
A Genetic Algorithm For Boolean Semiring Matrix
Factorization With Applications To Graph Mining

Georgios Drakopoulos
Ionian University

0000-0002-0975-1877
c16drak@ionio.gr

Phivos Mylonas
Ionian University

0000-0002-6916-3129
fmylonas@ionio.gr

Abstract—Matrix factorization is paramount in large scale
graph mining as well as a versatile paradigm for dimensionality
reduction. In particular, factoring a graph adjacency matrix may
well reveal, depending on the specific factor properties, higher
order structure. The latter describes global graph properties
better compared to first order connectivity patterns such as ver-
tex degrees. The Boolean semiring factorization of an adjacency
matrix yields a product of two smaller and sparser matrices
where the former contains disjoint fundamental vertex subsets
and the latter combinations thereof. Therefore, the first factor
represents community structure and the second has the cross
connections between them. In this way graph partitioning and
dimensionality reduction are simultaneously achieved. Because of
the nature of the Boolean semiring, most common linear algebraic
solvers cannot be applied. Moreover, the exact factorization is NP
hard. To address these limitations, a genetic algorithm has been
developed with evolutionary operations tailored to heuristically
compute said factorization which offers interpretability and a
high parallelism potential. Besides graph mining the major appli-
cations of the Boolean semiring factorization include role mining
in enterprise database and operating system realms, curriculum
design, and graph flows under inflexible uniqueness constraints.
The results obtained by applying the proposed genetic algorithm
to synthetic graph benchmarks are very encouraging.

Index Terms—Boolean semiring, dimensionality reduction, ma-
trix factorization, genetic algorithm, graph mining, role mining

I. INTRODUCTION

In an arguably highly interconnected world graphs can be
found literally everywhere. With the advent of linked data an-
alytics and the development of appropriate tools, which range
from NoSQL databases like Neo4j [1] to distributed systems
such as Apache Spark [2], it is not an exaggeration to say
that the entire planet has obtained a cohesive digital nervous
system. In this context the role of linked data processing
becomes central. Such processing should take into account
not only topology but also functionality. For instance, in the
case of social networks connectivity patterns may correspond
to friendships and functionality to messages or posts. Alterna-
tively, in a logistics scenario, topology may denote available
routes and functionality the associated capacities and costs.

Graph signal processing (GSP) is an emerging research field
where graphs are two dimensional signals, expressed primarily

through the respective adjacency or Laplacian matrices, and
new knowledge is extracted by appropriately defined signal
processing methods [3]. The main challenge comes from the
irregular domain induced by graph topology, which implies
that elementary signal processing operations must be rede-
fined before any composite operations can be built on them.
However, this also leads to a novel viewpoint on problems
such as graph clustering, Fiedler value estimation, Laplacian
approximation, and quick Fourier eigenexpansions. Recently,
graph neural networks (GNNs) have emerged as a neural
network architecture for distributed and recursive processing
with emphasis placed on topology and communication. Be-
cause of the computational complexity of mining large graphs,
for instance for adjacency matrix factorization or community
structure discovery, efficient heuristics have been proposed.

Among the graph processing algorithms the class of graph
partitioning stands out as it has numerous applications across
various fields including social media analysis, logistics and
long supply chains, protein interaction analysis, and omics
data. As there is no single definition of what constitutes a
community, there is a plethora of relevant algorithms. The
Boolean semiring matrix factorization of an adjacency matrix
yields sparse community structure. However, because of its
definition linear algebraic techniques do not work and most
proposed algorithms rely on nonlinear optimization principles.

TABLE I
NOTATION OF THIS CONFERENCE PAPER.

Symbol Meaning First in
4
= Definition or equality by definition Eq. (1)
∨ Boolean disjunction (logical or) Eq. (4)
∧ Boolean conjunction (logical and) Eq. (4)
� Matrix multiplication over semiring Eq. (11)
⊕ Boolean exclusive disjunction Eq. (2)
{s1, . . . , sn} Set with elements s1, . . . , sn Eq. (1)
|·| Set cardinality functional Eq. (17)
‖·‖ Matrix or vector norm Eq. (14)
tr (·) Matrix trace Eq. (14)
ek k-th vector of standard basis Eq. (18)
E [X] Mean value of r.v. X Eq. (7)
Var [X] Variance of r.v. X Eq. (7)
prob {Ω} Probabilty of event Ω occurring Eq. (6)

The primary research objective of this conference paper is
the development of a genetic algorithm (GA) for selecting one
of the two factors of the matrix factorization over the Boolean978-1-6654-8045-1/22/$31.00 ©2022 IEEE

semiring, which is a well known NP-hard problem. The basic
evolutionary operations have been tailored to the nature of
this factorization. In turn, this allows for explainability and
transparency in the way the proposed algorithm works.

