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The problem of human activity recognition (HAR) has been increasingly attracting the efforts of the
research community, having several applications. It consists of recognizing human motion and/or behavior
within a given image or a video sequence, using as input raw sensor measurements. In this paper, a
multimodal approach addressing the task of video-based HAR is proposed. It is based on 3D visual
data that are collected using an RGB +depth camera, resulting to both raw video and 3D skeletal
sequences. These data are transformed into six different 2D image representations; four of them are in
the spectral domain, another is a pseudo-colored image. The aforementioned representations are based on
skeletal data. The last representation is a “dynamic” image which is actually an artificially created image
that summarizes RGB data of the whole video sequence, in a visually comprehensible way. In order to
classify a given activity video, first, all the aforementioned 2D images are extracted and then six trained
convolutional neural networks are used so as to extract visual features. The latter are fused so as to form
a single feature vector and are fed into a support vector machine for classification into human activities.
For evaluation purposes, a challenging motion activity recognition dataset is used, while single-view,
cross-view and cross-subject experiments are performed. Moreover, the proposed approach is compared
to three other state-of-the-art methods, demonstrating superior performance in most experiments.
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1. Introduction

Human activity recognition (HAR) from visual data
is one of the of the most challenging computer vision
tasks, gaining an increasing amount of attention
within the research community®? It may be defined
as the recognition of some human motion and/or
behavior within an image or a video sequence. More-
over, an activity (or “action”) may be defined as a
type of motion performed by a single human, tak-
ing place within a relatively short (however, not
instant) time period and involving multiple body
parts® The aforementioned informal definition dif-
ferentiates activities from gestures; the latter are typ-
ically instant and involve at most a couple of body
parts, while an activity may even involve the whole
body. Similarly, interactions may involve either a
human and an object or two humans. Finally, group
activities involve more than one humans. Another
categorization of HAR tasks is the following®%: (a)
segmented HAR, wherein the input video sequence
depicts exactly one activity example, which should
be recognized, i.e. as in a typical classification prob-
lem. This means that all frames before and after
the activity have been trimmed; and (b) continu-
ous/online HAR, wherein the input video may con-
tain some actions (this means that it may not con-
tain any or it may contain one, or even more).
Activity temporal boundaries are not provided and
should be detected within the approach. The main
domains of application of HAR include video surveil-
lance, human—computer/robot interaction, aug-
mented reality (AR), ambient assisted environments,
health monitoring, intelligent driving, gaming and
immersion, animation, etc. 5289 however the number
of possible HAR applications is ever-growing.

There exist several HAR approaches that are
based on either wearable sensors or sensors installed
within the subject’s environment. A plethora of
such sensors has emerged during the last few
years. In the former case, the most popular
ones include smartwatches, hand/body worn sen-
sors, smartphones, etc. Moreover, in the latter
case, typical sensors include video/thermal cameras,
microphones, infrared, pressure, magnetic, Radio-
Frequency IDentification (RFID) sensors, ™ etc.
However, it has been shown that wearable sensors
are not preferred by the users, while their usability is
below average 2858 Moreover, overloading the users’
environment with a plethora of sensors may be an

expensive task, requiring in some cases many inter-
ventions in home furniture and/or appliances, e.g.
in case of a home environment. Therefore, several
low-cost solutions tend to be based solely on one or
more cameras, detecting activities using solely the
subjects’ captured motion.

Common HAR approaches that are based on
cameras use as input some raw sensor data from
the performed activity, while their output is the
classification result, i.e. the determination of the
aforementioned activity. In between lie the process-
ing and reasoning steps. More specifically, a given
HAR approach may consist of (some of) the fol-
lowing steps: (a) raw data are pre-processed e.g. for
noise and redundancy removal; (b) within the video
sequence, temporal segmentation takes place, aiming
to extract video segments that contain exactly one
action to be recognized. Approaches that contain this
step perform “segmented” recognition; (c) feature
extraction, aiming to extract important temporal,
spatial or visual features from human motion; and
(d) dimensionality reduction to increase the quality
and to decrease the size of features.

Note that the feature extraction step requires
knowledge and expertise regarding the specific
domain of application, in order to provide features
that will be able to discriminate between activi-
ties. However, a common problem of these features
is that even though they may demonstrate satisfac-
tory performance within the given domain of appli-
cation, they may fail when applied to a similar
domain. A solution to the aforementioned problem
is omitting the feature extraction step and instead
using a classification approach that is based on
deep learning. In that case, features are not engi-
neered; they are learnt from the specific training
data. Common deep learning architectures that have
been successfully applied in the problem of HAR
are the convolutional neural networks (CNNsf#3 and
the recurrent neural networks (RNNs)20 outper-
forming the majority of traditional machine learn-
ing approaches. In case of the segmented HAR tasks,
both architectures may be applied, while in case of
continuous HAR tasks, RNNs are the most com-
mon approach. Although a vast amount of research
has been conducted on improving recognition perfor-
mance, several principal challenges, such as the rep-
resentation and the analysis of actions, still remain
unresolved.

2350002-2



In the early years of HAR, the first publicly avail-
able datasets consisted of a relatively small num-
ber of very simple activities and consisted of either
still images or low-quality videos 2 For example, the
KTH dataset® was limited to a small number of
simple actions such as walking, running, hand clap-
ping, etc. Some years later, the next “generation” of
datasets targeted more “realistic” activities. More-
over, the Hollywood dataset™ contained classes such
as answer phone, get out of car, hand shake, etc.
However, this increased activity complexity was not
accompanied by an increase to the number of classes;
most datasets were still limited to approximately 10—
15 classes or less. Then, several challenging datasets
comprising a large number of more complex activi-
ties arrived. Notable examples include the UCF101
dataset™ with 101 activities, the HMDB dataset®®
with 51 categories, etc. These datasets contained
large numbers of more complex actions, including
interactions with objects such as playing cello, horse
riding, swing baseball bat, fencing, etc.

With the advent of cost-effective sensors such as
Microsoft Kinect, depth data have become widely
available. This way, several challenging human activ-
ity datasets now provide 3D multimodal raw data,
i.e. consisting of RGB video and depth information.
The latter has also allowed for the extraction of a
third modality, i.e. skeleton sequences that consist
of 3D coordinates of human joints as the subject
moves in space, over time. Moreover, it is well known
that when working with deep learning approaches,
a large-scale multi-class dataset may be the key
to effectiveness and robustness. Therefore, contem-
porary datasets provide a large number of train-
ing videos. Notable examples include PKU-MMD?%2
and NTU-RGB+DB8 datasets, which provide RGB,
depth and skeleton data, for 51 and 120 classes,
respectively. Note that the depth modality, unlike
the conventional RGB, is invariant to illumination
changes and also reliable for the estimation of body
silhouettes. Nevertheless, RGB information contains
color and texture which are significant for discrim-
inating several actions involving e.g. human—object
interactions. Different modalities offer different per-
spectives of actions, thus, intuitively, a fusion of their
complementary correlations should be meaningful.
Furthermore, the existence of skeletal information
can be very helpful for accurately capturing the
human body posture. However, in scenarios where
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the source of motion features is limited to sequence
data, the challenge of CNN-based methods is to
find efficient encoding techniques for representing
skeleton sequences, while capturing spatio-temporal
activity features.

