
165© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
P. Vlamos (ed.), GeNeDis 2020, Advances in Experimental Medicine and Biology 1338,
https://doi.org/10.1007/978-3-030-78775-2_19

Improving the Run-Time of Space-
Efficient n-Gram Data Structures
Using Apache Spark

Fotios Kounelis, Andreas Kanavos,
and Phivos Mylonas

Abstract

Storing information in memory efficiently is
one of the most significant challenges in com-
puter science. The two main factors that con-
sist an efficient data structure is the reduction
of space and time consumption. There is a
plethora of different tools able to reduce the
run-time of a process, and Apache Spark is
one of these; it is a computing framework that
is using clusters to execute a process. There
are two key features in this software, a directed
acyclic graph (DAG) that maps the execution
process and the resilient distributed datasets
(RDD), which allow large in-memory compu-
tations. In order to construct a data structure,
which is space- and time-efficient, we have to
utilize the corresponding framework. A com-
parison of the run-time improvement with the
use of Spark is also provided. Finally, to prove

the efficacy of this software tool, we construct
a space-efficient data structure and compare
the run-time with and without its use.

Keywords

Inverted files · n-gram indexing · Computing
performance · Apache Spark · Biological
sequences

1	 �Introduction

Modern applications demand the efficient pro-
cessing of information, and in com-bination with
ever increasing data, scientists should find more
efficient software that will reduce the time and
space consumption. Two major problems arise
for computer scientists, namely, how to store all
this information and the way to process it. Major
research works have been published in both fields
to find algorithms that can solve these problems.
In the area of space compaction, a large amount
of data structures has been proposed like su x
trees [17]. This data structure is a tree structure
that can store data by storing all the su xes of the
words [15]. Also, inverted index is a data struc-
ture that is able to store big texts with the use of a
lexicon and inverted lists [1, 3]. There are also

F. Kounelis (*)
Department of Computing, Imperial College London,
London, UK
e-mail: f.kounelis20@imperial.ac.uk

A. Kanavos (*)
Computer Engineering and Informatics Department,
University of Patras, Patras, Greece
e-mail: kanavos@ceid.upatras.gr

P. Mylonas (*)
Department of Informatics, Ionian University,
Corfu, Greece
e-mail: fmylonas@ionio.gr

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78775-2_19&domain=pdf
https://doi.org/10.1007/978-3-030-78775-2_19#DOI
mailto:f.kounelis20@imperial.ac.uk
mailto:kanavos@ceid.upatras.gr
mailto:fmylonas@ionio.gr

166

many improvements which aim at reducing the
space demand for storing big data.

On the other hand, many different software
tools implementing different algorithms have
been developed in the last years to reduce the
time consumption of a process. One of these
tools is Apache Spark [18], which uses a direct
acyclic graph and resilient distributed datasets.
This open-source software breaks the process
into different parts, operates every different part
at the same time, and concludes to the outcome.
Except for Apache Spark, there are many differ-
ent tools, like Apache Hadoop, which use differ-
ent techniques and rapidly analyze the data.

The origin of the data, in our days, can be
from almost everywhere. The rapid increase in
technology use leads to a large amount of data in
any field. In this paper, we are interested in bio-
logical data where, following [9] that construct a
space-efficient data structure to store biological
sequences, different lengths of biological
sequences to provide the run-time improvement
are processed.

Nowadays, there is an increasing interest in
understanding the human genome as well as the
way living organisms are functioning. As a result,
different genomics faculties have been created to
study this field; these faculties export a large
amount of data that can be DNA sequences, pro-
tein sequences, etc. The aim is to export the infor-
mation from the organisms and then process and
analyze them. In this paper, we want to provide
the most efficient way for these faculties to work
with and reduce their processing time by using
the best tools.

The data structure that is constructed in this
paper to compare the run-time is a combination
of su x trees along with inverted indexes. Su x
trees provide much information for a stored
string, whereas the feature that we take advantage
of is the number of occurrences of a subsequence
inside the string. After that, we use inverted
indexes and store each subsequence depending
on the number of occurrences that were produced
using the previous structure.

