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Trust is a fundamental sociotechnological mainstay of the Web today. There is sub-

stantial evidence about this since netizens implicitly or explicitly agree to trust virtu-
ally every Web service they use ranging from Web-based mail to e-commerce portals.

Moreover the methodological framework for trusting individual netizens, primarily their
identity and communications, has considerably progressed. Nevertheless, the core of fact
checking for human generated content is still far from being substantially automated

as most proposed smart algorithms capture inadequately fundamental human traits.

One such case is the evaluation of the profile trustworthiness of LinkedIn members
based on publicly available attributes available from the platform itself. A trusted pro-

file may indirectly indicate a more suitable candidate since its contents can be easily
verified. In this article a first order graph search mechanism for discovering LinkedIn

trusted profiles based on a random walker is extended to higher order ranking based on

a combination of functional and connectivity patterns. Results are derived for the same
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benchmark dataset and the first- and higher-order approaches are compared in terms of
accuracy.

Keywords: Higher order metrics; attribute engineering; matrix iterative methods; sta-

tionary methods; Krylov methods; trust composition models; trust ranking; Web trust.

1. Introduction

Web trust is paramount for the proper function of a broad spectrum of online ser-

vices including recommender systems, electronic auctions, e-commerce portals, and

Web-based mail to name just a few. In fact, many actual service terms agreements

include clauses which cannot be implemented without at least a certain degree of

trust from the respective netizen base.1,2 The converse must also hold true in a num-

ber of real world scenaria to ensure proper functionality. To this end many systems

have enacted a wide range of computational trust measures such as internal access

and privilege audits in enterprise operating systems or large databases, diversified

social login3 and two- or multi-factor authentication (2FA/MFA)4 for social media

or e-commerce platforms, and non-repudiation methods for e-mail systems.

The above leave open the fundamental questions of when and how can any two

netizens using the same system can trust each other. A third related but underlying

question is how a human trait such as trust can be expressed in digital terms and

ultimately as a computational problem. In this article these questions are addressed

on the basis of two principles. First, it is acknowledged that computing trust can

done with human generated attributes. Second, based on established emotional

models5–8 trust can be composed from the trust disposition between netizens. As

a concrete example, a methodology is presented for discovering trusted candidates

for technology startups from a LinkedIn graph with startup and user profiles.

The primary research contribution of this article is the extension of an exist-

ing first order trust ranking expressed as a generic graph search scheme with two

possible variants9 to a higher order one expressed as the solution of a suitably

formulated linear system. The latter is constructed from open attributes created

by LinkedIn members and solved by suitable matrix iterative methods. To the

best of the knowledge of the authors no such methods has been used to compute

trust, which differentiates this work from previous ones. As a benchmark the same

LinkedIn subgraph used to evaluate the baseline method will be also employed here.

The remaining of this article is structured as follows. In Sec. 2 the recent

scientific literature regarding Web trust, blockchains, and matrix iterative meth-

ods is briefly summarized. Then Sec. 3 the higher order proposed methodology and

how it differs from the baseline one are explained. The setup to conduct the experi-

ments, their outcomes, and the related discussion are the focus of Sec. 4. The main

findings as well as future research directions are given in Sec. 5. Matrices are rep-

resented by capital boldface letters and vectors by small boldface, while scalars by

small letters. Vectors are always assumed to be columns, unless otherwise explicitly

stated. Finally Table 1 summarizes the article notation.
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Table 1. Notation of this article.

Symbol Meaning First in

4
= Definition or equality by definition Eq. (1)

sign (·) Signum function of a scalar Eq. (34)

|·| Absolute value (depending on the context) Eq. (35)

‖·‖ Matrix or vector norm Eq. (17)

ek Vector with 1 at the kth position and 0 everywhere else Eq. (27)

In n× n indentity matrix Eq. (8)

radius (·) Matrix spectral radius Eq. (38)

diag (·) Diagonal part of a matrix or diagonal matrix Eq. (14)

triu (·) Strictly upper triangular part of a matrix Eq. (14)

tril (·) Strictly lower triangular part of a matrix Eq. (14)

{s1, . . . , sn} Set with elements s1, . . . , sn Eq. (39)

|·| Set cardinality functional (depending on the context) Eq. (20)

2. Previous Work

Trust is fundamental across a broad spectrum of Web applications for their proper

functionality, including SaaS,10 mobile payments,11 recommender systems,12 on-

line news media,13 and e-commerce platforms.14 In the age of Semantic Web agents

can be used to build trust for various entities.15 In social media trust is a major

driver for localized services.16 LinkedIn trust can boost search for qualified startup

candidates9 and in general netizens exhibit there different trust patterns compared

to Facebook including an increased openness to share professional information.17

In Facebook trust can mitigate privacy concerns.18 Trust in Twitter has been used

among others for stock prediction,19 rumor identification,20 and botnet discovery.21

In Twitter digital influence is inherently tied to trust22–24 or more recently to com-

munity structure25 or to social graph resilience.27 Psychological aspects of Web trust

and their applications have been recently the focus of interdisciplinary study.28,29,26