In this paper, a novel approach for HAR that
fuses multiple modalities, incorporating RGB, depth
and visual representations of 3D skeletal informa-
tion is presented. Inspired by previous work on fusion
of different representations ™ and early experiments
using representations of 3D skeletal data that are
based on image transforms®l or on artificially cre-
ated pseudo-colored images®3 in this paper a late
fusion methodology that uses as input RGB and
depth video sequences is proposed. The former are
“summarized” into a single “dynamic” image. Both
data representations are used to create 3D skeletal
sequences of the subjects. These are then used to
create (a) four visual representations of skeletal data
upon applying well-known image transforms to the
spectral space; and (b) a pseudo-colored image rep-
resentation of skeletal data. For each of the afore-
mentioned modalities, a CNN is trained and is used
as feature extractor. Extracted features are fused,
scaled and used as input to an Support Vector
Machine (SVM) classifier. The proposed method is
evaluated on three publicly available human motion
datasets, namely, PKU-MMD dataset® SYSU 3D
Human Object Interaction (HOI) dataset®’ and
UTKinect-Action3D dataset 20

The novelties of the proposed approach are as
follows: (a) it is based on the extraction of deep fea-
tures and early fusion of different image transforms
that correspond to skeletal motion; (b) it applies a
novel viewpoint augmentation scheme prior to cre-
ate both image transforms and pseudo-colored image
representations of skeletal motion; (¢) it incorporates
dynamic images to exploit the raw RGB information
of motion; and (d) it proposes the fusion of skeletal
motion and raw RGB features using only CNNs.

This paper is arranged as follows. Section
presents recent research works closely related to the
proposed approach. Section [3 initially provides an
overview on the visual data that are used within
this work, the camera setup that has been assumed
and the data augmentation strategy that has been
adopted. Then, it describes the whole classification
methodology, i.e. the creation of image representa-
tions, network architectures, training process, data
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fusion and classification. The datasets used, the
experimental setup, evaluation and results are pre-
sented in Sec. @ Finally conclusions are drawn in
Sec. B wherein plans for future work are also pre-
sented.

2. Related Work

In this section, a brief review of recent scientific liter-
ature on HAR using deep learning is presented. Since
the problem of HAR is very wide and since the novel-
ties of this work lie in the areas of image representa-
tions of 3D skeletal data sequences and multimodal
fusion of human motion modalities, focus is given
on two major research categories, (a) methods for
extracting skeletal information by image-based rep-
resentations; and (b) approaches that utilize infor-
mation from multiple modalities.

2.1. Visual skeletal representations

When a CNN is used and the only available motion
features are skeletal data, an intermediate visual rep-
resentation of skeletal sequences is required. This
representation should capture both spatial and tem-
poral information regarding the motion of joints and
reflected to its color and/or texture properties.

Most works rely on 3D skeletal sequences, com-
prising a set of moving joints in the 3D space. Typical
simple features extracted from this motion are inter-
joint distances and orientations, either between joints
of the same or consecutive frames2834H565 Other
features include joints’ motion direction®™ and mag-
nitude 388 Several approaches also consider dura-
tion of activities®#57 A skeleton is typically treated
as a single set, though in some cases, its subsets that
correspond to body parts may be treated indepen-
dently3¥70 Many works opt to extract features from
projected 3D skeletons into the 3 2D planes 10344584
The extracted simple features may be stacked so
as to create 2D pseudo-colored images 2863 In sev-
eral cases, images are created by joints’ trajecto-
ries?0B288 o heatmaps™¥ In the following, several
recent intermediate representations of skeletal data
are briefly presented.

The “pose-transition feature to image” technique
proposed by Huynh-The et al.28 extracts inter-joint
distances and orientations within the same and con-
secutive frames and uses them to create a feature
vector per frame. All feature vectors are stacked

and their values are encoded to create an RGB
image. The same distances and orientations were also
used by Pham et al% to create “enhanced Skeleton
Posture-Motion Feature” (SPMF) while they also
used a color enhancement method, to increase con-
trast and highlight texture and edges the representa-
tion. A similar approach was presented by Ke et al. 3%
wherein body parts are represented by subsets of
joints, while distances and magnitudes are calculated
between parts instead of joints.

A similar idea was proposed by Silva et al8?
wherein, the position of the joints in the final rep-
resentation is clustered into groups and by Yang
et al™ who proposed a “tree structure skeleton
image” (TSSI), based on the idea that spatially
related joints in original skeletons have direct graph
links between them. This way, spatial correlations
between joints are better preserved. Moreover, to
aggregate more temporal dynamics to the represen-
tation, Caetano et al/® used several temporal scales.
Another approach to encode joint motion that does
not calculate joint distances is the one of Duan
et al™ who used joint heatmaps which are composed
upon posing a set of Gaussian maps centered at each
joint.

In “joint trajectory maps” (JTM) proposed by
Wang et al.B¥ skeleton data sequences are repre-
sented by three 2D images wherein motion direction
and magnitude are reflected as the hue, saturation
and brightness of the colored image. Also, different
body parts are represented by multiple color maps.
Similarly, in “joint distance maps” (JDM), proposed
by Li et al.™ three maps correspond to inter-joint
distances in the orthogonal planes, while the fourth
in the 3D space, all encoded by hue. Extending the
aforementioned works 8% 1i et 18 used both CNN
and Long Short Term Memory (LSTM) networks
to classify spatial and temporal motion properties,
while a late fusion approach was adopted. The idea of
projecting 3D joints to planes was also used in “Tem-
poral Pyramid Skeleton Motion Maps”, proposed by
Chen et al.m¥ who created hierarchical structures
using different types of joint visualization, calcula-
tion of inter-joint distances in consecutive frames and
pseudo-color coding and by Verma et al®¥ who cre-
ated skeleton intensity images, for top, front and side
views of skeletons.