The remainder of this work is structured as follows. In sec-
tion II the recent scientific literature regarding graph mining,
matrix factorization, and role mining is briefly overviewed.
The proposed methodology including the genetic algorithm
heuristic is described in detail in section III, whereas the
results obtained are analyzed in section IV. Future research
directions are given in section V. Boldface capital letters
denote matrices, boldface lowercase vectors, and lowercase
letters scalars. Acronyms are explained the first time they are
encountered in text. Function parameters follow the respective
arguments after a semicolon. Finally, the notation of this
conference paper is summarized in table I.

II. PREVIOUS WORK

Graph mining is a mainstay of linked data processing [4].
Graph partitioning [5] and subgraph mining [6] are problems
closely related to graph community structure [7]. Role mining
is an NP-hard problem [8]. In [9] is shown that role mining
solutions rely on advanced non-linear optimization techniques.
A library for role mining algorithms is proposed in [10].
Mining time dependent graphs is recently the focus of intense
research [11]. Anomaly detection is a prime problem is
these graphs [12]. Applications include searching for trusted
candidates for startups on LinkedIn [13], XGBoost compu-
tation optimization [14], efficient GNN topology discovery
[15], personalized recommendation for cultral content [16],
ranking cloud providers [17], drug discovery [18], processing
compressed graph sequences [19], graph autoencoders [20],
and biomedical image clustering with tensor metrics [21].

GSP is a recently formulated field focusing on signal pro-
cessing operations on graphs [3] treated as irregular domains
[22]. Basic operations include graph sampling and graph fil-
tering [23], while advanced ones are graph Laplace transform
[24], graph spectral clustering in various forms [25] [26], and
graph signal denoising [27]. GSP for incomplete topologies
is the focus of [28]. The connections between GSP and ML
are explored in [29]. The development of GNNs has further
boosted GSP [30]. Architectures have been proposed for
spam detection in social networks [31], for learning Markov
processes [32], for evaluating the affective coherence of fuzzy
[33] and ordinary [34] Twitter graphs, and for autoregressive
moving average (ARMA) filtering [35]. Since graph patterns
are typicially of higher order, principles from higher order
signal processing may well be applicable [36]. Moreover,
explainability in GNNs is the focus of [37].

Matrix factorization in general has been proposed as a
methodology for dimensionality reduction. The ubiquitous
singular value decomposition (SVD) [38] appears in various
applications such as determining the similarity of biomedical
images [39], finding the spectral image of cyber attacks [40],
and fuzzy versions for Kalman filters [41]. Polar decomposi-
tion [42], which is one of the major computationally feasible

ways to obtain the singular value decomposition of a matrix
[43], has been used among others for approximating directed
graphs with undirected ones [44], for efficiently computing
factored linear operators in quantum computing [45], and for
evaluating the viability of capital market companies [46]. Non-
negative matrix factorization has been proposed for mining
biological [47] and massive omic [48] data as well as for
discovering community structure [49] and link prediction [50]
in graphs, especially in conjunction with low rank matrix
approximation [51]. Moreover, it can be employed for attribute
extraction from ECG [52] and for image processing [53].

III. PROPOSED METHODOLOGY

A. Boolean Semiring

Informally speaking a semiring S is a well defined algebraic
structure akin to a ring. However, there is a crucial difference
in that each ring element has an additive inverse, whereas in
a semiring at least one of its elements lacks such an inverse.
The formal definition of a semiring is given in definition 1.

Definition 1 (Semiring). A semiring S over a field V having
two binary operators + and · satisfies the following conditions
for every element of the underlying field s, s′, p, q ∈ V :
• Additive neutral element: ∃s s.t. ∀p : s+ p = p
• Additive associativity: s+ (p+ q) = (s+ p) + q
• Additive commutativity: p+ q = q + p
• Multiplicative neutral element: ∃s′ s.t. ∀p : s′ · p = p
• Multiplicative associativity: s · (p · q) = (s · p) · q
• Left distributivity: s · (p+ q) = (s · p) + (s · q)
• Right distributivity: (p+ q) · s = (p · s) + (q · s)

The operations of conjunction and disjunction over the set B
create a semiring in the sense of definition 1, where B contains
the two possible logical values as in (1). In this context and
given their truth tables, disjunction and conjunction can be
interpreted as Boolean addition and multiplication respectively.

B
4
= {0, 1} (1)

Definition 2 states that the Boolean semiring B is in fact a
special semiring case over B as not only the requirements of
definition 1 but also the additional multipliaction associativity
condition holds as it can be readily verified from Boolean
algebra. The semiring structure of B stems directly from the
fact that the only way for the disjunction of two variables to
be zero is when both of them to be zero. Otherwise, it suffices
that only one operand be one. In other words, disjunction has
no inverse element, although it has a neutral element.