The remainder of the paper is structured as
follows: Sect. 2 overviews work that has been
published on run-time efficiency and Apache

Spark. Section 3 presents in detail the data struc-
ture and the way it is constructed, while in Sect.
4, implementation details along with dataset used
and Spark configuration are introduced. The
experiments conducted with the corresponding
discussion are described in Sect. 5. Ultimately,
Sect. 6 presents conclusions and directions for
future work that may extend the current version
and performance of this work.

2	 �Related Work

In [2], a set of efficient algorithms for string prob-
lems arising in the computational biology area
were presented, adapting traditional pattern match-
ing techniques to the weighted scenario. There is a
connection with the probabilistic su x tree, where
every node is associated with a probability vector
that stores the probability distribution for the next
symbol, given the label of the node [14].

In addition, our representation of n-grams and
our space compaction heuristics are of general
nature concerning the efficient handling of multi-
lingual documents in web search engines and
information retrieval applications. In [11],
regarding some languages, the characters are
more like syllables than letters, and most words
are small in numbers of characters; so, it is better
to use n-grams.

The rapid development of next-generation
sequencing (NGS) technology has generated a
large amount of sequence data, which has a tre-
mendous impact on sequence alignment and
mapping processes. Specifically, for a detailed
survey regarding Spark-based applications used
in NGS and other biological domains, the work
in [5] can be taken into consideration. Further
applications include assembly, sequence analy-
sis, phylogeny, and single-cell RNA sequencing.

StreamBWA is a streaming distributed strat-
egy where the input files were streamed into the
Spark cluster [12]. This reduces the time required
to preprocess data and combine the nal results.
Meanwhile, authors in [10] introduced GATK-
Spark, a balanced parallelization approach that
implements an in-memory version of GATK
using Apache Spark. This paralleled the GATK

F. Kounelis et al.

167

pipeline by taking full account of computation
and workload. Another similar approach is pre-
sented in [6], where authors tried to migrate
existing programs to multinode clusters without
changing the original programs using Spark. The
intermediate data are immediately consumed
again on the nodes that generated the data, reduc-
ing time and network bandwidth consumption. In
addition, a new assembling algorithm based on
Spark, which aimed at simplifying the De Bruijn
graph, was proposed in [13].

This paper builds up on the works presented in
[4, 16], where a set of algorithmic techniques for
efficiently handling weighted sequences by using
inverted files were discussed. Specifically, these
methods deal effectively with weighted sequences
using the n-gram machinery and act as alterna-
tives to other techniques that mainly use su x
trees. Furthermore, authors introduced a general
framework that can be employed so as to reduce
the space complexity of the two-level inverted
files for n-grams.

3	 �Proposed Method

Initially, in our methodology, the data structure
introduced in [9] is utilized. A biological
sequence is inserted into a su x tree, which will
store all the su xes of this sequence. It provides
the number of occurrences for each selected sub-
sequence of a certain length. Based on each sub-
sequence calculated occurrences, Eq. 1 stores the
subsequences on two different inverted indexes.
This equation calculates the average amount of
occurrences, namely, T, of a subsequence with
length len in a string with N characters, where k
is the size of the alphabet:

	
T

N

k
�

� �
len

len
len

2 1

	
(1)

In the following, we calculate the weight of each
subsequence based on the product of the subse-
quence length and the number of times it occurs
in the string. The subsequences that have a fewer
number of occurrences than the threshold of
Eq. 1 are stored in a classic inverted index. The
subsequences that have a higher number of occur-

rences are stored in a two-level inverted index
[8].

The classic inverted index is a structure that
consists of two parts. Firstly, there is a dictionary,
also called lexicon, which stores all the words of
a text in alphabetical order. Each word of the dic-
tionary is then connected to a list, which consists
the second part of the structure. This posting list
contains the positions inside the text that this
word occurs. By using this structure, we can
time-efficiently reply to position queries for a
certain word by reading the connected list for this
word.