The durations of activities have been incorpo-
rated in the representation of “Skepxel”, proposed
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by Liu et al50 along with the coordinate values of
joints. A group of Skepxels are generated for a sin-
gle skeleton frame while the representation is con-
structed upon concatenation of groups of Skepx-
els in a column-wise manner. Similarly, Liu et al®5
used joint coordinates, labels and the corresponding
timestamps. This 5D representation was projected
to a 2D image using labels and timestamps, and the
remaining dimensions were used as R, G, B, chan-
nels to form pseudo-colored images. A variation of
this idea was adopted in “joint skeleton spectra”,
proposed by Hou et al.28 wherein joint distribu-
tion maps are projected onto three Cartesian planes,
reflecting the temporal variations of joints to hue val-
ues. The idea of changing colors of joints as time is
passing was proposed by Tasnim et alBZ and was
used to create spatio-temporal images.

Although most of the aforementioned approaches
demonstrate more than satisfactory performance in
ideal conditions, they do not deal with two main
problems that occur in real-life situations, i.e. view-
point changes and occlusion. In this work, we deal
with the first problem and propose a data augmen-
tation technique, applied in skeletal data.

2.2. Multimodal fusion methods

Moreover, several approaches dealing with the fusion
of more than one data modalities have been pro-
posed. A notable early work is the one of Simonyan
and Zisserman™ who trained a CNN for capturing
spatial features from raw video frames and another
for capturing motion features from dense optical
flow. A late fusion approach was adopted, using an
SVM. Another early work is the one of Chaaraoui
et al.B who combined body pose estimation and 2D
shapes, to obtain skeletal and silhouette-based fea-
tures, which were then combined by early fusion.
The majority of more recent works is based on
the use of both RGB and depth data S35EI86 Other
modalities that have been used as input in multi-
modal fusion approaches are thermal data.23 inertial
measurements 15922 audio data®® and RFID data 7
In those works, each data modality is independently
processed, in order to extract features. In many
cases, features are handcrafted ™ yet in the major-
ity of works, deep features are extracted, aiming to
capture SpatizﬂZEI and/or temporafﬂ properties of
human motion. To this goal, most approaches rely

A Multimodal Fusion Approach for HAR

only in CNN architecturesSS¥547I8G that are trained
as feature extractors and aim to extract features from
either from raw video frames or from intermediate
2D feature representations. Although deep features
have almost completely dominated the research area
of HAR, it has been shown that handcrafted features
may capture complementary motion properties, thus,
their fusion may boost performance 32

In several cases, especially when dealing with
small datasets, pre-trained networks in the same or
in a similar domain or dataset® or transfer learning
approaches™ are used. More recent works may addi-
tionally use LSTM networks so as to extract tempo-
ral features 23294706 while in few cases only LSTM
networks are used ™

Typically, fusion is implemented as concatenation
of these feature vectors (i.e. early fusion) and recogni-
tion involves a traditional machine learning classifier,
such as a support vector machine T#%IBG o 5 clus-
tering approach such as k-means 13 Yet, late fusion,
i.e. fusion of classifier decisions is also used 6371

However, the majority of works relies on a single
representation per data modality. Specifically, it has
not been investigated whether different representa-
tions of skeletal joint motion may carry complemen-
tary information, thus their fusion could provide a
performance boost on recognition approaches. More-
over, raw RGB data are often ignored or used only
for skeleton extraction, yet, in this work we demon-
strate that they may significantly assist recognition
in several cases.

3. Proposed Methodology

In this section, the proposed methodology for HAR
is presented. In brief, it is based on the fusion of raw
RGB and 3D skeletal motion data sequences. The
former are used to create a condensed representation
of the activity, consisting a single image. The latter
are used to create four representations of the spec-
tral content of the skeletal motion, which are based
on well-known image transforms and also a pseudo-
colored representation of skeletal motion. Each image
is then fed to an appropriately trained CNN. The sec-
ond from the end dense layer of each network is used
as a feature vector. All feature vectors are then con-
catenated and upon applying principal component
analysis (PCA), are classified using a support vector
machine. A visual overview of the proposed approach
is illustrated in Fig. [0

2350002-5



D. Koutrintzes et al.

r
1
'
i
1
1 Image
1 1
1 1
it 1
: Depth data 1
(o W Seletal |
— Sequence i
Microsoft i q - e
Kinect v2 ! Pseudocolored Image
1
1
1
1
1

RGB data
Dynamic Image

e 2

------ *‘ H[l]]----+ RV -
CNN I
2
g
______ »[IH[I]}----» VF- s
CNN 2 <
< 5
------ TF---» v [-> & 15 2
g g £ /7 o
NN s g S
— g
m < S =
) >F-> S - S -
(1) ---» v - 2 8 g
L TNN g S < i
Image Transforms — ;(: &E. T .-
o < S Activity
________ I:l ik B aing g s 53 Recognition
NN 2 %n a
2 K
5 3
— o ‘g
=
---------- Mo+ | |2
CNN

Fig. 1. A visual overview of the proposed approach.

01: Head 14: HandTipLeft
02: Neck 15: HandTipRight
03: SpineShoulder 16: SpineMid
04: ShoulderLeft 17: SpineBase
05: ShoulderRight 18: HipLeft

06: ElbowLeft 19: HipRight
07: ElbowRight 20: KneelLeft
08: WristLeft 21: KneeRight
09: WristRight 22: AnkleLeft
10: ThumbLeft 23: AnkleRight
11: ThumbRight 24: FootlLeft
12: HandLeft 25: FootRight

13: HandRight

Fig. 2. The 25 skeletal joints extracted by Microsoft
Kinect v2.

3.1. Visual data

The proposed approach relies on visual data modali-
ties derived from the 3D motion of humans, since in
typical 3D HAR problems, subjects perform actions
in space and over time. Herein, both raw RGB
video and 3D motion of human skeletons are con-
sidered. The latter are represented as structured sets
of 3D skeleton joints moving in space. More specifi-
cally, in the context of this work, RGB and skeleton
data that have been captured using the Microsoft
Kinect RGB/depth camera® are used. Within cap-
tured sequences, a human skeleton comprises 25 3D
joints, which are organized as a graph; each node
corresponds to a body part such as hands, feet,
head, neck, etc., while edges follow the body struc-
ture, connecting pairs of joints. In Fig. @ a skele-
ton extracted using the Kinect camera is illustrated.
For the sake of explanation, a visual example of an

®https: //developer.microsoft.com/en-us/windows/
kinect.

activity is illustrated in Fig. Bl Note that the pro-
posed approach is not tied to the use of the Kinect
v2 camera. The only requirement is to have as input
both video sequences and 3D skeleton sequences. In
case of 2D skeleton sequences, such as the ones pro-
vided by e.g. PoseNet2 OpenPosé? or Movenet” a
performance drop should be expected.