With the advent of blockchains30 and later of rival technologies such as

IOTA31,32 research on both Web trust and trust limitations of IoT infrastruc-

ture was reinvigorated. Additionally, new directions have been added such as

blockchain attack analysis,33 consensus protocols,34 and scalability.35 Moreover,

there is a broad spectrum of applications including vehicles,36 manufacturing,37

business disruption,38 Industry 4.0,39 and digital healthcare.40

Iterative matrix methods are frequently applied to large algebraic equations,41

Sylvester matrix differential equations,42 absolute matrix equations,43 and non-

negative matrix factorization.44 These methods have been successfully applied

among other fields to computer vision,45 multiple input-multiple output (MIMO)46

and orthogonal frequency division multiplex (OFDM) telecommunication sys-

tems,47 and Wiener-Hopf equations with exponential factors.48
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3. Proposed Methodology

3.1. Higher order linear trust composition model

The extended trust model introduced along with the baseline method9 and the

underlying assumptions are presented here. This extension is based on a linear

trust composition model inspired from established emotion composition models.6,5

Before presenting the aforementioned model, the working definition of a trusted

candidate9 will be also repeated for clarity here in Definition 3.1. The actual values

of the parameters mentioned in the following analysis are given in Table 2.

Definition 3.1. A candidate is trusted if and only if the skills listed in their

LinkedIn profile can be verified directly from either itself or connected profiles.

Current models suggest that digital trust πi in general can be composed by a

number of factors operating at two distinct levels.49,50 First, there is the first order

individual component of trust. The latter in the context of LinkedIn means that

trust τi is built on local features pertaining only to the ith LinkedIn profile li.

Second, there is the higher order social component si where trust is gained or lost

based on how trustworthy is the respective social environment. Again specializing to

the context of this work, this component is expressed indirectly by the connectivity

patterns of the LinkedIn adjacency matrix. Therefore as shown in Eq. (1):

πi
4
= τi + si (1)

Concerning the individual trust component, it will be built based on the follow-

ing two open LinkedIn attributes to derive a trustworthiness metric τi for li based

in part on previous approaches to digital trust9:

• The explicit trust τei is derived first by computing the fraction of the number

cj of skills referenced to the number ci of skills li has and then by taking the

arithmetic mean over all such ri references for li as shown in Eq. (2):

τei
4
=

1

ri

ri∑
j=1

cj
ci
, 0 ≤ cj ≤ ci (2)

For each ri the number of skills cj counts each mentioned skill only once.

• The implicit trust τmi is defined as the fraction of the number c∗i of top skills to

the total number of skills ci as shown in Eq. (3).

τmi
4
=
c∗i
ci

(3)

The top skills are determined individually for li as follows. The number of en-

dorsements for all skills are sorted in descending order to obtain vector w̃i.

Starting from the top skill of li at w̃ [1] and moving one step at a time to-

wards w̃ [ci] from the endorsements are progressively added until the fraction of
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the partial sum of endorsements to their total sum exceeds a threshold ξ∗ as in

Eq (4).

c∗i
4
= min

k∗ |
∑k∗

k=1
w̃ [k]∑ci

k=1
w̃ [k]

≥ ξ∗

 (4)

From the attribute description of the two components τei and τmi it follows

that they are independent. Thus they can be added in a weighted sum as shown

in Eq. (5) where the hyperparameter ρ0 indicates the relative component weight.

Moreover, its addition results in more flexibility.

τi
4
=

(
ρ0

1 + ρ0

)
τei +

(
1

1 + ρ0

)
τmi (5)

Regarding the social component si of Eq. (1), its formation will be based on

three underlying assumptions, namely that trust as a human trait can be also

derived from the social environment of li,
50 trust can be composed,9 and perhaps

more importantly is that this composition is linear. Any trust composition scheme

is implicitly based on trust transitivity, which is essentially why higher order trust

patterns can be computed. The linear composition implies Eq. (6) for li:

si =

n∑
j=1,j 6=i

ai,jsj ,

n∑
j=1,j 6=i

ai,j = 1, ai,j ≥ 0 (6)

The meaning of Eq. (6) is that the value si of the social trust component for

li is a linear function of the respective values of connected LinkedIn profiles. The

recursive nature of this equation results in si being computed in a higher order

manner. Recasting it in a matrix-vector form yields Eq. (7):
a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

...
. . .

...

an,1 an,2 . . . an,n



s1

s2
...

sn

 =


s1

s2
...

sn

⇔ As = s (7)

In Eq. (7) the vector s contains the values of the social trust component with

s [i] = si whereas the coefficients are stored in A with A [i, j] = ai,j . This is a

normalized version of the adjacency matrix. At this point it should be highlighted

that Eq. (7) can be cast as either an eigenvalue problem or a linear system, with both

formulations being equally valid, as shown in Eq. (8). Depending on the available

resources, either can be used to derive the trust ranking.

(In −A)s = 0⇔ Gs = 0 (8)

The dimension of the null space of G equals the number of the independent com-

ponents whose linear combinations yield the solution subspace. From the definition

of G and the Perron-Frobenius theorem there is only one such component.
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3.2. Jacobi iteration

A general class of iterative methods for solving linear systems is that of the station-

ary methods. The starting point is the partitioning of the n× n coefficient matrix

of a generic linear system as shown in Eq. (9) in order to obtain two matrices with

special properties. The name of this class of methods is derived from these fun-

damental properties since the general objective is to reach the stationary point of

Eq. (11). From the very formulation of the linear system it follows that:

Mx = b⇔ (M1 + M2)x = b⇔ x = −M−1
1 M2x + M−1

1 b (9)