The two-level inverted index consists of dic-
tionary and posting lists but has a slightly differ-
ent structure as it stores the data in two phases. In
the first phase, it builds an inverted index, also
called back-end index, which stores the different
subsequence and their occurrences. Following
our previous work [9], we have utilized the same
number of subsequences regarding the back-end
index. Hence, it is built for seven different lengths
of subsequences, from 4 to 10.

During the second phase of the algorithm, a
second inverted index is constructed, also called
the front-end index. The lexicon of the front-end
index consists of all the n-grams extracted from
the subsequences of the back-end index. The
front-end index also consists of the inverted lists,
which have the information of the subsequence
that the relevant n-gram occurred. We construct
three different front-end indexes for each back-
end index – a bigram, a trigram, and a four-gram
for three different variations of n, which are two,
three, and four, respectively.

3.1	 �Two-Level Inverted Index
Example

To better understand the two-level inverted index,
we present the following example in which there
is a DNA sequence, with the letters A, G, C, and
T. Let us examine the sequence
TGATGCAGGTCTG, with length N = 13, and
hence, all the subsequences with len = 4 will be
produced. We have also elongated the subse-
quences by n 1 so as not to lose any n-gram.

Improving the Run-Time of Space-Efficient n-Gram Data Structures Using Apache Spark

168

Table 1 introduces the two-level inverted
index, whereas Table 1a presents the back-end
index created for this sequence. There are four
different subsequences extracted for the examined
length and elongation. The dictionary, which is
con-structed for the back-end index, is in alpha-
betical order and for each subsequence, a posting
list, which specifies the position of the word
inside the sequence, exists. In particular, the first
entry of the dictionary specifies that the subse-
quence “AGGT” occurs in position 6 of the first
sequence (since we have only one sequence in our
example, all subsequences have the same identi-
fier 0, and the first character is at position 0).

In the next phase, the front-end index is con-
structed based on the back-end index. More spe-
cifically, Table 1b displays all different n-grams
extracted from Table 1a. For this example, we
extract only the n-grams having a length equal to
2, namely, bigrams. Each extracted n-gram exists
in the front-end index in alphabetical order. For
each n-gram, a posting list that specifies the sub-
sequence of the back-end index, and the position
inside each subsequence is considered. In partic-
ular, the last entry of Table 1a, i.e., the bigram
“TG”, occurs in three different subsequences of
the back-end index, namely, in position 2 of the
subsequence 1, in position 0 of the subsequence
2, and in position 0 of the subsequence 3 (the
starting position of the subsequences of the back-
end index starts at 0).

4	 �Implementation

We implemented our methods using the Python
language, and the time consumption in each case
is counted. In particular, we measure separately
the construction of each one of the seven back-
end indexes as well as the generation and separa-
tion between the classic and two-level inverted
index for each subsequence. In addition to that,
we also calculated the time for each separate
front-end index that was developed. As a result,
for each process, we keep track of 35 different
run-times, and we compare them with all the
other multithreading processes.

4.1	 �Dataset

The above procedure was measured and com-
pared to the three different node levels. Apart
from that, we study different file sizes as we take
biological sequences from living organisms1 with
sizes equal to 5 MB and 20 MB. Firstly, with the
use of different sizes, we aim to study the fluctua-
tion of the run-time improvement for each one
separately. In the following, we check if there is
any difference in the improvement of different
sizes to propose the best file sizes for such
methods.

4.2	 �Apache Spark Framework

Apache Spark framework2 [7] is a newer frame-
work built in the same principles as Hadoop.
While Hadoop is ideal for large batch processes,
it drops in performance in certain scenarios, as in
iterative or graph-based algorithms. Spark, in
contrast to Hadoop, maintains the data in the
workers’ memory, and as a result it outperforms
the later in algorithms that require many
operations.