3.2. Camera setup and data
augmentation

Generally speaking, data augmentation is a process
that aims to expand the size and/or the diversity of
some data set. This is typically achieved upon creat-
ing “artificial” data samples, which however are quite
similar to the original sample, yet not identical to
any of them. In the context of computer vision prob-
lems, usually data are images, thus data augmenta-
tion aims to construct synthetic images, based on
the properties and limitations of the given problem.
Data augmentation approaches in HAR problems
have employed local averaging and sampling ™ trans-
formations such as rotation, scaling, jittering, etc?
and data warping3 Little work has been demon-
strated when working with skeletal data. In that
case, augmentation approaches include direct appli-
cation of geometric transformations® or RNNs?2 in
raw skeletal sequences.

In previous works 82 the effect of data augmen-
tation to the classification performance of a HAR
methodology has been assessed. We showed that
incorporating artificially rotated skeletons to the

Phttps: //blog.tensorflow.org/2021/05 /next-generation-
pose-detection-with-movenet-and-tensorflowjs.html.
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Fig. 3. A sequence of an actor performing the activity handwaving. Extracted human skeleton 3D joints using the Kinect
SDK have been overlaid. Frames have been taken from the PKU-MMD dataset® and have been trimmed for illustration

purposes.

training dataset may significantly assist to boost the
accuracy of deep approaches in multi-camera setups.
Note that due to the way image representations of
skeletal data are constructed in the context of this
work, popular data augmentation strategies such as
rotations and random crops may not be applied; such
methods could severely affect the spectral properties
of activity images, by removing or distorting impor-
tant information. Thus, rotation of activity samples
of skeletal motion upon geometric processing them
which led to the creation of artificial, valid examples
has been instead adopted.

Therefore, the aforementioned augmentation
methodology®? has been incorporated to the training
process of this work. In brief, given a camera setup
composed by three cameras, capturing the subject
under different viewpoints and assuming that they
are all placed at the same distance to the subject
(i.e. at the perimeter of an imaginary circle), a given
camera may be “aligned” to any of the remaining two
upon imposing a simple rotation transformation. Let
0 the desired rotation angle. Then, the corresponding
transformation R, is given by&3

cos @ 0 sinf
Ry(g) = 0 1 0 ’ (1)

—sind 0 cos@

where in that case y denotes the axis of the rotation.

Within the considered 3-camera setup, one cam-
era is directly facing the subject, while the remain-
ing two are placed on its left and right, at angles 6,
and fg, respectively, as illustrated in Fig. @ There-
fore, given a training sample, artificial samples are
created upon rotating the skeleton by an angle 6,
about the y-axis, complying to the Cartesian 3D
coordinate system used by the Kinect camera. Specif-
ically, for a given sample a rotation transformation
is applied with 6 € {—90°, —45° +45° +90°}. An
example of the data augmentation process is illus-
trated in Fig. Bl wherein a skeleton corresponding to

A
]
i
1
1
I
I
1
I
I
1
1

Camera #1 Camera #3
(Left) S~a -7 (Right)

Camera #2
(Middle)

Fig. 4. The 3-camera setup used in this work. Camera
#2 is directly facing the subject while she/he is perform-
ing an activity. Cameras #1 and #3 have been placed on
an imaginary circle, forming angles equal to 07, and 0y,
respectively, with Camera #2.

(a) (b) () (d) (e)

Fig. 5. Example of rotated skeletons that have been
used for data augmentation. A skeleton rotated by angle
0: (a) 8 = 90°%; (b) 6 = 45°%; (c) 6 = 0°; (d) 6 = —45°
and (e) # = —90°. The original skeleton is denoted by
0 = 0°, while the other four skeletons are the augmented
samples. For illustrative purposes, depth information, i.e.
z-coordinate has been discarded.

a video frame of an activity example of class hand
waving is illustrated along with four artificial ones,
that have been created using the aforementioned
process.
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3.3. Signal images

Inspired by the work of Jiang and Yin®! who worked
using raw sensor measurements from inertial sensors,
as a first step “signal” images are created, by con-
catenating the signals that are produced by skele-
tal motion. Specifically, the motion of each skeletal
joint in the 3D space, over time is treated as three
independent 1D signals. Each of them corresponds
to a coordinate. Therefore, for a given joint j, let
Sjz(n),Sjy(n),S;-(n) denote the 3 1D signals that
correspond to its 3D motion and for the coordinates
x, vy, z, respectively. Thus, in the signal image, S, »(n)
corresponds to row 3 x j—2. Accordingly, S; ,(n) and
S; »(n) correspond to rows 3 x j — 1 and row 3 X j.
This way, the signal image S for a given activity and
for N joints, is created upon concatenation of the
3 x N signals, thus its dimension is 3 x N x T, where
T, is the duration of this activity. However, in real
problems, since different subjects may perform the
same activity with different duration and also dif-
ferent activities require different duration, it should
be obvious that T, is variable. In order to address
the problem of temporal variability between subjects
and between activities, so as to allow for signal con-
catenation, as discussed, a linear interpolation step
is imposed. This way the length of all activities T,
is fixed. Note that in order to set value of T, the
process begins with the selection of a value close to
the mean of all activities, yet the exact value that
is finally used is chosen upon experimentation and
fine-tuning. Thus, in the context of this work, the
length is set to T, = 159. Moreover, given N = 25,
the dimension of S is equal to 75 x 159. An example
signal image is illustrated in Fig. [

Fig. 6. The signal image that is created as a first step
for the representation of skeleton data, using the method-
ology described in Sec. This example corresponds to
the activity handwaving, depicted in Fig. Bl

3.4. Activity images

Let S denote a signal image with dimensions W X
H and S, the pixel at coordinates (m,n). From
each signal image an “activity” image A is created.
This may be done by applying one of the following
image transforms™30 on a given signal image S: (a)
the 2D Discrete Fourier Transform (DFT), which is
defined as

w-—1
A(u,v) = Z
=0 vy

— j2n(ux/W +vy/H), (2)

where z € [0,W — 1],y € [0,H — 1],u € [0,W —
1],v € [0, H — 1]; (b) the 2D Fast Fourier Transform
(FFT), which is a fast implementation of DFT; (c)
the 2D Discrete Cosine Transform (DCT), which is
defined as

Mm

—1
S(z,y)e
0

W-1H-1

A(u,v) = aya, Z Z S(z,y)

z=0 y=0

" 72m+Du  w(2n+1)v
€08 g €08 ,

(3)

where x € [0, W—1],y € [0, H—1],u € [0,IW—1],v €
[0, H — 1] and also

1
—, u=0,
VW
ay = (4)
2
and
1 0
T v=2V,
VH
a, = : (5)

—

d) the 2D DST, which is defined as

W—-1H-1

A(u,0) = avay Y > S(z,y)

=0 y=0

. m(2m+1)(u+1)
X <sm ST
m(2n+1)(v+1)
Dty
where z € [0,WW—1],y € [0,H—-1],u € [0,W—1],v €
[0, H — 1] and a,, a, are given by Eqs. @) and (&),

X sin
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(a) (b) (c) (d)

Fig. 7. Activity images resulting upon (a) DFT; (b)
FFT; (c) DCT; (d) DST; from the signal image of Fig.
and for the activity handwaving. Note that DFT and
FFT images have been processed with log transformation
for visualization purposes. Figure best viewed in color.

respectively. Note that from each transform only the
magnitude is preserved, while the phase is discarded.
Also, note that DST and DCT are further processed
by normalizing using the orthonorm. Obviously, in
all cases the result is a 2D image, with the same
dimension as the signal image S. Moreover, although
FFT is a fast implementation of DFT, as it has been
mentioned, it was amongst the goals of this work to
assess if, due to the expected differentiation between
them, any differences in performance would show in
practice. In Fig. [ the four corresponding activity
images, created upon applying the aforementioned
transforms on the signal image S of Fig. [f] are illus-
trated.