Observe that there is full equivalence between the three parts of Eq. (9) as long

as M1 is invertible. Notice that the inversion property is never used in practice

as inverting a matrix is expensive in terms of floating point operations (FPOs)

and also prone to numerical errors. Instead, a solution of a suitable linear system

takes place. Eq. (9) is the basis for the generic stationary point iterative schemes

of Eq. (10):

x[k] = −M−1
1 M2x

[k−1] + M−1
1 b, x[k] ∈ Rn (10)

Eventually and if certain conditions hold the iterative scheme of Eq. (10) will

have a trajectory in the candidate solution subspace, which is itself embedded in

Rn, such that it will eventually find the stationary point of Eq. (11):

x[k] ≈ x[k−1] (11)

This is equivalent to Eq. (12) where the higher order function ϕ(·) is essentially

the mechanism generating the next iteration vector.

x[k+1] = ϕ
(
x[k]; M1,M2,b

)
(12)

From Eqs. (10) and (12) it follows that the properties of ϕ(·) or M−1
1 M2 in this

case determine whether the iterative method will converge and, if yes, how fast in

terms of iterations. Excluding the possible event of numerical instability caused

by factors so diverse as improperly implemented FPOs, division by very small

floating point numbers (FPNs), or addition of very uneven FPNs, the following

characteristics are key to the successful design of stationary iterative methods:

• Matrix M1 should not only be invertible but also easy to invert. Along a similar

line of reasoning, matrix M−1
1 M2 should be easy to compute.

• The spectral radius of M−1
1 M2 denoted by radius

(
M−1

1 M2

)
determines the con-

vergence of the method.

• If the eigenvalues are clustered, even approximately, then some methods may well

discover quicker the components of the stationary point.

• Matrix M−1
1 M2 should be a partial contraction operator to directions perpen-

dicular to the stationary point so that components in them vanish.

2260001-6



October 6, 2022 13:29 IJAIT S0218213022600016 page 7

1st Reading

Higher Order Trust Ranking of LinkedIn Accounts

Notice that in the general case the stationary point of Eq. (12) may differ than

the solution of Eq. (9) especially if ϕ(·) is non-linear. However, in the particular

case it is linear by construction and, hence, there is only one stationary point which

is also the solution of the original linear system. Thus, the selection of the starting

point x[0] is less restricted and in fact it can be any arbitrary or random vector

when there is insufficient information about the stationary point.

Frequently for specific linear systems an appropriate invertible preconditioning

matrix P is sought such that the linear system of Eq. (13) is solved instead.

PMx = Pb (13)

The solution is equivalent with (9) but preconditions may result in faster reaching

the stationary point in the solution subspace. Frequently P depends on the specific

system. Such methods are beyond the scope of this work.

Interest in the methods of Eq. (12) has been reinvigorated since they are used

in many current graph neural network (GNN) algorithms, where graph topological

properties are also considered besides the functional ones.51

The Jacobi method can be obtained from the template of Eq. (10) by observing

that any rectangular matrix M can be uniquely partitioned to three constituent

parts, each with its own interpretation, as shown in Eq. (14). In Eq. (14) the

matrices at the right hand side are the diagonal part, the strictly lower triangular,

and the strictly upper triangular part of the original matrix M.

M = diag (M) + tril (M) + triu (M) (14)

Combining Eqs. (14) and (10) the Jacobi method is derived for the options:

M1
4
= diag (M) and M2

4
= M−M1 = triu (M) + tril (M) (15)

The interpretation of Eq. (15) is that the ith equation of Eq. (8) is solved for

the ith unknown s [i] and updated at each iteration, perhaps after rearrangement

of equations or unknowns to avoid zero coefficients G [i, i]. This results in Eq. (16):

s[k] [i] = − 1

G [i, i]

n∑
j=1j 6=i

G [i, j] s[k−1] [j] (16)

Under Jacobi scheme each unknown s [i] is updated in the same rate. This may

be desirable if the components of the initial solution x[0] are almost uniformly far

from the true solution or, alternatively, if each vertex of the graph has approximately

the same number of neighbors. In these cases, the trust metric value of each vertex

is updated approximately at the same rate. This reduces the probability that the

Jacobi process is delayed by only a few components.

Regarding the termination criteria, there is a number of conditions which

can be used. In this work the failsafe criterion of a maximum number of itera-

tions T will be used in conjunction with the condition of Eq. (17) which checks

2260001-7



October 5, 2022 15:58 IJAIT S0218213022600016 page 8

1st Reading

G. Drakopoulos et al.

Algorithm 1 The Jacobi iteration

Require: Matrix M, vector b, initial guess x[0], iterations T , and threshold ξ0
Ensure: An approximate solution to Eq. (9) is computed

1: partition M as in Eq. (15) to obtain M1 and M2

2: repeat

3: compute x[k] from Eq. (10)

4: until T is exceeded or Eq. (17) is satisfied

5: return last x[k]

whether the overall difference in the magnitude of two solutions drops below a

threshold ξ0. ∥∥∥x[k] − x[k−1]
∥∥∥
2
≤ ξ0 (17)

Algorithm 1 summarizes the Jacobi iteration.