Definition 2 (Boolean commutative semiring). The Boolean
semiring B over B having the operations of disjunction as
addition and conjunction as multiplication is a commutative
semiring since it also holds true for every p, q ∈ B:
• Multiplicative commutativity: p · q = q · p, ∀p, q

As a sidenote, if exclusive disjunction (exclusive or) is used
as the addition operation instead of disjunction over B, then a
ring results as an additive inverse does exist for every element.

In fact, in this case each element of B is its own additive
inverse as shown in equation (2):

s⊕ s = (s ∧ ¬s) ∨ (¬s ∧ s) = 0, ∀s ∈ B (2)

Equation (2) is tantamount to performing modular arithmetic
with a base of two. This property is fundamental among others
in coding theory for generating error correcting codes [54].

B. Inner Product Over The Boolean Semiring

A direct generalization of a single Boolean variable is a
column vector as given in definition 3. Clearly such a vector
of length n can take any of the 2n possible values. Since
matrices consist of stacked column vectors, a Boolean matrix
can be similarly constructed. Also the transpose operator has
analogous semantics with those in linear algebra, so Boolean
row vectors require no special definition.

Definition 3 (Boolean vector). A Boolean column vector of
length n over B consists of n variables, whether independent
or not. Although each such variable can be independently
accessed and modified, a vector is a single entity.

b
4
=
[
b1, . . . , bn

]T ∈ Bn×1 (3)

For any two given Boolean vectors a and s of length n their
inner product over the Boolean semiring is defined as shown
in equation (4). Observe the latter is a cluster concept or a
disjunctive normal form (DNF) representing an instance of
the 2SAT problem, albeit in a De Morgan inverted sense since
2SAT is typically cast in a conjnctive normal form (CNF) or
Krom form. In sharp contrast to the general SAT or the k-SAT
problems where k ≥ 3 which are NP-complete, the 2SAT is
NL-complete [55], meaning it is among the hardest problems
requiring logarithmic space, and also belongs in P with a linear
time solution based on implication graphs [56]. In fact, the
sharp complexity change, termed the phase transition, from
2SAT to 3SAT is the focus of intense research [57].

aT s
4
=

n∨
k=1

(a [k] ∧ s [k]), a, s ∈ Bn×1 (4)

By construction it follows that the inner product of vectors
a and s is true when there is at least one index k for which
both a [k] and s [k] are true. In the deterministic case, the
number of these pairs depends on the vector length as well as
on their respective densities. The latter depends only on the
nature of the underlying field and it can be only determined
statistically. Also note that in the ensuing analysis the Boolean
values of true and false are also interpreted numerically as
one and zero respectively in the proper context. Thus for a
Boolean vector, namely a column vector consisting exclusively
of Boolean variables, the number of elements which are true
equals the number of non-zero elements. Both expressions will
be interchangeably throughout in this work.

A better understanding of the behavior of equation (4) can
be achieved with by probabilistic analysis. Assuming that each
element of both Boolean vectors is independently chosen to
be true with probabilities pa and ps respectively and false with

probabilities 1 − pa and 1 − ps again respectively, then each
conjunction pair is a Bernoulli r.v. Ik with success probability
paps as shown in (5). Observe moreover that probabilities pa
and ps essentially express the sparsity of the respective vectors.

Ik =

{
a [k] ∧ s [k] = 1 with probability paps
otherwise with probability 1− paps

(5)

Since each such conjunction pair contributes independently
to the inner product of (4), the number of pairs evaluating to
true is a r.v. I with the distribution of equation (6).

prob {I = i} =

(
n

i

)
(paps)

i
(1− paps)n−i (6)

Observe that equation (6) is a binomial distribution with a
fixed number of n trials and success probability paps, making
it thus a member of the exponential family of distributions.
Therefore, both pa and ps can be efficiently approximated
with maximum likelihood estimators which additionally are
unbiased and their variance attain the Cramér-Rao lower bound
(CRLB). Moreover, from the from of the binomial distribution
its mean and variance are established immediately as in (7).

E [I] = npaps and Var [I] = npaps(1− paps) (7)

The interpretation of (6) is that for even a moderate vector
lengths there is sufficient probability that the inner product
evaluates to true, especially when the success probability paps
approaches one. When the latter is sufficiently small, then the
binomial distribution reduces to the Poisson distribution of (8):

prob {I = i} =
(npaps)

i

i!
e−npaps (8)

This distribution approximation is derived as shown in equa-
tion (9), where each factor of (6) is separately approximated.(

n

i

)
≈ ni

i!
and (1− paps)n−i ≈ e−npaps (9)

In this case the expected value and variance are as shown
in equation (10). Observe that now they are both essentially
fractions of n with the same decay rate. The vanishing
expected value of the Poisson distribution implies that the
overall probability that (4) is true is small, whereas the equally
vanishing distribution means there are actually few Boolean
vector pairs whose inner product is true, or alternatively, that
most dot products between any such pair taken at random is
bound to be false with very high probability.