Our cluster includes 16 computing nodes
(VMs), each one of which has 4 2:4 GHz CPU
processors, 16 GB of memory, and 120 GB hard
disk. One of the VMs serves as the master node
and the other 15 VMs as the slave nodes.

Moreover, we apply the following changes
to the default Spark configurations: 12 total
executor cores (4 for each slave machine) are
used; the executor memory is set equal to 8 GB
and the driver memory to 4 GB. The above
configurations were applied in the case of
16-node experiments. Regarding the four-node
experiments, one of the VMs serves as the mas-
ter node and the other three VMs as the slave
nodes.

1 ftp://ftp.ncbi.nih.gov/genomes/
2 http://spark.apache.org/

F. Kounelis et al.

ftp://ftp.ncbi.nih.gov/genomes/
http://spark.apache.org/

169

5	 �Results

In terms of a computer system, two major issues
are program run-time along with space consump-
tion. So, the main goal of our paper is to reduce
the time needed of a two-level inverted index,
based on n-grams for a biological sequence [8].
In [9], a data structure was implemented to
improve the space demand, and with the use of
multithreading, this high space efficiency is kept
by achieving a less time-consuming process.

Our approach is based on the comparison in
terms of a cluster with a variety of nodes.
Specifically, the experimental results of the clas-
sical approach using 1 node are compared with
the results of a cluster with 4 and 16 nodes. As
expected, as the number of nodes is increasing
and the process is diverted in more threads, the
run-time will be reduced, although the factor of
improvement is not linear for all thresholds and
input files. In the following, the results for 5 MB
and 20 MB data files for seven different lengths
of subsequences are discussed.

5.1	 �Dataset of 5 MB

Table 2 displays the time, for the different lengths
of subsequences, the threshold equation, the
back-end index, and the three different front-end
indexes for the input file of 5 MB.

We observe that the execution time of the
weight calculation and the separation of the sub-
sequences, namely, threshold equation, for length
equal to 4 is reduced from 9:28 s for 1 node to
5:15 s for 4 nodes and 3:22 s for 16 nodes. This
leads to a 44% decrease between 1 and 4 nodes
and a 37% decrease between 4 and 16 nodes.
While the nodes are increasing by a factor equal
to 4 in each node set, we observe that the percent-
age fluctuates and is not linear, i.e., 44% and
37%. Moreover, this difference between the per-
centage decrease lies also between the different
length of subsequences for the same node sets,
i.e., in the threshold equation phase, for length 4,
the percentage decrease between one and four
nodes is 44%, while for length 10, we have a
decrease of 29% (20,821:17 s and 14,794:61 s for
1 and 4 nodes, respectively).

Similar to the threshold equation phase, the
execution time to construct the back-end index
reduces as the number of nodes increases. Based
on that, for each node set, the higher the length of
the subsequence, the more the execution time.
More specifically, for one node and length of sub-
sequence equal to 6, the execution time is 40;
81 s, which is lower than length 10, i.e., 7421;
36 s. The corresponding values for 4 nodes are
28:45 s and 6292:14 s, while for 16 nodes 19:82 s
and 4198:78 s. This substantiates our expectation
for lower execution time as the number of nodes
increase. However, the percentage of the decrease
between each node set fluctuates more than one

Table 1  Two-level
inverted index

Improving the Run-Time of Space-Efficient n-Gram Data Structures Using Apache Spark

170

would expect. In particular, there is a 33%
decrease for length 4 between one and four nodes
(7:68 s and 5:08 s, respectively), while for the
same nodes, the percentage for length 10 is 15%.

In contrast to the robust behavior of the thresh-
old equation and back-end index phase, the front-
end construction phase execution times vary. For
each node set, the execution time increases as the
length of the subsequence increases, although
this does not stand for the increase of the number
of nodes. In particular, the execution time using
one node, for length of subsequence equal to 5
and the front-end consists of 4 grams, is 0:03 s.
For the same features and length equal to 10, the
execution time increases to 11:34 s. When the
number of nodes increases to four, the respective
times are 0:04 s and 6:34 s. This shows that
regarding length 10, the execution time reduces,
whereas regarding length 5, the execution time

increases. This can be explained by the fact that
the run time for such small subsequences is really
small and the overhead cost varies leading to
such results. The same fluctuated behavior is
observed for the 16 nodes set where the time for
the length of subsequence 5 is 0:09 s and for 10 is
3:65 s.