3.3. Gauss-Seidel iteration

An improvement over the Jacobi iteration is Gauss-Seidel scheme. The latter can

be seen as solving the ith equation for the ith unknown s [i] but now the new i− 1

updates for unknowns s [1] up to s [i− 1] are used. This leads to Eq. (18):

s[k] [i] = − 1

G [i, i]

i−1∑
j=1

G [i, j] s[k] [j] +

n∑
j=i+1

G [i, j] s[k−1] [j]

 (18)

In matrix form the Jacobi iteration is derived from the general matrix parti-

tioning scheme of Eq. (14) as shown in Eq. (19):

M1 = diag (M) + triu (M) and M2 = tril (M) (19)

In this case each component of x[k] is updated at a different rate with those

components in the first places of this vector using more components of x[k−1]. On

the contrary, the last components of x[k] rely almost exclusively on updated values.

Therefore, it is advisable to rearrange the vertex location in the system of Eq. (8)

in increasing degree order so that the update of the trust value of a vertex with a

rather large neighborhood will use a big number of updated values from the current

iteration. Alternatively, a topological ordering of the vertices can yield an update

sequence with a minimal number of update conflicts or update delays, depending

on the optimality criterion. In this work the first option was used.

With the exceptions of the preparatory vertex rearrangement step and the dif-

ferent partitioning of matrix M the Gauss-Seidel iteration is identical to the Jacobi

iteration and hence its algorithmic layout is similar to Algorithm 1.
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3.4. GMRES

Another general approach for iteratively solving the linear system of Eq. (8) is the

class of Krylov based iterative methods. They first try to place any linear system

in the context of a suitably generated Krylov space and then devise an iterative

method based on an optimality criterion in that space. A Krylov space is the linear

subspace of Rn generated by any pair of matrix V ∈ Rn×n and vector y ∈ Rn.

They create a set V of n vectors as in Eq. (20) whose linear span is the Krylov

space.

V
4
=
{
y,Vy, . . . ,Vn−1y

}
, |V | = n (20)

The Generalized Minimum RESidual (GMRES) method relies heavily on the

Krylov space spanned by matrix G of Eq. (8) and the residual r[0] which is ob-

tained from the starting point s[0], which can very well be in initial guess or a

random vector when no other information is available, as shown in Eq. (21).

r[0]
4
= −Gs[0] (21)

In this case the Krylov space the sought solution lies in is spanned by the n

vectors of Eq. (22). Note that they ordinarily do not constitute a basis for that

particular space. Instead, they are the starting point for finding one.

V
4
=
{

r[0],Gr[0], . . . ,Gn−1r[0]
}

=
{
−Gs[0],−G2s[0], . . . ,−Gns[0]

}
(22)

Observe the special structure of V since the right hand side of Eq. (8) is zero. Also,

the starting point s[0] cannot be zero since in that case the span degenerates to

zero.

In each iteration GMRES constructs progressively a base for V and evaluates

how the residual norm behaves. Since the subspace obtained in each step is properly

included in the next one, each inclusion of a new component will at best decrease

the residual norm. This happens as the exact solution s may not have components

in each of the n directions of the base vectors of V . Each new basis vector qi is

computed through the Arnoldi iteration, which is a specialization of the Gram-

Schmidt orthogonalization process tailored for Krylov spaces.

Assume the n base vectors for the specific Krylov space of Eq. (22) are qi,

1 ≤ i ≤ n. The solution s is a linear combination of these vectors for some coeffi-

cients ci as shown in Eq. (23). Expressing its right hand side in matrix-vector form

yields:

s =

n∑
i=1

ciqi =
[
q1 q2 . . . qn

] [
c1 c2 . . . cn

]T
= Qc (23)

In Eq. (23) the columns of the orthonormal matrix Q are the basis vectors qi,

whereas vector c contains the coefficients ci. Note that s may depend on only n′

vectors, in which case GMRES terminates in n′ iterations with the exact solution.
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Because of the special structure of V if G multiplies Qi, namely the matrix

with the first i columns of Q, then the result will be a product of Qi+1 by an upper

Hessenberg matrix Hi acting as a weight as shown in Eq. (24). This special structure

of Hi is attributed both to the structure of V as well as to the independence

of qi.

GQi = Qi+1Hi (24)

To compute the candidate solution s[k] during the kth iteration first it is writ-

ten as the sum of the starting point s[0] plus a correction vector z[k] as shown

in Eq. (25).

s[k] = s[0] + z[k] (25)

Since z[k] is in the Krylov space and in particular in its subspace spanned by

the first k basis vectors, then z[k] can be written as a linear combination of q1 up

to qk for some coefficients y1 to yk or as shown in matrix-vector form in Eq. (26):

z[k] =

k∑
i=1

yiqi = Qkyk (26)

At the heart of GMRES is the selection of the coefficient vector yk. The latter

is computed so that the current candidate solution s[k] minimizes the length of the

residual r[k] over the current basis subset of the Krylov space as in Eq. (27).∥∥∥r[k]∥∥∥
2

=
∥∥∥−G

(
s[0] + z[k]

)∥∥∥
2

=
∥∥∥−Gs[0] −GQkyk

∥∥∥
2

= ‖β0e1 −Hkyk‖2 (27)

This is a linear least squares problem for yk. A selection of a different norm can

lead to another optimization problem which is potentially non-convex. Also it has

a Hessenberg coefficient matrix which means its solution has a much lower com-

putational complexity compared to the general case. This can be seen from the

fact that Eq. (27) is almost in the form required by the standard QR factorization

approach.

From Eq. (27) it follows that the constant β0 has the value of Eq. (28).

