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Abstract: The presence of occlusion in human activity recognition (HAR) tasks hinders the perfor-
mance of recognition algorithms, as it is responsible for the loss of crucial motion data. Although it
is intuitive that it may occur in almost any real-life environment, it is often underestimated in most
research works, which tend to rely on datasets that have been collected under ideal conditions, i.e.,
without any occlusion. In this work, we present an approach that aimed to deal with occlusion in an
HAR task. We relied on previous work on HAR and artificially created occluded data samples, assum-
ing that occlusion may prevent the recognition of one or two body parts. The HAR approach we used
is based on a Convolutional Neural Network (CNN) that has been trained using 2D representations
of 3D skeletal motion. We considered cases in which the network was trained with and without
occluded samples and evaluated our approach in single-view, cross-view, and cross-subject cases and
using two large scale human motion datasets. Our experimental results indicate that the proposed
training strategy is able to provide a significant boost of performance in the presence of occlusion.

Keywords: human activity recognition; occlusion; deep learning; convolutional neural networks

1. Introduction

Human activity recognition (HAR) from visual data is considered a very challenging
computer vision task [1], while it has been continuously attracting increasing attention
within the research community [2]. It typically aims to recognize human motion or behavior
within a video sequence, using data captured by a camera. In the following, we will
define an “activity” as motion performed by a human, taking place within a relatively
short (however, not instant) time period and involving multiple body parts [2]. The
aforementioned informal definition may be expanded to also include interactions between
a human and an object or between two or more humans (group activities). Additionally,
note that it does not include gestures, as they require a relatively small (“instant”) amount
of time, while typically requiring a single body part.

There exist several HAR applications. The most notable ones include content-based
video summarization (e.g., for retrieval of activities), human–computer interaction (e.g., for
interaction based on users’ pose and/or motion), education (e.g., for monitoring students’
attendance), healthcare (e.g., for fall detection), video surveillance (e.g., for abnormal ac-
tivity recognition), and sports (e.g., for identifying players’ actions) [3]. We should note
that several HAR applications require the use of either wearable sensors or environmental
sensors (i.e., installed in the subject’s environment). Typical wearable sensors include smart-
watches, hand/body worn sensors, smartphones, etc. Additionally, typical environmental
sensors include video/thermal cameras, microphones, infrared, pressure, magnetic, and
RFID sensors [4].

Although wearable sensors may combine adequate performance with low cost, they
are not preferred by users and their usability is below average [5,6]. Moreover, it is common
sense that, e.g., in the case of a home environment, overloading it with a large number of
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sensors may be both expensive and unwanted by the users, since it would require many
interventions in home furniture or appliances. Thus, a common approach to combining
low cost with minimal interventions is to use only cameras, whose role is to capture users’
motion. However, the undesired trade-off is that, although their performance may be
excellent in laboratory conditions, in real-life environments they exhibit a performance loss,
as they suffer from viewpoint and illumination changes and occlusion.

The problem of viewpoint changes and their effect on HAR has been extensively
studied in our previous work [7]. Specifically, we dealt with the problem of viewpoint
invariance and demonstrated that the decrease of accuracy due to viewpoint changes
may be limited when using more than one camera, allowing for satisfactory results in
real-life applications. Moreover, due to recent advances in technology and specifically
in camera sensors, recent cameras perform significantly better in low-light conditions
compared to previous models. Additionally, some cameras (often called “RGB+depth”
cameras), complementary to color video, also provide depth information, resulting in
robust extraction of human figures, e.g., as a set of 3D points, and even in poor illumination
conditions. Therefore, from the three aforementioned problems, occlusion is the one that
introduces the most limitations.

To understand the notion of occlusion, let us consider two objects in a 3D space.
Given a certain viewpoint, occlusion occurs when one of the objects partially/fully blocks
the view of the second. In the context of HAR, occlusion may occur, e.g., in cases when
the subject performs an activity and is occluded by a physical object such as furniture
or by another person. Regarding its effect on HAR, let us consider the (extreme) case of
a subject performing the activity “handwaving,” while the involved arm and hand are
not visible. Clearly, in order to recognize this activity, crucial information regarding the
subject’s motion is missing. This case might be excessive, but there are applications such as,
e.g., surveillance systems in crowded places such as metro stations where an activity of a
subject might not be recognized due to the occlusion of some of their body parts by the
crowd surrounding her/him. Occlusion may also be temporally partial, i.e., one or more
body parts may be occluded but not during the whole activity. This may happen, e.g., in
the case of a moving subject.