E [I] = Var [I] = npaps (10)

The interpretation of equation (8) is that since there are
very few indices, as denoted by the small value of the product
paps, where both a and s are true, then the probabilty of the
inner product of (4) being true is exponentially small. This is
aligned with the use of Poisson distribution as a model for
rarely occurring events.

C. Boolean Semiring Matrix Factorization

In this subsection the matrix factorization problem over
the Boolean semiring along with the primary constraints are
described. Given the innder product of (4), factoring any data
matrix D ∈ Bn×n, including graph adjacency matrices, over
the Boolean semiring B takes the form of equation (11):

D = A� S, A,ST ∈ Bn×d (11)

The structure of the combination matrix A and that of the
community matrix S is given in equation (12). Observe that
A is defined based on its rows, whereas S on its columns.

A
4
=

a1
a2
...
an

 and S
4
=
[
s1 s2 . . . sn

]
(12)

The matrix multiplication over the Boolean semiring used
in (11) is defined as in (13), where the Boolean inner products
between the rows and columns of the two matrix factors are
defined as in equation (4). Observe that A is partitioned in
rows, so there is no need for the transpose operator. Clearly
this sort of matrix multiplication is of combinatorial nature.

A� S
4
=

a1s1 a1s2 · · · a1sn
a2s1 a2s2 · · · a2sn

...
...

. . .
...

ans1 ans2 · · · ansn

 ∈ Bn×n (13)

The approximate version of (11) assumes a cost function
Ja in the form of equation (14). In this scenario matrices A
and S are selected such that Ja is minimized under constraints
such as computational resources or total response time.

Ja(A,S;D)
4
= argmin [‖D−A� S‖F] (14)

The Frobenius norm used in the cost definition of (14)
is defined as in (15). The Frobenius norm is differentiable
and invariable under unitary transforms, properties commonly
employed in cost minimization algorithms. However, in this
context neither can be used in the space spanned by B and,
therefore, either advanced nonlinear optimization techniques
or heuristics such as the proposed one can be used.

‖D−A� S‖2 4
= tr

(
(D−A� S)

T
(D−A� S)

)
(15)

In addition to community discovery, both problems (11) and
(14) can be cast as a dimensionality reduction problem since
the resulting matrix factors A and S have a combined smaller
number of elements compared to matrix D. This is quantified
by the density ρ0 which is defined as the ratio of the total
number of elements of A and S to these of D as in (16):

ρ0
4
=
dn+ dn

n2
=

2d

n
(16)

A figure of merit which is stricter than ρ0 is Js which is
the total nonzero elements of A and S to these of D.

Js
4
=
|{A [i, j] | A [i, j] = 1} ∪ {S [i, j] | S [i, j] = 1}|

n2
≤ ρ0

(17)

From the Boolean semiring definition it follows immedi-
ately that common linear algebraic operations such as matrix
inversion, eigenexpansion, and linear system solution need
to be redefined and, moreover, they may not be equally
algorithmically tractable or even readily available as part of an
efficient software library. This is one more reason for selecting
a heuristic approach for solving the problem of (14).

D. Genetic Algorithm

The heuristic solution proposed here relies on the GA
framework of algorithm 1. Therein the fundamental operations
of selection, crossover, and mutation are defined as follows.
The astute reader will observe that there is an additional loop.
This happens because each candidate Sk is self-contained in
the sense that it has all the vertices of the original graph.
As such, each evolutionary operation should be applied only
internally in each such candidate as, otherwise, evolutionary
operations between two candidates may well yield a graph
with a number of vertices considerably different than n.

Algorithm 1 Genetic algorithm framework.
Require: Adjacency matrix D and termination condition τ0
Require: The parameters of the GA and hyperparameter η0
Ensure: Matrix D is partitioned

1: obtain an estimate d∗ of d from algorithm 2
2: obtain a range r of admissible values around d∗

3: for d0 in r do
4: create random population of Ns candidates Sk

5: for Ng generations and while τ0 is false do
6: for all candidate partitionings Sk do
7: select the fittest genes
8: perform crossover
9: if mutations allowed and mutation triggered then

10: mutate a random gene
11: end if
12: end for
13: obtain candidates Ak

14: end for
15: end for
16: return best partitionings for each d0 in r

For a given candidate Sk consists of n genes sk,j where
1 ≤ j ≤ n. Initially each gene sk,j , which represents the j-
th column of the candidate Sk, is randomly initiated. This is
accomplished by assigning to each sk,j two things, one of the
existing triangles of the original graph and a random number
of the remaining vertices. Thus, initially each sk,j has at least
one guarnateed community plus more than enough vertices to
perform evolutionary search. This can be alternatively seen
as each gene having been assigned a random partition of the
columns of the identity matrix In as shown in (18):

sk,j
4
=
∨
k′

ek′ , k′ ∈ {1, . . . , n} (18)

Thus for a given Sk genes sk,j start as random communities
and evolve towards more complex but structured ones. Thus,

essentially each candidate solution Sk remains sparse, encodes
community structure with each column or gene sk,j being a
separate community in the graph, and has the right dimensions.
Moreover, knowing factor S in (11) means that A can be also
determined by efficient algorithms proposed in the scientific
literature [8] [9]. This representation avoids the potential
exponential growth of the GA coding theorem.