3.5. Pseudo-colored image
representation of skeletal data

As it has already been mentioned in Sec. [2] another
approach to use the 3D skeletal information as
input to a CNN, is to create image representa-
tions of skeletal data. However, when creating such
representations, one should consider capturing and
preserving spatio-temporal properties of skeleton
trajectories, so that the resulting representations
could be able to discriminate among different activi-
ties. Moreover, they should also comply to the graph
structure skeleton representation. In the context of
this work, the representation initially presented in
previous work® and whose early results indicated
that it could be successfully applied to the problem
of HAR is adopted.

Specifically, this representation aims to cap-
ture inter-joint distances as they vary through the
duration activity. These are then used to create

A Multimodal Fusion Approach for HAR

pseudo-colors within an artificial RGB image. Note
that it is based on the 3D trajectories of skeletal
joints. Let 2(n), y(n) and z(n) denote the sequences
of coordinates of each of the N available joints, at
the nth frame F,, of the video sequence depicting
the activity. Through the duration of any activity,
a set of 3 x N signals is collected for a given video
sequence. To address the problem of temporal vari-
ability between actions and between users, as it has
been described in Sec.[3:3] a linear interpolation step
in the exact same way as in the case of signal images
is imposed. Then, from each of the aforementioned
sequences difference between consecutive frames is
calculated. To create pseudo-colored images, x, y, z
coordinates are assigned to R, G, B color channels of
the pseudo-colored image, respectively.

Particularly, the process of creating a pseudo-
colored image I is as follows: Let z;(n),i =1,...,N
denote the z-position of the ith joint in the nth
frame. Let 7, g, b denote the red, green and blue chan-
nel of I, respectively. Pixel values of r(i,n), g(i,n),
b(i,n) are calculated as

r(i,n) = z;(n+ 1) — z;(n),
g(i,n) =yi(n+1) —yi(n), (7)
b(i,n) = zi(n+ 1) — z;(n),

where n = 1,...,7, and i« = 1,...,N. As it
is exhibited, the way these pseudo-colored images
are formed, leads to preserving both the temporal
and the spatial properties of the skeleton trajecto-
ries. Obviously, the dimension of the pseudo-colored
image is N x T, x 3, which in our case is 25 x 159 x 3.
In Fig. B a pseudo-colored image that corresponds
to the activity depicted in Fig. [Blis illustrated.

3.6. Dynamic images for activity
representation

A dynamic image is a typical RGB image, which
by construction aims to summarize the appearance

and dynamics of a given video sequence Specifi-
cally, the idea that lies behind dynamic imaged®

Fig. 8. The pseudo-colored image for the activity hand-
waving that is illustrated in Fig.
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is known as “rank pooling” and aims to represent
a video sequence as a ranking function S(e) of its
frames Fi,...,Fr,. By using S(e) a feature vector
Y(F;) from each frame F; is extracted. Let V,, =
%2221 ¥ (F,) denote the time average of the afore-
mentioned features ranging from Fj to F),. The rank-
ing function associates each moment n with a score
S(n), given a parameter set d and assigning larger
scores to later frames. Scores are learned by solving
a convex optimization problem which defines a func-
tion p(e) mapping a given video sequence comprising
T frames to a vector d*, used as feature descriptor.
Using the RankSVM formulation™ d* may be esti-
mated as follows:

d” = p(Fr,..., Foy ) = argmin 5(d),  (8)
where
A 2
E@) = 2|d|? + =
(d) = glidl”+ T(T — 1)

max
x5 {0,1- S(g|d) + S(t| )} (9)
g>t

Although (e) may be any feature extractor,
Bilen et al® opted for simply using raw RGB pixel
values and reported remarkable results. However, the
most important aspects of such an approach are (a)
d* may be interpreted as an RGB image as it has the
exact same number of elements; and (b) this image
is obtained by rank pooling, thus it may be regarded
as a summary of the whole video sequence. Note that
the pixels in the produced dynamic images tend to
focus on salient information rather than the back-
ground; this is considered the reason for them being
appropriate for the problem of HAR, wherein typi-
cally the background is static and a subject consists
a nonstatic part within the video sequence. This is
clearly depicted in Fig.[@where a dynamic image that
corresponds to the activity of Fig. Blis illustrated. In
this image, it is clear that information regarding the
background has been discarded, while emphasis has

been given to the subject and her moving arm.

3.7. Multimodal fusion and
classtfication

The architecture of the CNN that has been used
throughout our experiments with DFT, FFT, DCT
and DST images has been experimentally defined
and has been initially used in previous work 5 while

Fig. 9. The dynamic image for the activity handwaving
that is illustrated in Fig.

it is illustrated in detail in Fig. [0((a). It consists of
three convolutional layers with 32, 64 and 128 ker-
nels of size 3 x 3. Each is followed by a pooling layer
using “max-pooling” to perform 2 x 2 subsampling.
A flatten layer transforms the output image to a
vector, used as input to a dense layer of size 128,
using dropout™ and a second dense layer produces
the output of the network. In case of the pseudo-
colored image representations, the CNN architecture
was based on the aforementioned one and has been
experimentally modified to better fit this representa-
tion. It is illustrated in detail in Fig.[I0(b). It consists
of a convolutional layer with 16 kernels of size 3 x 3,
followed by a pooling layer. Then, two convolutional
layers with 32 kernels of size 3 x 3 and a pooling
layer follow, succeeded by a convolutional layer with
64 kernels of size 3 x 3 followed by a pooling layer.
Each pooling layer uses “max-pooling” to perform
2x 2 subsampling. Then, once again a flatten and two
dense layers follow as in the aforementioned network.