In this work, our goal was to assess how partial occlusion of the subject affects the
accuracy of HAR and to overcome its effect. To the best of our knowledge, public motion-
based datasets that may be used for HAR [8,9] have been created under ideal laboratory
conditions, which include the prevention of any type of occlusion. Thus, since the creation
of a large scale dataset is a time consuming task, we decided to follow an approach such as
that of Gu et al. [10]. More specifically, we simulated occlusion by manually discarding
subsets of joints that correspond to one/two body parts of the subject, while she/he is
performing a given activity. We assumed that these parts remain occluded during the
whole activity, that is, we did not consider the case of temporally partial occlusion. The
contribution of this work is twofold: (a) we extended the small-scale evaluation of our
previous work [11], where we assessed how partial occlusion of the subject affects the
accuracy of HAR focusing on Activities of Daily Living (ADLs) [12]; herein, we evaluated
it using two challenging large-scale human motion datasets [8,9]; (b) we tried to overcome
the effect of occlusion by incorporating occluded samples in our training procedure.

The rest of this paper is organized as follows: in Section 2, we present research works
that aimed to assess or even tackle the effect of occlusion in HAR-related scenarios. Then,
in Section 3, we present the proposed methodology for simulating occlusion, for assessing
its effect on HAR and for overcoming its effect. Experimental results are presented and
discussed in Section 4, while conclusions are drawn in Section 5, wherein plans for future
work are also presented.

2. Related Works

As has already been mentioned, the problem of HAR is one of the most challenging
research areas in computer vision; therefore, a large amount of research has been conducted
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on this subject during recent years. The majority of them have been based on 2D repre-
sentations of skeletal motion which are then used as input to CNNs [13–18]. An extensive
survey was conducted by Wang et al. [2]. Interestingly, although it is widely accepted, as it
is intuitive, that occlusion constitutes one of the most important factors that compromise
the performance of HAR approaches [19], rendering them to produce poor and in extreme
cases unusable results, there do not exist many studies that focus on studying its effects
on the performance of HAR approaches or even attempt to propose methods so as to
overcome them.

In previous work [11], we have extensively studied the effect of occlusion in the task
of HAR. We relied on the HAR approach of Papadakis et al. [20] and simulated occlusion
upon removing one or more body parts from 3D human skeletons and during the whole
activity. Throughout our experiments, we used a Convolutional Neural Network that had
been trained without using any occluded samples. Specifically, we considered the cases of
removing one or both arms, one or both legs, and also the cases of removing the arm and
the leg of the same side. Our experimental evaluation proved that the removal of one or
both arms led to a drop of performance, which in some cases was considered quite severe.
However, we concluded that this was not a surprise, as most of the activities considered
therein were expressed mainly by one or both arms’ motion. In the following, we shall
attempt to present the approaches that have dealt with occlusion and their main findings.

Angelini et al. [21] proposed an HAR approach that relied on OpenPose [22] for
pose extraction. Specifically, they extracted both low- and high-level features from body
poses using a 1D CNN and an LSTM for classification. They used real CCTV data where
part of the body was occluded; however, they also created synthetic occluded data by
removing body parts. They experimented by incorporating occluded samples in training
and showed that, in most cases, this strategy is able to provide a boost of performance in
cases of both occlusion and missing data. They experimented on multiple datasets, i.e.,
i3DPost [23], IXMAS [24], KTH [25] etc., while they also created their own dataset called
ISLD, comprising classes such as bend, box, hand-clap, one-hand wave, run, walk, etc.

Iosifidis et al. [19] used a multi-camera setup, surrounding the subject from all sides.
They trained a model using data from all available cameras and then, in order to simulate
occlusion, they used a subset of those cameras. Their main idea was that, due to occlusion,
not all cameras are able to simultaneously capture the subject’s motion, yet in all cases
more than one camera manages to capture the whole body of the subject. In addition,
the recognition of an activity was performed using the combined results of cameras that
had not been “affected” by any occlusion, while those that had been omitted “suffered”
from occlusion. They conducted experiments using two publicly available datasets, the
i3DPost [23], comprising eight daily activities, and the AIIA-MOBISERV, [26] comprising
three meal activities. The proposed method has been evaluated for both single-view and
multi-view action classification problems, providing results with sufficient accuracy.