Selection is perhaps the most straightforward to define.
Specifically, the evaluation of each gene can be either done by
assessing Ja for each product of Ak with Sk. Notice that when
such a product introduces a spurious edge, this is penalized by
the very definition of Ja. Additionally, the respective sparsity
Js can be taken into consideration. The weighted harmonic
mean of Ja and Js as defined in equation (19) is ideal since
it is small only when both arguments are small.

J(Ja, Js; η0)
4
=

1 + η0
1

J̄a
+
η0
Js

=
(1 + η0)J̄aJs
Js + η0J̄a

(19)

This sharply contrasts the arithmetic mean or average where
an argument with a bigh numerical value can be compensated
by a very small one yielding a small result. Thus, the harmonic
mean strives to minimize both J̄a and Js simultaneously,
subject to the general problem constraints and the specific
instance dynamics. Moreover, it is less prone to numerical
errors caused by decaying arguments. Please notice that the
normalized approximation cost J̄a is just Ja divided by n2,
namely its maximum possible value. This ensures that both J̄a
and Js have the same range between zero and one.

Crossover consists of any two columns sk,i and sk,j ex-
changing vertices at random for the same Sk. Mutation con-
sists of randomly selecting two genes sk,i and sk,j and moving
a single vertex from to the former to the latter. By design
graph integrity restrictions regarding vertices are preserved. A
failsafe policy is that the top Nb genes, namely those which
have achieved the lowest penalties, are preserved intact in the
gene pool and are moved to the next generation. Finally, the
flow of the GA is shown in figure 1.

E. Dimension Selection

The only major question which needs to be addressed at
this point is how the dimension estimation d∗, or equivalently
the number of communities, is chosen. In general there is no
definitive answer, as such insight into the structure of any
graph is not known in advance. The core of the proposed
approach consists in performing the power iteration clustering
(PIC). In step 6 any clustering algorithm can be used.

Algorithm 2 may seem to defeat the purpose as a parti-
tioning of D is indirectly obtained. Still, PIC operates on the
assumption that D consists of continuous elements. Moreover,
vectors v[k] are computed with ordinary linear algebraic op-
erations and not with those of the Boolean semiring. Thus, d∗

is an approximation of the number of the communities.

Algorithm 2 Power iteration clustering.
Require: Matrix D, termination condition τ1
Ensure: Estimate d∗ is obtained

1: select a random vector v[0] of unit norm
2: repeat
3: compute v[k+1] as Dv[k]

4: normalize v[k+1] to unit norm
5: until condition τ1 is true
6: cluster v[k+1] and obtain number of clusters d∗

7: return d∗

IV. RESULTS

A. Experimental Setup

In table II the experimental setup of this work is sum-
marized. Therein the parameters mentioned in the previous
sections are shown. Most of them can be tailored depending
on the constraints of the underlying hardware.

TABLE II
EXPERIMENTAL SETUP.

Parameter Value
Number of runs R 1000
Graph size Nr [65536 : 16384 : 131072]
Number of generations Ng 10000
Population size Ns 10000
Top gene size Nb 50
Mutation probability pm 1e− 4
Fitness function J Eq. (19)
Hyperparameter η0 1

The language of implementation was Julia, a relatively new
but predominant choice for data driven and computationally
intense applications. The latter are greatly faciliated by the
rich functionality offered by the libraries, the inherent multi-
threading, the available data types, and the seamless scaling.

B. Evaluation

In figure 2 the relative number of generations as well as
the relative wallclock time are shown with respect to the
corresponding maximum values. Since the proposed GA is I/O
bound, the total wallclock time is a very good approximation
of the total computation time. There is clearly a positive trend,
which can be attributed to the increasing size of the synthetic
benchmark graphs and the associated increase of the size of
the associated column spaces.

In figure 3 relative mean cost J of (19) with respect to its
maximum value for the same 16 points of Nr were executed
Ng times. The reason for doing the lattr is that the result of the
proposed GA is stochastic and hence its expected value and
variance are used. The parameter Ng is large enough to ensure
statistical validity. For all sizes in the range of the experiments
the cost was approximately constant and at acceptable levels
as the maximum reconstruction error was 15.71%.