β0 =
∥∥∥−Gs[0]

∥∥∥
2

=
∥∥∥r[0]∥∥∥

2
(28)

Regarding the termination of GMRES, there is a number of criteria. One is to

set an iterations limit T (n). Also here is checked whether the difference between

two successive candidate solutions drops below a threshold ξ1 as shown in Eq. (29).∥∥∥s[k] − s[k−1]
∥∥∥
2
≤ ξ1 (29)

The GMRES method is summarized in Algorithm 2.

2260001-10
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Algorithm 2 The GMRES iterative method

Require: Matrix G, initial guess s[0], number of iterations T (n), and threshold ξ1
Ensure: An approximate solution to Gs = 0 is found

1: compute the initial residual r[0]

2: repeat

3: compute another qk from the Arnoldi process

4: compute the linear least squares of Eq. (27)

5: until T (n) is exceeded or Eq. (29) is satisfied

6: return s[k]

4. Results

4.1. Experimental setup

Table 2 has the actual value for every parameter mentioned in the preceding

analysis. Notice that the values for ρ0 and ξ∗ are the same with those used in

the experiments of the baseline method for fairness reasons.

The LinkedIn dataset9 which was used in the experiments has the properties

shown in Table 3. Observe that it is a relatively sparse graph which despite that

has a quite connected critical mass as more than half of the vertices are within a

Table 2. Experimental setup.

Parameter Value

Relative importance hyperparameter ρ0 in Eq. (5) 1

Top skill endorsement threshold ξ∗ in Eq. (4) 0.75

Threshold ξ0 for Jacobi termination in Eq. (17) 0.05

Jacobi and Gauss-Seidel maximum iterations T in Algorithm 1 250

GMRES correction length threshold ξ1 in Eq. (29) 0.05

GMRES maximum iterations T (n) in Algorithm 2 Eq. (40)

Levenberg-Marquart parameter correction length threshold ξ2 in Sec. 4.3 0.05

Levenberg-Marquart regularization parameter λ0 in Eq. (46) 0.5

Table 3. LinkedIn dataset properties.

Parameter Value Parameter Value

Number of startup profiles vs 47 Graph diameter 10

Number of candidate profiles vc 6391 Fraction of vertices with distance 6 15.66%

Edges 1512 388 Fraction of vertices with distance 7 12.33%

Triangles 31 4003 Fraction of vertices with distance 8 7.81%

Squares 109 863 Fraction of vertices with distance 9 4.68%

Connected components 1 Fraction of vertices with distance 10 1.15%
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distance which is at most half the graph diameter. This was identified as a critical

factor for the success of the baseline method.

4.2. Performance metrics

For the stationary method template of Eq. (10) two error metrics which are readily

accessible are the correction magnitude u[k] and angle ϑ
[k]
r . They are computed

between any two successive iterations as shown respectively in Eqs. (30) and (32).

u[k]
4
=
∥∥∥x[k] − x[k−1]

∥∥∥
2

(30)

In Table 4 the average ∆u over all iterations is given.

In Eq. (30) u[k] can be thought of as a measure of speed the solution moves

with as successive iterations of the template of Eq. (10) take place. It can be

further analyzed using the recursive nature of the iteration generator of Eq. (10)

as follows.

x[k] − x[k−1] =
(
−M−1

1 M2x
[k−1] + M−1

1 b
)
−
(
−M−1

1 M2x
[k−2] + M−1

1 b
)

= −M−1
1 M2

(
x[k−1] − x[k−2]

)
=
(
−M−1M2

)k(
x[1] − x[0]

)
= Sm · diag

(
µk1 , . . . , µ

k
n

)
· STm ·

(
x[1] − x[0]

)
(31)

The last line of Eq. (31) comes directly from the spectral decomposition of

the iteration matrix −M−1
1 M2. From this follows immediately the important role

of its eigenstructure, especially its spectral radius denoted by radius
(
−M−1

1 M2

)
,

to the convergence and the rate thereof of the template of Eq. (10). The rate of

convergence depends heavily on the ratio of the largest to the smallest eigenvalues

and, thus, matrices M−1
1 and M2 can be accordingly designed to minimize it.

The correction angle of Eq. (32) moves along a similar line of reasoning by

computing the local curvature of the solution path. Large changes may indicate

a realignment of the solution trajectory towards the right direction, which can

possibly be attributed to the discovery of an as yet unknown solution component.

On the contrary, small changes may indicate trajectory convergence. The derivation

of Eq. (32) was based on the Cauchy-Schawrz identity plus the observation that in

Eq. (10) when M1, M2, b, and x[0] are real, then x[k] are real.

ϑ[k]r
4
= arccos

( (
x[k]
)T

x[k−1]∥∥x[k]
∥∥
2

∥∥x[k−1]
∥∥
2

)
(32)

In Table 4 the average ∆ϑr over all iterations is given.

Additional metrics based on or inspired of Eqs. (30) and (32) are the acceler-

ation a[k] of Eq. (33) and the angle change ϑ
[k]
c or Eq. (34). The former roughly
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corresponds to the acceleration of the solution as it moves along the solution path

in Rn generated by the mechanism of Eq. (10).

a[k]
4
=

1

2

∥∥∥x[k] − 2x[k−1] + x[k−2]
∥∥∥
2

(33)

In Table 4 the average ∆a is given.

The angle change of Eq. (34) is the absolute value of the difference of the

correction angles between two successive iterations. It is an additional metric of

trajectory curvature spanning, albeit a somewhat less crude one that the correction

angle as it spans over three iterations. Thus, ϑ
[k]
c gives more than the instantaneous

curvature.