Li et al. [27] used manually defined occlusion areas and proposed a new encoding
technique to transform a skeleton into a feature matrix and integrated an attention model
into a Generative Adversarial Network, focusing on completing the missing data of the
feature matrix, rather than the exact skeleton. For classification, they used a Residual
Network (ResNet). To evaluate their approach, they used a custom dataset of eight actions
of construction workers, such as driving a truck, transporting cement, paving concrete, etc.
Additionally, Li et al. [28] proposed an approach based on action graphs so as to capture
the dynamics of actions and used a bag-of-3D points so as to describe the salient postures
that correspond to the nodes of the action graph. They simulated occlusion by first dividing
the depth map into four quadrants and then by ignoring 3D points falling into the specified
quadrants that are considered to be affected by occlusion. They did not include any
occluded samples in training. They used a dataset comprising 20 actions such as high arm
wave, horizontal arm wave, hammer, etc. Their results showed that, unless the critical
quadrants were omitted, the performance drop was relatively small.
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Similarly, Gu et al. [10] generated occlusion masks which were used both in training
and evaluation, so as to simulate occlusion in more than one 2D skeletal joint. Moreover,
they attempted to reconstruct the missing skeleton parts using a regression network. They
evaluated their work using their own dataset, namely MMHuman, comprising six classes
(e.g., Kung Fu, shake hand, etc.). They also demonstrated that their approach is able to
outperform previous pose estimation methods on the Human 3.6 M dataset [29]. Finally,
Yang et al. [30] proposed to pre-train a single pose embedding network, namely OR-
VPE, whose role was to learn occlusion-robust representations for pose sequences. They
simulated occlusions using an augmentation mechanism whose goal was to randomly
prune the spatio-temporal skeleton structure. They used an encoder in order to create the
pose embeddings in a latent space and a contrastive module to render this space occlusion-
invariant. They evaluated their approach using the NTU-RGB+D dataset [9] and also the
Toyota Smarthome [31], N-UCLA [32], and Penn Action [33] datasets.

3. Proposed Methodology
3.1. Visual Data

In this work, we considered 3D skeleton data that were captured by the Microsoft
Kinect v2 camera. Specifically, these data consist of the 3D spatial coordinates of a set
of 25 human skeleton joints that were captured during the recording of an action over
time, for each subject in the scene and for a maximum of six subjects. The human skeleton
comprises these joints and was modelled as a graph; the joints are its nodes, corresponding
to parts such as head, shoulders, knees etc. and are connected by edges that follow the body
structure. An illustration of the human skeleton joints and edges that were extracted by
Kinect v2 are illustrated in Figure 1. Note that, following the example of [10,11], we divided
the skeleton into its five main body parts, namely head-torso, right arm, left arm, right
leg, and left leg, since one or more will be removed as an effect of occlusion. Therefore, in
Figure 1 we illustrate the skeleton, highlighting these parts. In Figures 2 and 3, we illustrate
the RGB and the skeletal data of two sequences of actors performing activities.

22

24

11

21

23

25

Figure 1. The 25 skeletal joints extracted by Microsoft Kinect v2. The joints and edges that correspond
to the 5 main body parts, namely head-torso, right arm, left arm, right leg, and left leg are colored in
blue, red, green, orange, and purple, respectively.



Sensors 2023, 23, 4899 5 of 17

Figure 2. A sequence of an actor performing the activity wearing a hat. Extracted human skeleton 3D
joints using the Kinect SDK have been overlaid. Frames have been taken from the NTU dataset [9]
and have been trimmed for illustration purposes.

Figure 3. A sequence of an actor performing the activity salute. Extracted human skeleton 3D joints
using the Kinect SDK have been overlaid. Frames have been taken from the PKU-MMD dataset [8]
and have been trimmed for illustration purposes.

3.2. Image Representation of Skeletal Data

Since our goal was to use a CNN for the classification of activities, a mandatory step
was to represent the 3D skeletal motion with a 2D image, so that the latter would capture
and preserve the spatio-temporal properties of this motion. Of course, such representations
should be able to discriminate among different activities, while also complying with the
graph structure of the skeleton representation that is used. Therefore, and based on our
previous work [34], we adopted a pseudo-colored representation of the skeletal motion that
aimed to capture the varying inter-joint distances during the performance of an activity.