The same behavior is noticed for all front-end
indexes. When the execution time is very low, the
results may not be as robust as expected. Our
final observation is that as the length of the
n-gram increases, the execution time reduces.
This is an expected behavior based on the con-
struction phase of the front-end index; to con-
struct the front-end index, each of its subsequence
is split into the desired n-grams, and as a result,
the higher the n-gram, the fewer the splits on the
subsequence.

Table 2  Execution time for 5 MB (in seconds)

Length of substring
Threshold equation Back-end Front-end Front-end Front-end

2-gram 3-gram 4-gram
1 node

4 9.28101 7.6873 0.03127 0.01562 0.01562
5 22.87442 14.9684 0.03121 0.01564 0.03127
6 79.88853 40.81274 0.09374 0.0625 0.0625
7 309.02449 135.29478 0.31246 0.18749 0.14065
8 1245.51827 500.14972 1.14055 0.79689 0.82807
9 5073.25390 1873.86071 4.7499 3.43738 2.74993
10 20821.17229 7421.36633 19.03075 16.10894 11.34345

4 nodes
4 5.15471 5.08626 0.07064 0.04040 0.03893
5 16.25639 10.44123 0.17678 0.10057 0.0418
6 56.31926 28.45171 0.12700 0.06289 0.05842
7 215.99530 94.85067 0.22914 0.12222 0.10695
8 872.44428 357.68164 0.77126 0.44001 0.45133
9 3564.83482 1394.52719 2.77309 1.85139 1.48160
10 14794.6182 6292.14491 11.86227 9.13899 6.34939

16 nodes
4 3.224 2.86304 0.062154 0.03541 0.05124
5 11.93713 6.90567 0.10548 0.085694 0.09548
6 30.91816 19.82573 0.01025 0.03986 0.04553
7 156.03783 62.21554 0.18422 0.07931 0.076
8 573.19352 234.42779 0.47523 0.25477 0.3172
9 2661.85641 978.50024 1.95494 1.19603 1.09481
10 10727.26266 4198.78216 8.39711 5.08691 3.6512

F. Kounelis et al.

171

5.2	 �Dataset of 20 MB

Table 3 displays the time for the different lengths
of subsequences, the threshold equation, the
back-end index, and the three different front-end
indexes for the input file of 20 MB.

Initially, we notice that the behavior for the
threshold equation and back-end index is robust
and similar to the 5 MB file. For example, the
execution time in the threshold equation phase
for length of subsequence equal to 4 and one
node is 9:28 s, while for length 10 is 20,821:17 s.
In addition, we can identify a steep increase in
the execution time as the length increases. In
addition to that, for four nodes and length of sub-
sequence equal to 4 and 10, the execution time is
5:15 s and 14,974:61 s, respectively. This steep
increase of the execution time between the differ-
ent lengths can also be seen in terms of one node.
However, the execution time is lower than corre-
sponding lengths, which describes the time

reduction when the number of nodes increases.
Once the nodes are increased to 16, the execution
time further reduces to 3:22 s and 10,727:26 s for
length values equal to 4 and 10, respectively.