V. CONCLUSIONS AND FUTURE WORK

This work casts graph partitioning as factoring the adjacency
matrix over the Boolean semiring. The latter yields sparse par-

Select

Factorization

Mutate

Create pool Fit

CrossoverMutate

Start Stop
Yes

Yes

No

No

Fig. 1. Flowchart of the proposed genetic algorithm.

0 5 10 15 20
0.6

0.7

0.8

0.9

1

1.1

Relative number of generations and relative time vs graph size

R
e
la

tiv
e
 n

u
m

b
e
r

o
f
g
e
n
e
ra

tio
n
s,

 r
e
la

tiv
e
 t
im

e

Synthetic graph size

gen

time

Fig. 2. Relative number of generations (max: 7556) and time (max: 96sec).

0 5 10 15 20
0.8

0.85

0.9

0.95

1

Synthetic graph size

R
e
la

tiv
e
 c

o
st

 J

Relative cost vs graph size

Fig. 3. Relative cost (max: 0.1571).

titions with no shared vertices, which is the classical definition
of graph communities. However, because this factorization
is NP-hard and moreover many linear algebraic operations
differ, a genetic algorithm respecting vertex integrity was
designed. Experiments with large benchmark graphs in Julia
showed in efficiency, at least in the expected case. This work
can be extended with more experiment with larger graphs.
Additionally, different evolutionary operations can be designed
or other heuristics can be tailored to the task.

ACKNOWLEDGMENT

This research was funded by the European Union and
Greece (Partnership Agreement for the Development Frame-
work 2014-2020) under the Regional Operational Programme
Ionian Islands 2014-2020, project title: “Indirect costs for the
project ‘TRaditional corfU Music PresErvation through digiTal
innovation”’, project number: 5030952.

REFERENCES

[1] K. Rabuzin, M. Cerjan, and S. Križanić, “Supporting data types in
Neo4j,” in European Conference on Advances in Databases and In-
formation Systems. Springer, 2022, pp. 459–466.

[2] G. Cheng, S. Ying, B. Wang, and Y. Li, “Efficient performance predic-
tion for Apache Spark,” Journal of Parallel and Distributed Computing,
vol. 149, pp. 40–51, 2021.

[3] A. Ortega, Introduction to graph signal processing. Cambridge
University Press, 2022.

[4] P. Yao, L. Zheng, Z. Zeng, Y. Huang, C. Gui, X. Liao, H. Jin, and
J. Xue, “A locality-aware energy-efficient accelerator for graph mining
applications,” in MICRO. IEEE/ACM, 2020, pp. 895–907.

[5] H. Xu, D. Luo, and L. Carin, “Scalable Gromov-Wasserstein learning
for graph partitioning and matching,” Advances in neural information
processing systems, vol. 32, 2019.

[6] L. B. Nguyen, I. Zelinka, V. Snasel, L. T. Nguyen, and B. Vo, “Subgraph
mining in a large graph: A review,” Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 2022.

[7] Z. Abbas, V. Kalavri, P. Carbone, and V. Vlassov, “Streaming graph par-
titioning: An experimental study,” Proceedings of the VLDB Endowment,
vol. 11, no. 11, pp. 1590–1603, 2018.

[8] I. Molloy, N. Li, T. Li, Z. Mao, Q. Wang, and J. Lobo, “Evaluating
role mining algorithms,” in Symposium on access control models and
technologies. ACM, 2009, pp. 95–104.

[9] B. Mitra, S. Sural, J. Vaidya, and V. Atluri, “A survey of role mining,”
ACM CSUR, vol. 48, no. 4, pp. 1–37, 2016.

[10] S. Anderer, B. Scheuermann, S. Mostaghim, P. Bauerle, and M. Beil,
“RMPlib: A library of benchmarks for the role mining problem,” in
ACM Symposium on Access Control Models and Technologies, 2021,
pp. 3–13.

[11] Y. Wang, Y. Yuan, Y. Ma, and G. Wang, “Time-dependent graphs: Def-
initions, applications, and algorithms,” Data Science and Engineering,
vol. 4, no. 4, pp. 352–366, 2019.

[12] X. Ma, J. Wu, S. Xue, J. Yang, C. Zhou, Q. Z. Sheng, H. Xiong, and
L. Akoglu, “A comprehensive survey on graph anomaly detection with
deep learning,” IEEE Transactions on Knowledge and Data Engineering,
2021.

[13] G. Drakopoulos, E. Kafeza, P. Mylonas, and H. Al Katheeri, “Building
trusted startup teams from LinkedIn attributes: A higher order proba-
bilistic analysis,” in ICTAI. IEEE, 2020, pp. 867–874.

[14] J. Liu, S. Zhang, and H. Fan, “A two-stage hybrid credit risk prediction
model based on XGBoost and graph-based deep neural network,” Expert
Systems with Applications, vol. 195, 2022.

[15] L. Wu, P. Cui, J. Pei, L. Zhao, and L. Song, “Graph neural networks,”
in Graph Neural Networks: Foundations, Frontiers, and Applications.
Springer, 2022, pp. 27–37.