Specifically, let x(n), y(n) and z(n), n = 1, . . . , N denote the sequences of the x, y, z
co-ordinates of the skeletal joint motion at the n-th frame and occurring within a period of
time of N frames. Since Kinect v2 extracts 25 joints, this motion “produces” a set of 75 such
sequences. Prior to the creation of the image representation, there is the need to address the
problem of temporal variability. It should be intuitive that (a) different activities require
different amounts of time and (b) the same activity requires different amounts of time
both in the cases it is performed by different subjects and even when it is performed by
the same subject. As in [20], we used a linear interpolation step, setting the number of
frames F as equal for all activity examples. Upon performing several experiments, we set
F = 150. In order to create the pseudo-colored images, spatial co-ordinates x, y, z were
assigned to R, G, B color channels of the resulting pseudo-colored image, respectively.
The procedure of creating these images was as follows: let R denote the red channel, i the
i-th frame, and j the j-th joint. The equation used to create the R-value of pixel (i, j) is:
R(i, j) = R(i + 1, j)− R(i, j). Similarly, G and B values were created. In Figure 4, examples
of these pseudo-colored images are illustrated.

3.3. Occlusion of Skeletal Data

As we have already discussed, in real-life scenarios, occlusion may be one of the
most crucial causes of the poor performance of HAR approaches. Prior to describing our
approach to simulating occlusion, we first discuss the main causes. Let us consider an
assistive living scenario, where the subject’s behavior is monitored by cameras. In many
occasions, actions take place behind furniture or more than one person is present in the
same room. Thus, it is expected that occlusion is often occurring, incommoding the task of
recognition algorithms, as it is the main factor for the loss of visual information. Even in
cases of simple activities that involve one or two body parts, it is obvious that by occluding
them, i.e., by losing the information regarding their motion, recognition algorithms are
prone to failure.
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LA+LL

LL

LA+RA

LL+RL
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RA+RL
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PKU-MMD NTU-RGB+D

Figure 4. Pseudo-coloured images for the PKU-MMD [8] and the NTU [9] datasets. LA, RA, LL, and
RL denote the cases of occlusion of left arm, right arm, left leg, and right leg.

As we have already mentioned, the goal of this work was to assess whether the
performance drop caused by occlusion may be limited upon adding occluded samples to
the training process. First, we should emphasize that most publicly available, large scale
datasets such as the ones we used for the evaluation of this work, i.e., NTU RGB+D [9]
and the PKU-MMD [8], have been created in laboratory (i.e., ideal) conditions. Thus, there
exist no data samples that are affected by occlusion, while room illumination is appropriate
for video capturing. We assumed that these datasets are “clean,” i.e., they do not contain
any samples with missing/noisy data and the only limitations imposed are due to the
capabilities of Kinect v2, which was used for data collection.

In order to simulate the effect of occlusion, i.e., to create artificially occluded activity
samples, we followed the paradigms of [10,11] and we discarded subsets of the skeleton
that correspond to meaningful body parts. Specifically, as we have already discussed
in Section 3.1, we considered arms (each comprising shoulder, elbow, wrist, hand, and
hand-tip), legs (each comprising hip, knee, ankle, and foot), and the torso (comprising head,
neck, spine-shoulder, spine-mid, and spine-base). This way, we formed five body parts, as
illustrated in Figure 1. We should herein note that, in our case, we assumed that occlusion
affects the whole activity, i.e., the body parts that were occluded remained occluded during
the whole activity duration.

We considered the cases of occlusion of: (a) an arm; (b) a leg; (c) both arms; (d) both legs;
and (e) an arm and a leg. Intuitively, when two parts are occluded, the most expected case
is that they both are from the same side. Moreover, our initial experiments indicated that
by removing the torso the accuracy was not significantly affected. Therefore, throughout
our experiments, the torso was always present. An example of an activity with and without
the occlusion of a body part is illustrated in Figures 5 and 6. In this example, it is evident
that a single body part may carry significant information regarding the activity.
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Figure 5. Example skeleton sequences of the activity salute from the PKU-MMD dataset [8]. First row:
skeletons include all 25 joints; second row: joints corresponding to the left arm have been discarded.

Figure 6. Example skeleton sequences of the activity wearing a hat from the NTU dataset [9].First row:
skeletons include all 25 joints; second row: joints corresponding to the left arm have been discarded.

Note that several research works among those that have been presented in Section 2
also used occluded samples within the training process [10,21,35]. However, in [21], only
random skeletal joints were removed; yet these did not correspond to structured body parts
as in our case. Moreover, in [10], occlusion was not continuous as in our case; instead it may
go from partial to full during an activity, yet within several temporal periods, no occlusion
is present. Additionally, contrary to [19], where due to occlusion only some cameras were
affected, in our approach, all available cameras were similarly affected.