The main difference for threshold equation
and back-end index phases between the 5 MB
and 20 MB file is that the latter has a smaller fluc-
tuation of the reduction percentage as the nodes
increase. More specifically, in the 5 MB file, we
observe that the highest percentage is 44% for the
configuration of threshold equation phase, for
length of subsequence equal to 4 and one to four
nodes, while the lowest is 15% for the configura-
tion of back-end phase, for length of subsequence
equal to 10 and 1–4 nodes. In contrast, for the
20 MB file, the highest percentage is 36% for the
configuration of threshold equation phase, for
length of subsequence equal to 4 and 1–4 nodes,
while the lowest is 25% for the configuration of
threshold equation phase, for length of subse-
quence equal to 6 and 4–16 nodes. Furthermore,

Table 3  Execution time for 20MB (in seconds)

Length of substring
Threshold equation Back-end Front-end Front-end Front-end

2-gram 3-gram 4-gram
1 node

4 34,43379 30,05907 0,01501 0,01003 0,01197
5 93,82897 63,54991 0,04097 0,02197 0,02097
6 326,63004 173,70683 0,08901 0,07302 0,05900
7 1271,08973 579,21976 0,29898 0,20802 0,16402
8 5078,52252 2160,27892 1,33792 0,93194 0,86494
9 20706,64239 8074,79021 4,91471 3,65278 3,15581
10 84400,59777 30325,55520 19,6448 15,94504 11,08534

4 nodes
4 21,90268 20,48459 0,17766 0,06445 0,05416
5 63,09541 45,94116 0,09985 0,04239 0,04498
6 229,08398 121,66234 0,26465 0,07040 0,07472
7 892,55925 409,91803 0,38385 0,16764 0,14046
8 3607,09192 1534,54903 0,96597 0,62060 0,60317
9 14753,43285 5745,00896 3,76170 2,56384 2,31665
10 60390,94628 21626,81785 12,69483 9,39571 6,72134

16 nodes
4 14,442 14,5593 0,10543 0,076548 0,085647
5 41,3526 31,91015 0,15236 0,06235 0,05487
6 171,21432 79,22427 0,23300 0,04958 0,75054
7 575,55304 282,86946 0,30546 0,10325 0,10206
8 2375,15663 1022,53792 0,68256 0,42454 0,43478
9 10976,8498 4252,21882 2,68825 1,76771 1,76723
10 41854,88216 15067,96253 8,22551 5,90836 4,04803

Improving the Run-Time of Space-Efficient n-Gram Data Structures Using Apache Spark

172

there is a more robust behavior when the node
increases from one to four, which means that the
execution time reduction will be almost the same
for the lengths 4 and 10. Hence, we conclude that
the higher the data file is, the more robust the
fluctuation for the different lengths of subse-
quence will be.

The front-end construction phase for the
20 MB file follows the same behavior as the
5 MB file. As the length of the subsequence
increases for a node set, so does the execution
time, although the execution time does not reduce
as the number of nodes increases, as in the back-
end or the threshold equation phase. This occurs
when the execution time is very low, under 1 s,
and can be explained by the overhead cost that is
added to these values.

A final observation on the execution time
between the two different tables can be drawn. As
the amount of data increases from 5 MB to
20 MB, the execution time for phases, like the
threshold equation or back-end index, is increased
for at least four times. However, the execution
time for the construction of the front-end index
remains almost the same, with a difference of up
to 1 s. This is a very interesting result, as it proves
that the front-end index construction will remain
almost the same for different data files.

6	 �Conclusions and Future Work

In the proposed paper, we compare the run-time of
algorithmic techniques set for efficiently handling
biological sequences by using inverted files.
Following previous works, we implemented a data
structure to improve space demand with the use of
multithreading. Apache Spark framework was uti-
lized in order to prove the efficacy of the proposed
schema, and the results of this space-efficient data
structure are quite promising. These methods deal
effectively with DNA sequences using the n-gram
machinery and act as alternatives to other tech-
niques that mainly use su x trees.

Regarding future work, the proposed method-
ology can be augmented with additional datasets
to establish a better understanding. In addition,

the cluster on which we tested our experiments is
another key aspect of cloud computing, in gen-
eral, to better evaluate Spark’s performance in
terms of time and scalability. Finally, a limitation
that illustrates the restrictions of our proposed
methodology and suggests room for improve-
ment in future studies is the inverted file intersec-
tion algorithms utilization along with the
incorporation of some extra data structures to test
the time efficiency of our scheme when handling
such queries.

