengths can also be seen in terms of one node. 
However, the execution time is lower than corre-
sponding lengths, which describes the time 

reduction when the number of nodes increases. 
Once the nodes are increased to 16, the execution 
time further reduces to 3:22 s and 10,727:26 s for 
length values equal to 4 and 10, respectively.

The main difference for threshold equation 
and back-end index phases between the 5  MB 
and 20 MB file is that the latter has a smaller fluc-
tuation of the reduction percentage as the nodes 
increase. More specifically, in the 5 MB file, we 
observe that the highest percentage is 44% for the 
configuration of threshold equation phase, for 
length of subsequence equal to 4 and one to four 
nodes, while the lowest is 15% for the configura-
tion of back-end phase, for length of subsequence 
equal to 10 and 1–4 nodes. In contrast, for the 
20 MB file, the highest percentage is 36% for the 
configuration of threshold equation phase, for 
length of subsequence equal to 4 and 1–4 nodes, 
while the lowest is 25% for the configuration of 
threshold equation phase, for length of subse-
quence equal to 6 and 4–16 nodes. Furthermore, 

Table 3  Execution time for 20MB (in seconds)

Length of substring
Threshold equation Back-end Front-end Front-end Front-end

2-gram 3-gram 4-gram
1 node

4 34,43379 30,05907 0,01501 0,01003 0,01197
5 93,82897 63,54991 0,04097 0,02197 0,02097
6 326,63004 173,70683 0,08901 0,07302 0,05900
7 1271,08973 579,21976 0,29898 0,20802 0,16402
8 5078,52252 2160,27892 1,33792 0,93194 0,86494
9 20706,64239 8074,79021 4,91471 3,65278 3,15581
10 84400,59777 30325,55520 19,6448 15,94504 11,08534

4 nodes
4 21,90268 20,48459 0,17766 0,06445 0,05416
5 63,09541 45,94116 0,09985 0,04239 0,04498
6 229,08398 121,66234 0,26465 0,07040 0,07472
7 892,55925 409,91803 0,38385 0,16764 0,14046
8 3607,09192 1534,54903 0,96597 0,62060 0,60317
9 14753,43285 5745,00896 3,76170 2,56384 2,31665
10 60390,94628 21626,81785 12,69483 9,39571 6,72134

16 nodes
4 14,442 14,5593 0,10543 0,076548 0,085647
5 41,3526 31,91015 0,15236 0,06235 0,05487
6 171,21432 79,22427 0,23300 0,04958 0,75054
7 575,55304 282,86946 0,30546 0,10325 0,10206
8 2375,15663 1022,53792 0,68256 0,42454 0,43478
9 10976,8498 4252,21882 2,68825 1,76771 1,76723
10 41854,88216 15067,96253 8,22551 5,90836 4,04803
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there is a more robust behavior when the node 
increases from one to four, which means that the 
execution time reduction will be almost the same 
for the lengths 4 and 10. Hence, we conclude that 
the higher the data file is, the more robust the 
fluctuation for the different lengths of subse-
quence will be.

The front-end construction phase for the 
20  MB file follows the same behavior as the 
5  MB file. As the length of the subsequence 
increases for a node set, so does the execution 
time, although the execution time does not reduce 
as the number of nodes increases, as in the back-
end or the threshold equation phase. This occurs 
when the execution time is very low, under 1 s, 
and can be explained by the overhead cost that is 
added to these values.

A final observation on the execution time 
between the two different tables can be drawn. As 
the amount of data increases from 5  MB to 
20  MB, the execution time for phases, like the 
threshold equation or back-end index, is increased 
for at least four times. However, the execution 
time for the construction of the front-end index 
remains almost the same, with a difference of up 
to 1 s. This is a very interesting result, as it proves 
that the front-end index construction will remain 
almost the same for different data files.

6	 �Conclusions and Future Work

In the proposed paper, we compare the run-time of 
algorithmic techniques set for efficiently handling 
biological sequences by using inverted files. 
Following previous works, we implemented a data 
structure to improve space demand with the use of 
multithreading. Apache Spark framework was uti-
lized in order to prove the efficacy of the proposed 
schema, and the results of this space-efficient data 
structure are quite promising. These methods deal 
effectively with DNA sequences using the n-gram 
machinery and act as alternatives to other tech-
niques that mainly use su x trees.

Regarding future work, the proposed method-
ology can be augmented with additional datasets 
to establish a better understanding. In addition, 

the cluster on which we tested our experiments is 
another key aspect of cloud computing, in gen-
eral, to better evaluate Spark’s performance in 
terms of time and scalability. Finally, a limitation 
that illustrates the restrictions of our proposed 
methodology and suggests room for improve-
ment in future studies is the inverted file intersec-
tion algorithms utilization along with the 
incorporation of some extra data structures to test 
the time efficiency of our scheme when handling 
such queries.
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