ϑ[k]c
4
=
∣∣∣ϑ[k]r − ϑ[k−1]r

∣∣∣ (34)

In Table 4 the average ∆ϑc is given.

An alternative definition for Eq. (34) is that of Eq. (35) which quantizes the

change in the correction angle at the range of {±1}. Because of this, the alternative

definition will not be used here.

ϑ̃[k]c
4
= sign

(
ϑ[k]r − ϑ[k−1]r

)
(35)

Another way to assess the performance of the template of Eq. (10) when applied

to the linear system of Eq. (9) is to measure the distance between the left hand

side vector b and the result of the application of a candidate solution x[k] to the

coefficient matrix M. This is called the residual and is defined as shown in Eq. (36):

r[k]
4
= b−Mx[k] (36)

Given the above definition performance metrics similar to those in Eqs. (30),

(32), (33), and (34) can be constructed to assess the convergence of the iterative

method in the range of M through r[k] as opposed to the domain of M which is

evaluated through x[k]. To evaluate how a change in the range of M is reflected in

its domain the recursive nature of Eq. (10) will be used as follows in Eq. (37).

r[k] − r[k−1] = −M
(
x[k] − x[k−1]

)
⇒
∥∥∥r[k] − r[k−1]

∥∥∥
2
≤ ‖M‖2

∥∥∥x[k] − x[k−1]
∥∥∥
2

(37)

Thus, convergence to a stationary point also drives the difference in the range

of M to zero, provided that ‖M‖2 is finite. Therefore, the nullspace of M must

have a dimension of zero, meaning in the context of this work that there are no

isolated components in the original graph topology and so each vertex contributes

to the proposed trust model of Eq. (8). Moreover, the lower its spectral radius is,

the tighter the above bound is. The role of the spectrum of M to the convergence

of the stationary point methods becomes clearer in light of Eq. (38):

‖M‖2
4
=

max {|λ|, λ ∈ Λ}
min {|λ|, λ ∈ Λ}

=
radius (M)

min {|λ|, λ ∈ Λ}
(38)
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Eq. (38) is in fact a special form since M is square and real. Also recall that in

Eq. (38) Λ is the spectrum of M defined as in Eq. (39):

Λ
4
= {λ,Mg = λg} (39)

In any case, since there is an equivalence up to a constant to the decay rate in

the domain and the range of M, then it suffices to monitor only one of these spaces

and not both. This also justifies the termination criteria presented earlier.

Regarding GMRES its convergence to the exact solution s depends heavily on

the order the Arnoldi iteration discovers the basis vectors for the Krylov space.

Since the optimal order cannot be known in advance, keeping track of the residual

and monitoring its magnitude is a feasible termination criterion. For matrices with

clustered eigenvalues in practice the convergence is satisfactory and requires much

less than n iterations. Also since n is typically a very large number of steps with

a prohibitively computational cost, a function sublinear in n is frequently selected

for T (n). In this article the specific choice was that of Eq. (40).

T (n) =
⌈
n

2
3

⌉
(40)

Other than that, the performance metrics for GMRES are those described earlier

for the stationary point methods.

In Figure 1 the spectrum of G of Eq. (8) is given in logarithmic scale. Usually

such information is unavailable and has to be estimated by system designers. From

Fig. 1. Spectrum of G (log scale).
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the eigenvalue decay rate it can be seen that after the maximum eigenvalue there

is a big gap with the second largest eigenvalue being almost two orders of magni-

tude lower. This indicates a graph which can be significantly densified, since the

difference between these eigenvalues is a metric of graph expansion potential and a

heuristic for the respective Cheeger (or isoperimetric) number. Moreover, the heavy

tail indicates there is a considerable number of eigenvalues in the region between

10−2 and 10−3 with a small fraction of eigenvalues below 10−3. This is in accor-

dance with the observation that there is a connected heavy mass and a relatively

small periphery.

4.3. Ranking properties

The accuracy of the proposed ranking methodology will be the same as with that

of the baseline methodology, namely that it will be defined as the overall ratio I0
of the number of employees e′k found to the total number of employees ek who have

a LinkedIn profile for the kth startup.9 Assuming vs startups exist in the dataset,

Eq. (41) gives the definition for I0. Its probabilistic properties have been examined

in the work introducing the baseline methodology. For fair comparison reasons I0
will be used here as well to evaluate ranking accuracy.

I0
4
=

1

vs

vs∑
k=1

e′k
ek

(41)

The resulting rankings are of interest not only in terms of accuracy but also of

robustness. The latter means that small numerical perturbations in the process are

not expected to have significant effects on the ranking itself. One way to see this

is based on the observation that both the baseline and the proposed methodology

yield respectively the rankings sb and sp whose logarithmic scree plot, namely the

plot of the frequency of the components of sb and sp versus their ranking is close

to a straight line as shown in Fig. 2. This strongly implies a Zipf or power law type

ranking where the ith candidate has a score as shown in Eq. (42):

rb [i] = αbi
−γb and rp [i] = αpi

−γp (42)

In Eq. (42) the normalizing constants ensure that the elements of the respective

rankings add to one. The exponents play a crucial role as they determine the decay

rate with a bigger exponent denoting a sharper decay and, thus, a more robust

ranking for the top elements since the distance between any two consecutive ranking

scores is also bigger. This situation is reversed for the bottom elements which are

cramped at the ranking tail but this effect is of no concern here.