References

	 1.	Baeza-Yates RA, Ribeiro-Neto BA (2011) Modern
information retrieval: the concepts and technology
behind search, 2nd edn. Pearson Education Ltd.,
Harlow

	 2.	Christodoulakis M, Iliopoulos CS, Mouchard L,
Perdikuri K, Tsakalidis AK, Tsichlas K (2006)
Computation of repetitions and regularities of
biologically weighted sequences. J Comput Biol
13(6):1214–1231

	 3.	Cutting DR, Pedersen JO (1990) Optimizations
for dynamic inverted index maintenance. In: 13th
International Conference on Research and Development
in Information Retrieval (SIGIR), pp 405–411

	 4.	Diamanti K, Kanavos A, Makris C, Tokis T (2014)
Handling weighted sequences employing inverted
files and su x trees. In: 10th International Conference
on Web Information Systems and Technologies
(WEBIST), pp 231–238

	 5.	Guo R, Zhao Y, Zou Q, Fang X, Peng S (2018)
Bioinformatics applications on apache spark.
GigaScience 7(8)

	 6.	Harnie D, Saey M, Vapirev AE, Wegner JK, Gedich
A, Steijaert MN, Ceulemans H, Wuyts R, Meuter WD
(2017) Scaling machine learning for target prediction
in drug discovery using apache spark. Futur Gener
Comput Syst 67:409–417

	 7.	Karau H, Konwinski A, Wendell P, Zaharia M (2015)
Learning spark: lightning-fast big data analysis.
O’Reilly Media

	 8.	Kim M, Whang K, Lee J, Lee M (2005) n-gram/2l:
A space and time efficient two-level n-gram inverted
index structure. In: 31st International Conference on
Very Large Data Bases (VLDB), pp 325–336

	 9.	Kounelis F, Makris C (2017) Space efficient data
structures for n-gram retrieval. AIMS Med Sci
4(4):426–440

	10.	Li X, Tan G, Zhang C, Li X, Zhang Z, Sun N (2016)
Accelerating large-scale genomic analysis with spark.
In: IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), pp 747–751

F. Kounelis et al.

173

	11.	Manning CD, Raghavan P, Schutze H (2008)
Introduction to information retrieval. Cambridge
University Press

	12.	Mushtaq H, Ahmed N, Al-Ars Z (2017) Streaming
distributed DNA sequence alignment using apache
spark. In: 17th IEEE International Conference
on Bioinformatics and Bioengineering (BIBE),
pp 188–193

	13.	Pan X, Fu XL, Dong GF, Li HH (2016) DNA sequence
splicing algorithm based on spark. In: International
Conference on Industrial Informatics - Computing
Technology, Intelligent Technology, Industrial
Information Integration (ICI-ICII), pp 52–56

	14.	Sun Z, Yang J, Deogun JS (2004) MISAE: A new
approach for regulatory motif extraction. In: 3rd
International IEEE Computer Society Computational

Systems Bioinformatics Conference (CSB),
pp 173–181

	15.	Ukkonen E (1995) On-line construction of su x trees.
Algorithmica 14(3):249–260

	16.	Volis G, Makris C, Kanavos A (2016) Two novel tech-
niques for space com-paction on biological sequences.
In: 12th International Conference on Web Information
Systems and Technologies (WEBIST), pp 105–112

	17.	Weiner P (1973) Linear pattern matching algorithms.
In: 14th Annual Symposium on Switching and
Automata Theory (SWAT), pp 1–11

	18.	Zaharia M, Xin RS, Wendell P, Das T, Armbrust M,
Dave A, Meng X, Rosen J, Venkataraman S, Franklin
MJ, Ghodsi A, Gonzalez J, Shenker S, Stoica I (2016)
Apache spark: a unified engine for big data process-
ing. Commun ACM 59(11):56–65

Improving the Run-Time of Space-Efficient n-Gram Data Structures Using Apache Spark