Finally, in case of dynamic images, the CNN
architecture that was adopted is based on the well-
known VGG167 and is illustrated in detail in
Fig. M0c). First, two convolutional layers filter the
input image with 64 kernels of size 3 x 3. A pooling
layer follows. Then, two convolutional layers filter the
input image with 128 of size 3x 3, followed by another
pooling layer. Then three convolutional layers filter
the resulting image with 256 kernels of size 3 x 3
and are again followed by a pooling layer. Then, two
triplets convolutional layer follow, filtering the result-
ing image with 512 kernels of size 3 x 3, each followed
by a pooling layer. Then, a flatten layer transforms
the output image of size 7 x 7 of the fifth pooling into
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Fig. 10. The three deep convolutional network architectures that have been used in this work and for the cases of (a)
DFT, FFT, DCT, DST activity images; (b) pseudo-colored images; and (c) dynamic images.

a vector, with is then used as input to a dense layer of
size 256 using dropout. Finally, a second dense layer
produces the output of the network. All pooling lay-
ers use “max-pooling” to perform 2 x 2 subsampling.

Note that the second dense layer is omitted when
the CNN is used for feature extraction. Also, the first
and the second convolutional networks are trained
using the available dataset, while the third convolu-
tional network is pre-trained with ImageNet 3 The
convolutional layers are “freezed” and training of the
dense layers using the dynamic images continues.

Therefore, upon using the aforementioned net-
works as feature extractors, a feature vector per rep-
resentation is formed. The early fusion step of this
work consists of concatenation of these six feature
vectors. This way, a combined representation of size
896 has been created. Upon scaling and PCA, only
the components that correspond to 95% of total
variance are kept, resulting to a feature vector of
size approximately 350, which was fed to the SVM.
Note that due the way PCA works, the size depends
on the dataset, therefore, as expected it varies, per
experiment. Finally, for classification, an SVM with
an RBF kernel has been used.

4. Experiments and Results

4.1. Datasets

In order to experimentally evaluate the proposed
multimodal HAR approach, a large-scale, public and
open benchmark datasets, namely, PKU-MMD?52
has been selected. It focuses on human activity
understanding and it contains approximately 20K
action instances from 51 activity categories, span-
ning into 5.4 M video frames and performed by 66
human subjects. A multi-camera setup has been
used throughout the recording sessions. More specif-
ically, data from 3 Microsoft Kinect v2 cameras have
been collected and the following visual data modal-
ities are provided: (a) raw RGB video sequences,
each depicting one or more actors while perform-
ing an action/interaction under a given viewpoint;
(b) depth sequences, that is, the z-dimension cor-
responding to the scene depth at each pixel of an
RGB sequence; (¢) infrared radiation sequences, that
is, modulated infrared light captured simultaneously
to the RGB sequences; and (d) positions in the 3D
space of the extracted human skeleton joints, varying
over time.
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Recordings from three camera views are avail-
able; each activity was simultaneously captured by
all cameras. All subjects were asked to perform activ-
ities within a pre-determined area, in order to have
an as fixed as possible distance to all cameras. Also,
they were asked to face directly one of the cameras;
i.e. each activity sample was recorded under three
viewpoints. Throughout the experimental evaluation
and as we have already illustrated in Fig. [ the fol-
lowing naming convention for each camera (i.e. for
each viewpoint) will be used: L (left), M (middle)
and R (right). As illustrated in Fig. @ the following
fixed angles are used for their positioning: 87 = —45°
and Or = +45°. Also, the cameras have been placed
on the same height level, which remained fixed and
equal to 120cm for all activities, Moreover, since
videos contain several sequential actions, inter-video
temporal boundaries are available. The number of
recordings (examples) is 6918, 6928 and 6934 for
viewpoints L, R and M, respectively. Finally, in all
examples, all skeleton joints are visible, no matter
the viewpoint.

Moreover, in order to further evaluate our
approach, 2 small-scale, single-camera human activ-
ity datasets are also used. The second dataset,
namely, SYSU 3D HOI2Z also consists of 3D human
motion. However, contrary to PKU-MMD, which
contained several types of activities, SYSU 3D HOI
focuses on interactions between humans and objects.
It is not as large as PKU-MMD, yet it consists of 480
activity instances from 12 different activities which
involve interaction of 40 subjects with one of the fol-
lowing objects: phone, chair, bag, wallet, mop and
besom. For each activity, RGB, depth and 3D skele-
ton data are available. Note that there are several
activities which appear highly similar, e.g. mopping
and sweeping. The third and final dataset, namely,
UTKinect-Action3D dataset? consists of 10 simple
activities that have been performed by 10 subjects.
Each subject performs all activities twice, thus 200
activity instances are provided. As in SYSU 3D HOI,
for each activity, RGB, depth and 3D skeleton data
are available.

4.2. FExperimental setup and
implementation details

Experiments were performed on a personal worksta-
tion with an AMD Ryzen™ 5 1600 6-core proces-
sor on 3.20 GHz and 16GB RAM, using NVIDIA™

Geforce GTX 1060 GPU with 6 GB GDDR5 VRAM
and Ubuntu 20.04 (64 bit). The deep architecture
has been implemented in Python, using Keras 2.4.3M
with the Tensorflow 2.57 backend. All data pre-
processing and processing steps have been imple-
mented in Python 3.9 using NumPy,® SciPy? and
OpenCV.¢ For training the CNN, the ReLU acti-
vation function has been used. Moreover, the batch
size has been to 8 and the Adam/SGD optimizers
(Adam in skeleton models, SGD in Dynamic model)
has been used. Also, the dropout was set to 0.5, the
learning rate was set to 0.001 and the network was
trained for 150 epochs, using the loss of the validation
set calculated via cross-entropy as an early stopping
method, in order to avert overfitting. The parame-
ters of the SVM were C' = 100 and v = 0.001 and
have been selected upon grid search.

The four CNNs that are used to extract features
from the DFT, FFT, DCT and DCT images comprise
2,164, 339 trainable parameters; training in case of
the most demanding PKU-MMD dataset requires on
average approximately 35min., while extraction of
features requires approximately 0.002s. The CNN
that is used to extract features from the pseudo-
colored images comprises 170,611 trainable parame-
ters; training in case of the most demanding PKU-
MMD dataset requires on average approximately
25 min., while extraction of features requires approx-
imately 0.001s. The VGG16 network that is used to
extract features from the dynamic images comprises
21,150,579 trainable parameters; training in case of
the most demanding PKU-MMD dataset requires on
average approximately 50min., while extraction of
features requires approximately 0.004s. Finally, the
SVM that is used for classification requires approxi-
mately 420 s for training and approximately 0.008s
for classification of a given fused feature vector. Note
that the aforementioned times may vary in every rep-
etition of the experiment due to the early stopping.