[16] G. Drakopoulos, I. Giannoukou, S. Sioutas, and P. Mylonas, “Self
organizing maps for cultural content delivery,” NCAA, 2022.

[17] T. E. Trueman, P. Narayanasamy, and J. Ashok Kumar, “A graph-
based method for ranking of cloud service providers,” The Journal of
Supercomputing, vol. 78, no. 5, pp. 7260–7277, 2022.

[18] F. Zhong, X. Wu, R. Yang, X. Li, D. Wang, Z. Fu, X. Liu, X. Wan,
T. Yang, Z. Fan et al., “Drug target inference by mining transcriptional
data using a novel graph convolutional network framework,” Protein &
cell, vol. 13, no. 4, pp. 281–301, 2022.

[19] G. Drakopoulos, E. Kafeza, P. Mylonas, and L. Iliadis, “Transform-
based graph topology similarity metrics,” NCAA, vol. 33, no. 23, pp.
16 363–16 375, 2021.

[20] Z. Sun, B. Wu, Y. Wang, and Y. Ye, “Sequential graph collaborative
filtering,” Information Sciences, vol. 592, pp. 244–260, 2022.

[21] G. Drakopoulos, I. Giannoukou, P. Mylonas, and S. Sioutas, “On tensor
distances for self organizing maps: Clustering cognitive tasks,” in DEXA,
ser. Lecture Notes in Computer Science, vol. 12392. Springer, 2020,
pp. 195–210.

[22] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,”
AI Open, vol. 1, pp. 57–81, 2020.

[23] S. Liao and L. Shao, “Graph sampling based deep metric learning for
generalizable person re-identification,” in CVPR, 2022, pp. 7359–7368.

[24] H. Su, Y. Ye, X. Chen, and H. He, “Necessary and sufficient conditions
for consensus in fractional-order multiagent systems via sampled data
over directed graph,” IEEE Transactions on Systems, Man, and Cyber-
netics: Systems, vol. 51, no. 4, pp. 2501–2511, 2019.

[25] F. M. Bianchi, D. Grattarola, and C. Alippi, “Spectral clustering with
graph neural networks for graph pooling,” in ICML. PMLR, 2020, pp.
874–883.

[26] Y. Ding, Z. Zhang, X. Zhao, Y. Cai, S. Li, B. Deng, and W. Cai, “Self-
supervised locality preserving low-pass graph convolutional embedding
for large-scale hyperspectral image clustering,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 60, pp. 1–16, 2022.

[27] Y. Ma, X. Liu, T. Zhao, Y. Liu, J. Tang, and N. Shah, “A unified view
on graph neural networks as graph signal denoising,” in CIKM, 2021,
pp. 1202–1211.

[28] E. Ceci and S. Barbarossa, “Graph signal processing in the presence
of topology uncertainties,” IEEE Transactions on Signal Processing,
vol. 68, pp. 1558–1573, 2020.

[29] X. Dong, D. Thanou, L. Toni, M. Bronstein, and P. Frossard, “Graph
signal processing for machine learning: A review and new perspectives,”
IEEE Signal Processing Magazine, vol. 37, no. 6, pp. 117–127, 2020.

[30] Y. Zhou, H. Zheng, X. Huang, S. Hao, D. Li, and J. Zhao, “Graph neural
networks: Taxonomy, advances, and trends,” ACM TIST, vol. 13, no. 1,
pp. 1–54, 2022.

[31] Z. Guo, L. Tang, T. Guo, K. Yu, M. Alazab, and A. Shalaginov, “Deep
graph neural network-based spammer detection under the perspective of
heterogeneous cyberspace,” Future Generation Computer Systems, vol.
117, pp. 205–218, 2021.

[32] Y. Lu, Y. Chen, D. Zhao, and D. Li, “MGRL: Graph neural network
based inference in a Markov network with reinforcement learning for
visual navigation,” Neurocomputing, vol. 421, pp. 140–150, 2021.

[33] G. Drakopoulos, E. Kafeza, P. Mylonas, and S. Sioutas, “A graph neural
network for fuzzy Twitter graphs,” in CIKM companion volume, G. Cong
and M. Ramanath, Eds., vol. 3052. CEUR-WS.org, 2021.

[34] G. Drakopoulos, I. Giannoukou, P. Mylonas, and S. Sioutas, “A graph
neural network for assessing the affective coherence of Twitter graphs,”
in IEEE Big Data. IEEE, 2020, pp. 3618–3627.

[35] F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi, “Graph neural
networks with convolutional ARMA filters,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2021.

[36] A. Trapp and P. Wolfsteiner, “Estimating higher-order spectra via
filtering-averaging,” Mechanical Systems and Signal Processing, vol.
150, 2021.