The two power law models of Eq. (42) are fit to the respective actual sorted

scores {(i, sb [i])} and {(i, sp [i])}. Since the procedure is virtually identical, the

subscripts from the rankings will be dropped in the following analysis.

The Levenberg-Marquardt algorithm used in this work is described in Algo-

rithm 3. Notice that the parameter vector t is updated in each iteration by solving

a linear system in order to compute a correction vector δt[k] added to it.
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Fig. 2. Trust scoring (log scale).

Algorithm 3 Levenberg-Marquardt algorithm for power law fitting

Require: Power law model r, scoring s, and regularization parameter λ0
Ensure: A power law model is fit to the scores

1: generate the starting point t

2: repeat

3: construct
(
JTJ + λ0 diag

(
JTJ

))−1
as in Eq. (48) and JT (s− r) as in Eq. (47)

4: solve regularized system of Eq. (46) to compute δt[k]

5: update parameter vector t = t[0] + δt[k]

6: until
∥∥δt[k]∥∥

2
drops under ξ2

7: return updated version of t

The vector t[0] contains the initial values for the two parameters to be estimated

α[k] and γ[k] is defined as in Eq. (43). Also let δt be the current value estimates

and t[k] be the correction computed during the kth iteration.

t[0]
4
=
[
α[0] γ[0]

]T
(43)
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At each iteration once δt[k] is computed the estimated is updated as in Eq. (44).

t = t[0] + δt[k] (44)

The Jacobian matrix for the parameters α and γ is given in Eq. (45). By

construction each row contains the first order partial derivative of the model to

be fit to the actual measurements evaluated at each of the data point abscissas i,

1 ≤ i ≤ n.

J
4
=


∂r

∂α

∣∣∣∣
i=1

. . .
∂r

∂α

∣∣∣∣
i=n

∂r

∂γ

∣∣∣∣
i=1

. . .
∂r

∂γ

∣∣∣∣
i=n

 =

 i−γ | i=1 . . . i−γ | i=n

−γαi−γ−1 | i=1 . . . −γαi−γ−1 | i=n

 (45)

Based on Eq. (45) the first order approximation JTJ of the true Hessian matrix

is constructed by evaluating the Jacobian matrix of Eq. (45) at the latest respective

values of t. Recall that the Hessian matrix contains the second derivatives of r with

respect to the two parameters α and γ evaluated at the data points absicssas i and

it is the computational heart of the multiparameter Gauss-Newton method.

At each iteration the linear system of Eq. (46) is solved in order to compute

δt[k]. The first order matrix is augmented with a diagonal correction which amounts

to multiplying diagonal elements by 1 + λ0. Typically λ0 is either a small positive

constant or a decaying positive variable. In this work the former option was used.

Although this regularization strategy, similar to those used in ill conditioned inverse

problems,52 leads to an inexact solution, the system is more stable numerically.(
JTJ + λ0 diag

(
JTJ

))
δt[k] = JT (s− r) (46)

In Eq. (46) during each iteration the Jacobian matrix J has to be reconstructed

using the latest parameter values stored in t. This is tantamount to moving the

search to a new point closer to the true parameter location and computing a new

update. The vectors s and r contain respectively the actual ranking scores sorted

in descending order and the predicted values from the power law model.

The right hand side of Eq. (46) has the elements shown in Eq. (47). They are

approximations of the total differential of r for the respective parameters.

JT (s− r) =

 n∑
i=1

(s [i]− r [i])
∂r

∂α

∣∣∣∣
i

n∑
i=1

(s [i]− r [i])
∂r

∂γ

∣∣∣∣
i

T (47)

Note that r refers to the model to be fit, which is a differentiable function, whereas

r is the vector of the values of r at the abscissas i, 1 ≤ i ≤ n.

In this particular case the coefficient matrix of Eq. (46) is 2× 2. Therefore, its

inverse ∆ is given by the closed form of Eq. (48). The upper part is the formula

for the normalizing factor δ∗, whereas the lower part is the formula for ∆ itself.
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δ∗ =
1

(1 + λ0)
2
∑n

i=1

(
∂r

∂α

∣∣∣∣
i

)2∑n

i=1

(
∂r

∂γ

∣∣∣∣
i

)2

−
(∑n

i=1

∂r

∂α

∣∣∣∣
i

∂r

∂γ

∣∣∣∣
i

)2

∆ = δ∗


(1 + λ0)

∑n

i=1

(
∂r

∂γ

∣∣∣∣
i

)2

−
∑n

i=1

∂r

∂α

∣∣∣∣
i

∂r

∂γ

∣∣∣∣
i

−
∑n

i=1

∂r

∂α

∣∣∣∣
i

∂r

∂γ

∣∣∣∣
i

(1 + λ0)
∑n

i=1

(
∂r

∂α

∣∣∣∣
i

)2


(48)

This iterative process terminates when the magnitude of the correction vector

in the kth iteration
∥∥δt[k]∥∥

2
drops under a threshold ξ2.

Table 4 has the exponent values γ for the baseline and proposed methods.

4.4. Results and discussion

In Table 4 are presented the values for the performance metrics discussed in the

remainder of this Section. The results about the baseline method are the best scores

for the respective metrics. Since the baseline counts steps in a much different way

than the iterations of the three methods presented here, the comparison will be

only in terms of accuracy I0 of Sec. 4.2 and the ranking exponent γ of Sec. 4.3.