4.3. FEwaluation protocol

In case of PKU-MMD, experiments are divided into
three parts: (a) Single-view experiments, wherein
the same camera viewpoint has been used to create
both training and testing sets (e.g. L viewpoint was

“https: //numpy.org/.

dhttps: //scipy.org/.
“https: //opencv.org/.
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used for both training/testing); (b) Cross-view exper-
iments, wherein different camera viewpoints were
used for training and testing. Note that up to two
viewpoints may be used for training (e.g. L or L
and R for training, M for testing); (¢) Cross-subject
experiments: subjects were split in training and test-
ing groups, i.e. each one was a member of exactly one
of these groups. The goal of the single-view exper-
iments is to test the performance of the approach
wherein only one camera is available, while the sub-
ject faces this camera. Since in real-life situations
this is not always possible, cross-view experiments
aim to evaluate the performance wherein the camera
does not face the subject directly. This is typically
occurring e.g. in ambient assistive living environ-
ments. Finally, the goal of cross-subject experiments
is to test the robustness of our approach into intra-
class variations, i.e. when training and testing sets
have been created using different subjects. This is
also expected to occur during a real-life application,
wherein a system has been trained e.g. in a labora-
tory or using public datasets and is deployed into
a real environment with previously unseen subjects.
For each case, the accuracy achieved is measured.
In case of PKU-MMD single-view and cross-
subject experiments, 87.5% of data have been used
for training, while the remaining 12.5% for testing.
In the former case, the dataset was randomly split,
while in the latter case, the split that has been

Table 1.

A Multimodal Fusion Approach for HAR

imposed by the authors of the dataset has been used.
Moreover, in case of cross-subject experiments, in all
cases all available data from a given viewpoint were
used. In case of SYSU 3D HOI, the authors define
a typical protocol (setting 1), wherein 50% of sam-
ples are used for training and 50% for testing and
a cross-subject protocol (setting 2), wherein 50% of
subjects are used for training and 50% for testing,
without any overlap. Finally, the evaluation proto-
col of UTKinect-Action3D dataset is much simpler,
wherein a leave one sequence out cross validation is
indicated.

4.4. Results and discussion

Table[I] summarizes the results achieved for the clas-
sification of the 51 activities from the PKU-MMD
dataset. More specifically, it summarizes results in
terms of accuracy scores that has been achieved for
the following cases of input data: (a) DFT; (b) FFT;
(¢) DCT; (d) DST; (e) pseudo-colored images (PCI);
(f) dynamic images (Dyn.); (g) all transformations
(i.e. cases a—d); (h) all transformations and pseudo-
colored images; and (i) all available inputs. It is
evident that in cross-view setup, best accuracy is
achieved when using all image transformations, fused
with the pseudo-colored images. On the other hand,
in cross-subject and single-view setups, all available
representations are necessary in order to achieve
best accuracy. Notably, and contrary to previous

Experimental results for PKU-MMD dataset. Numbers denote accuracy. Bold numbers indi-

cate best result, per case. “PCI” denotes pseudo-colored images, “Dyn.” denotes dynamic images,
“Tr.” denotes image transformations (i.e. DFT, FFT, DCT and DST). CV, CS, SV denote cross-view,
cross-subject and single-view cases, respectively.

Viewpoint DFT FFT DCT DST PCI Dyn. Tr. Tr.+PCI Al
Experiment Train  Test Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc.
CV LR M 0.75 0.76 0.85 0.84 0.80 0.59 0.92 0.98 0.98
LM R 0.70 069 0.70 0.79 0.75 0.50 0.86 0.95 0.94
RM L 0.68 069 0.78 0.62 0.74 0.51 0.86 0.95 0.94
M L 064 0.63 068 074 059 047 0.85 0.94 0.92
M R 0.63 062 0.76 0.64 0.60 0.50 0.85 0.93 0.92
R L 0.58 058 0.66 046 059 0.28 0.78 0.90 0.87
R M 0.67 0.65 0.78 066 0.70 0.39 0.87 0.95 0.94
L R 0.58 059 040 0.64 055 030 0.74 0.89 0.86
L M 0.66 0.66 0.67 0.73 0.67 0.47 0.86 0.95 0.93
CS LRM LRM 0,70 069 079 079 076 080 0.85 0.92 0.96
SV L L 0.62 060 0.75 0.72 0.63 0.78 0.83 0.91 0.95
R R 0.62 061 0.75 0.72 0.63 0.80 0.82 0.92 0.97
M M 0.65 066 0.79 0.75 0.66 0.86 0.85 0.93 0.97
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works that used only a single representation of skele-
tal data %85 it is herein demonstrated that even
when the viewpoint used for training differs signif-
icantly from the one used for testing, the proposed
fusion approach is able to demonstrate comparable
performance to all other cases. In those cases, i.e.
R-L and L-R, achieved accuracies were 0.90 and
0.89, respectively, which were slightly lower than
other cases, indicating the lack of performance gap
as in previous works. In less challenging cross-view
cases, performance ranged between 0.93 and 0.98. As
expected from previous works, high accuracy values
are achieved both in single-view (i.e. 0.95-0.97) and
cross-view (i.e. 0.96) cases.

Moreover, it should be clear that fusion of sev-
eral representations is able to significantly boost
the performance. For example, in cross-subject case,
the achieved accuracy using a single representation
ranged between 0.70 and 0.80, while fusion allowed
for an increase of 20%. Also, note that while dynamic
images exhibit poor performance in cross-view cases,
thus are unable to boost performance when fused
with other modalities, they exhibit strong perfor-
mance in single-view and cross-subject cases, which
is the best per means of a single representations.
Unsurprisingly, in those case they are able to pro-
vide a strong performance boost. This was expected
due to the fact that the data augmentation approach
has been used (Sec.[32) only in cases of image trans-
formations and pseudo-colored images. Furthermore,

another reason for this, is the loss of visual informa-
tion in case of viewpoint changes; in the PKU-MMD
dataset skeletons always comprise 25 joints. It should
also be emphasized that as demonstrated in Table[I]
the fusion of all transforms leads to improved accu-
racy compared to the cases of using a single one,
meaning that the information extracted is comple-
mentary.

For the sake of comparison using the PKU-MMD
dataset five state-of-the-art works, which to the best
of our knowledge exhibit highest performances in the
PKU-MMD dataset have been used. More specifi-
cally, the experimental results of this work are com-
pared to the ones of Li et al. 20 Li et al. B Li et al%9
and also to the more recent works of Guo et al?Z and
Sun et al™

Comparative results are depicted in Tablel Note
that in this comparison we used mAP@50 instead of
accuracy. The authors of PKU-MMD propose the use
of the following two tasks: (a) cross-subject, which
is the same task as the one that we have already
demonstrated; and (b) cross-view, wherein the case
that is considered is the one that L and R viewpoints
are used for training, while M is used for testing
purposes. As it may be seen in Table @ the pro-
posed approach demonstrated improved performance
in the cross-view case, while it shows inferior perfor-
mance, yet comparable, to the results of Li et al4Y
which reported best results in the cross-subject
case.