[37] H. Yuan, H. Yu, S. Gui, and S. Ji, “Explainability in graph neural
networks: A taxonomic survey,” IEEE TPAMI, 2022.

[38] D. Broomhead, R. Jones, G. King, and E. Pike, “Singular system analysis
with application to dynamical systems,” in Chaos, noise and fractals.
CRC Press, 2020, pp. 15–27.

[39] J. Baranger, B. Arnal, F. Perren, O. Baud, M. Tanter, and C. Demené,
“Adaptive spatiotemporal SVD clutter filtering for ultrafast doppler
imaging using similarity of spatial singular vectors,” IEEE Transactions
on medical imaging, vol. 37, no. 7, pp. 1574–1586, 2018.

[40] B. Tran, J. Li, and A. Madry, “Spectral signatures in backdoor attacks,”
Advances in neural information processing systems, vol. 31, 2018.

[41] X. Yang, S. Wang, W. Xu, J. Qiao, C. Yu, and C. Fernandez, “Fuzzy
adaptive singular value decomposition cubature Kalman filtering algo-
rithm for lithium-ion battery state-of-charge estimation,” International
Journal of Circuit Theory and Applications, vol. 50, no. 2, pp. 614–632,
2022.

[42] R. Bru, M. T. Gassó, and M. Santana, “Combined matrices and condi-
tioning,” Applied Mathematics and Computation, vol. 412, 2022.

[43] P. Lv and B. Zheng, “Perturbation analysis for the QX factorization
for centrosymmetric matrices,” Linear and Multilinear Algebra, vol. 70,
no. 3, pp. 557–580, 2022.

[44] G. Drakopoulos, E. Kafeza, P. Mylonas, and S. Sioutas, “Approximate
high dimensional graph mining with matrix polar factorization: A Twitter
application,” in IEEE Big Data. IEEE, 2021, pp. 4441–4449.

[45] Y. Quek and P. Rebentrost, “Fast algorithm for quantum polar decompo-
sition and applications,” Physical Review Research, vol. 4, no. 1, 2022.

[46] F. Molaie Birgani, A. K. Salehi, M. Basirat, and A. Kaabomeir, “Pro-
viding a micmac analysis to strengthen sustainable green accounting
values of capital market companies: Polar matrix analysis,” International
Journal of Finance & Managerial Accounting, vol. 7, no. 24, pp. 133–
158, 2022.

[47] L. Ou-Yang, F. Lu, Z.-C. Zhang, and M. Wu, “Matrix factorization for
biomedical link prediction and scRNA-seq data imputation: An empirical
survey,” Briefings in Bioinformatics, vol. 23, no. 1, 2022.

[48] A. R. Kriebel and J. D. Welch, “UINMF performs mosaic integration of
single-cell multi-omic datasets using nonnegative matrix factorization,”
Nature communications, vol. 13, no. 1, pp. 1–17, 2022.

[49] Y. Zhao, F. Deng, J. Pei, and X. Yang, “Progressive deep non-negative
matrix factorization architecture with graph convolution-based basis
image reorganization,” Pattern Recognition, vol. 132, 2022.

[50] E. Nasiri, K. Berahmand, and Y. Li, “Robust graph regularization non-
negative matrix factorization for link prediction in attributed networks,”
Multimedia Tools and Applications, pp. 1–24, 2022.

[51] A. Agibetov, “Neural graph embeddings as explicit low-rank matrix
factorization for link prediction,” Pattern Recognition, vol. 133, 2022.

[52] Y. Huang, G. Yang, K. Wang, H. Liu, and Y. Yin, “Robust multi-feature
collective non-negative matrix factorization for ecg biometrics,” Pattern
Recognition, vol. 123, 2022.

[53] T. Aonishi, R. Maruyama, T. Ito, H. Miyakawa, M. Murayama, and
K. Ota, “Imaging data analysis using non-negative matrix factorization,”
Neuroscience Research, vol. 179, pp. 51–56, 2022.

[54] V. Berezhnoy, “Error correction method in modular redundant codes,”
in International Conference on Mathematics and its Applications in new
Computer Systems. Springer, 2022, pp. 163–174.

[55] D. Achlioptas, A. Coja-Oghlan, M. Hahn-Klimroth, J. Lee, N. Müller,
M. Penschuck, and G. Zhou, “The number of satisfying assignments
of random 2-SAT formulas,” Random Structures & Algorithms, vol. 58,
no. 4, pp. 609–647, 2021.

[56] O. Omelchenko and A. A. Bulatov, “Satisfiability threshold for power
law random 2-SAT in configuration model,” Theoretical Computer
Science, vol. 888, pp. 70–94, 2021.

[57] K. Richardson and A. Sabharwal, “Pushing the limits of rule reasoning
in transformers through natural language satisfiability,” in AAAI, vol. 36,
no. 10, 2022, pp. 11 209–11 219.