From the entries of Table 4 it follows that the higher order method clearly

outperforms the first order one. This is attributed to the added information which

is available to the former through the adjacency matrix of the dataset. The relatively

small increase in the accuracy I0 can be attributed to the fact that the baseline

method starts from a high point. Moreover, since all three iterative methods solve

the same linear system, it follows that they result in the same value for the exponent

γ. The latter is lower for the proposed methodology, indicating a sharper ranking

decay and consequently a clear difference between top ranking profiles and the rest.

Notice that the ranking is derived from Eq. (1) for the proposed methodology. In

all cases the starting vector s[0] = 1n was used which denotes a uniform initial

ranking as there is no a priori reason to reward or demerit any profiles. As it was

Table 4. Results.

Baseline9 Jacobi Gauss-Seidel GMRES

Accuracy I0 0.8739 0.9311 0.9311 0.9311

Exponent γ −2.5814 −2.8322 −2.8322 −2.8322

Iterations N/A 124 103 79

∆ϑc N/A 58.13◦ 58.11◦ 35.6◦

∆ϑr N/A 32.11◦ 28.42◦ 18.92◦

∆u N/A 8.3321 9.5217 14.3331

∆a N/A 12.8992 17.3333 25.5023
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seen in the preceding analysis, the selection of the starting point does not influence

the convergence of the iterative methods used in this work.

Concerning the comparison of the three iterative methods, all the performance

metrics favor GMRES with Gauss-Seidel being a very distant second with perfor-

mance almost similar to that of Jacobi. On average the candidate solutions of the

stationary point methods have a slower and more convoluted trajectory as denoted

by low speed and acceleration in conjunction with wider turns as indicated by the

larger angles. On the contrary, GMRES yields a smoother trajectory. This can

be attributed to the fact that GMRES progressively constructs a solution during

each iteration which is at least as good as the previous one since it finds the best

projection to a new basis vector of the Krylov space containing the true solution.

In general, algorithmic efficiency plays a central role in large scale problems such

as this one. For the class of the iterative algorithms the total complexity is divided

to two possibly competing factors, namely the total number of iterations and the

complexity per iteration. The cases of the Jacobi and GMRES methods are very

insightful regarding on how the two above factors are interrelated. In GMRES each

iteration is a linear least squares problem of linearly increasing dimensions. Their

special structure allows them to be solved in an number of FPOs comparable to

those of the Jacobi iteration. However, because of the different strategy of GMRES

each correction leads closer to the exact solution as denoted by the lower number

of iterations of Table 4. Thus, GMRES in this context utilizes more efficiently the

available computational resources to find a better candidate solution.

The proposed approach requires only one hyperparameter ρ0 which determines

the relative importance between the implicit and the explicit parts of the individual

trust component in Eq. (5). Since there is no evidence suggesting either should be

preferred, ρ0 was set to 1 so that both components have the same weight. Addi-

tionally, this was the value used in the experiments for the baseline methodology,

contributing in this way to a fair comparison. The latter requires two more hyper-

parameters, namely ρ1 and α0, to give weights to competing factors elsewhere in

the decision algorithm. Therefore, the proposed methodology has less complexity

when it comes to hyperparameters, making it thus easier to understand.

The baseline method besides being a first order one was also based on the im-

plicit assumption that the profiles of trusted candidates would be clustered so they

can be efficiently reached with short sequences of local jumps. A substantial amount

of empirical evidence appears to corroborate the working assumption that social

graphs tend to densify over time53 which in the LinkedIn case can be attributed

to invitations being frequently accepted out of professional courtesy or best profes-

sional practices. Therefore, professional with similar skillsets are often connected,

favoring thus local searches. On the other hand, the proposed method benefits from

a dense graph as it has more information for each profile from neighboring ones.

Concerning the limitations of the proposed methodologies, perhaps the most ba-

sic one is the question whether trust composition is linear. Even if trust is shown to
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be composed non-linearly, a similar framework for systems of non-linear equations

can be designed. Moreover, since social graphs tend to be frequently updated in-

crementally, inserting new profiles is bound to influence trust ranking. Although

neither the baseline nor the proposed methods have been designed with that in

mind, they can be naturally extended. The baseline method can visit new profiles,

whereas the iterative methods can use the existing trust scoring as a starting point.

5. Conclusions and Future Work

The focus of this article is the extension of first order trust metrics, as computed by

readily available attributes of LinkedIn, to higher order ones. The key for the latter

is a system of equations based on the assumption that trust for a given LinkedIn

profile can be linearly composed from the trust values assigned to neighboring ones.

Additionally, three iterative methods, namely the Jacobi, the Gauss-Seidel, and

the GMRES, are used to compute the trust scores from the proposed metric. The

performance of these methods has been assessed with metrics including the number

of iterations, the average velocity and angle of the trajectory of the candidate

solutions, and the exponent of the ranking decay. Moreover, a tailored Levenberg-

Marquardt algorithm was used to fit a power law to the ranking derived by the

baseline and the proposed methodologies through a sequence of regularized linear

systems.

Possible research directions include extending tests to more benchmark LinkedIn

graphs with various characteristics such as varying density, diameter, or average de-

gree. Moreover, trust composition models warrant further investigation based on

findings from social media analysis, computer science, and cognitive sciences. Specif-

ically, the homophily connectivity patterns between trusted profiles can serve as a

starting point. The application of eigenvalue computation algorithms to the trust

computation is another possible option. The inclusion of more LinkedIn attributes

to the proposed trust metric should finally be researched.
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