Table 2. Comparison of the proposed approach to state-of-the-art research works using
PKU-MMD dataset. Numbers indicate mAP (%). Bold indicate best results per task. CV, CS
denote cross-view and cross-subject cases, respectively.

Methodology

Experiment Proposed Li et % Liet al™ Liet al™  Guo et al®?2  Sun et at™@

cv 95.1 94.4
CS 92.1 92.9

93.7 — 94.6
90.4 87.8 93.2

Table 3. Comparison of the proposed approach to state-of-the-art research works using SYSU 3D HOI
dataset. Numbers indicate accuracy (%). Bold indicate best results per task.

Methodology
Experiment Proposed Zhang et alB Zhang et al92 Zhang et al® Ke et ¥ Hu et al20
Setting 1 87.3 86.9 85.7 — 79.6
Setting 2 88.7 86.5 85.7 83.3 84.9
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Table 4. Comparison of the proposed approach to state-of-the-art research works using UT-Kinect Action3D dataset.

Numbers indicate accuracy (%).

Methodology

Proposed Paoletti et al% Koniusz et al®T Gao et alT0 Tang et al® Kao et al®3 Avola et al® Zhang et al%3

99.6 99.5 99.2 98.5

98.5 96.0 95.7 95.6

In case of the SYSU 3D HOI dataset, we
compared our work with five state-of-the-art works
which exhibit strong performance in both settings,
namely, to the ones of Zhang et al.®® Zhang et al. 2
Zhang et al.73 Ke et alB5 and Hu et al?0 Compara-
tive results are depicted in Table [3] where it may be
seen that the proposed approach demonstrated best
performance in both settings of the dataset. More-
over, in case of the UTKinect-Action3D dataset, we
compared our work with seven state-of-the-art works
which exhibit strong performance, namely, to the
ones of Paoletti et al. 5% Koniusz et al. 37 Gao et al. T2
Tang et al. B Kao et al. 23 Avola et al™® and Zhang
et al® Comparative results are depicted in Table @]
where it may be seen that the proposed approach
demonstrated best performance.

5. Conclusions and Future Work

In this paper, a multimodal fusion approach which
targeted the problem of HAR from video data was
proposed. Specifically, it was based on moving RGB
and skeletal data, both captured by a depth cam-
era. These modalities were used to create (a) 4 2D
image representations, which were based on popu-
lar spectral transformations, i.e. the DFT, the FFT,
the DCT and the DST; (b) a pseudo-colored image
which is formed in order to capture inter-joint dif-
ferences over time; and (¢) a dynamic image which
is used to provide a single-frame visual “summary”
of a video sequence. Experiments have been mainly
performed using a dataset of human motion activi-
ties, which was recorded with a multi-camera setup
and conducted a three-fold evaluation, i.e. a single-
view case where the same viewpoint was used for
training/testing, a cross-view case where different
viewpoints were used for training/testing and cross-
subject case, where different subjects were used for
training/testing.

Additional experiments were performed using
two smaller-scale single camera datasets. A CNN was

trained for each case, which then was used for fea-
ture extraction. Thus, in order to classify a given
activity sequence, all the aforementioned 2D images
were first extracted and then the 6 CNNs were used
so as to extract features. The latter were fused and
fed into a support vector machine for classification.
The experimental evaluation indicated that the pro-
posed approach may be successfully used for HAR
in all the aforementioned cases. Moreover, it has
been shown that the fusion of all representations is
able to boost performance in the cross-subject and
single-view cases, however in case of cross-view the
dynamic images are not necessary, since they cause
a small, yet significant drop of performance. Also,
upon comparison of our approach with state-of-the-
art approaches, superior performance in the cross-
view case and comparable performance in the cross-
subject case have been demonstrated.

We believe that the main advantage of this work
is that it is not tied to a single modality. Instead it
may be used with more than one modalities. Depend-
ing on the available hardware, different types of cam-
eras may be used, while the extraction of skeletal
data may be performed with any available method-
ology, although it is preferred to use 3D skeletal
data. Also, a different deep network is used for
feature extraction for each representation, allowing
for faster training and extraction times. As demon-
strated, the approach could be also used with single-
camera datasets, without any modification, apart
from training data and with RGB datasets (i.e.
without depth information), although some perfor-
mance loss is expected. The main limitation is the
need for a multi-camera setup, in case of cross-view
experiments. Also, as the majority of contemporary
research works, it does not deal with spatial and/or
temporal occlusion. However, as it will be later dis-
cussed, this could be a possible future research direc-
tion.

Plans for future work include investigation on
methods for creating the signal image, possibly with
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the use of other types of sensor measurements such as
wearable accelerometers, gyroscopes, etc. and evalu-
ation of the proposed approach on several other pub-
lic datasets, and for other types of activities. Within
this process, a temporal augmentation approach@
applied on skeletal data could replace the interpo-
lation step herein used. Moreover, a further con-
tinuation of this work could involve other types of
image representations of signals such as recurrence
plots 5 which have been successfully used with deep
CNNs for classification of time-series24 deep archi-
tectures, such as LSTMs and hybrid CNN-LSTM
networks, or techniques that work with sequences,
such as seq2sed® or time-series such as multivariate
CNNs/53

Since handcrafted features have been shown to
boost recognition performance of deep approaches 3%
it would be interesting to experiment with other
methodologies for feature extraction that are based
on the geometry and the motion of skeletons325
Also, the use of modern classifiers could be inves-
tigated for classification. For example, instead of
using an SVM, other possible research directions
could include experiments with approaches such as
Neural Dynamic Classification8® Dynamic Ensem-
ble Learning? and Finite Element Machine for fast
learning 54

Other aspects of HAR should be also investi-
gated, such as dealing with incomplete data due
to e.g. partial spatial or temporal occlusion. It is
our belief that occlusion is one of the main factors
that should be investigated in the continuation of
our work. Due to the absence of datasets that con-
tain occluded samples, a possible approach would be
to artificially remove structured sets of joints, i.e.
corresponding to body parts and apply our already
trained models to assess the effect of occlusion 18
Furthermore, a possible approach to deal with occlu-
sion may be the use of regression on skeletal joints =8
It is among our immediate goals to perform an eval-
uation into a real-like or even real-life assistive liv-
ing environment. Therein and for privacy preserva-
tion issues, pose estimation approaches that do not
depend on cameras may applied. A possible approach
could be based on the use of Wi-Fi signals® since Wi-
Fi routers are typically encountered within any home
environment. Finally another possible research direc-
tion would be to extend our approach to 3D data for
real-world engineering cases 5051
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