3.4. Classification

For classification, we used a Convolutional Neural Network (CNN). Specifically,
the architecture of the CNN that has been used throughout our experiments has been
experimentally defined and was initially used in previous works [20,34]. It consists of a 2D
convolutional layer that filters the 25 × 150 input image with five kernels of 3 × 3 size, a
max-pooling layer that performs 2 × 2 subsampling, two consecutive convolutional layers
of size 3 × 3 with 10 and 15 kernels, a max-pooling layer performing 2 × 2 subsampling,
a flattened layer that transforms the output of the last pooling layer into a vector, which
consists of the input to a dense layer upon applying a dropout layer with a dropout rate
equal to 0.5 and a second dense layer producing the output of the network. The CNN is
illustrated in Figure 7.
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Figure 7. The Convolutional Neural Network that has been used in this work.

4. Experiments and Results

In this section, we present and discuss the results of the experimental evaluation
of the proposed approach, using two publicly available and well-known human activity
recognition datasets. The goal of this evaluation was to assess whether the inclusion of
occluded samples within the training process may improve the performance of classifi-
cation strategies. We relied on our previous work [34], where we presented an image
representation of 3D skeletal motion. Moreover, we used the same CNN architecture for
classification as in [36]. Note that the goal of the following experiments was not to provide
state-of-the-art results in human activity recognition, but to be used as a baseline so as to
verify the effectiveness of our approach.

4.1. Datasets

For the experimental evaluation of our work, we used two widely known and freely
available datasets. More specifically, we used:

a. PKU-MMD [8], which is an action recognition dataset that contains 1076 long video
sequences in 51 action categories, performed by 66 subjects and in three camera views.
The total amount of the action instances is approximately 20,000. For the recording of
the dataset they used the Kinect v2 sensor. The 51 action categories are divided into
two parts: 41 daily actions (e.g., brushing hair, brushing teeth, eating a meal, etc.) and
10 interaction actions (e.g., handshaking, hugging another person, slapping another
person, etc.). For the data collection, three cameras with different viewpoints (−45◦,
0◦, +45◦) were used.

b. NTU-RGB+D [9], which is a large-scale RGB+D action recognition dataset contain-
ing approx. 57,000 video samples from 60 action classes and from 40 distinct sub-
jects. The dataset contains 40 daily actions (drop, stand up, play with phone, etc.),
11 mutual actions (punch, pushing, hugging, etc.), and nine health-related actions
(sneeze, nausea, neck pain, etc.). For data collection, the same camera setup as in
PKU-MMD was used.

4.2. Experimental Setup and Implementation Details

The experiments were performed on a workstation with an Intel core™i7 5820K 12-core
processor on 3.3 GHz and 16 GB RAM, using NVIDIA™GeForce RTX 2060 SUPER GPU
with 8 GB and Ubuntu 20.04 (64 bit). All pipelines were implemented in Python, using Keras
2.6 [37] and Tensorflow 2.3 [38] backend. The batch size used consisted of 32 and 80 epochs.
The optimizer used was the RMSprop, while the categorical cross-entropy loss was adopted.
The data split for training, validation, and testing followed exactly the one proposed by the
datasets’ authors [8,9].
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4.3. Evaluation Protocol and Results

For the evaluation of the proposed approach, we studied eight cases of missing body
parts of the skeleton, as we have discussed in Section 3.3. Specifically, we performed three
types of experiments for comparison purposes:

a. Training and test sets consisting of full body parts only;
b. Training set consisting of full body parts only, test set consisting of occluded body

parts only;
c. Training set consisting of full and occluded body parts, test set consisting of occluded

body parts.

Following typical evaluation protocols encountered in multi-camera datasets as those
used herein [8,9], we further split the aforementioned experiments into three types:

a. Per camera position (single view), where training and test sets derive from the same
camera (viewpoint), e.g., both deriving from the middle camera;

b. Cross view experiments, where training and test sets derive from different cameras
(viewpoints), e.g., training deriving from the middle camera, testing deriving from the
left camera;

c. Cross subject experiments, wherein subjects are split into training and testing groups,
i.e., each subject appears in exactly one of these groups.

We performed experiments using the full PKU-MMD [8] and NTU-RGB+D [9] datasets.
We also performed experiments using subsets of both these datasets, as follows:

a. From the PKU-MMD dataset we selected 11 actions related to activities of daily living:
eating a meal/snack, falling, handshaking, hugging another person, making a phone
call/answering the phone, playing with phone/tablet, reading, sitting down, standing
up, typing on a keyboard, and wearing a jacket;

b. From the NTU-RGB+D dataset we selected 12 medical conditions: sneezing/coughing,
staggering, falling down, headache, chest pain, back pain, neck pain, nausea/vomiting,
fanning self, yawning, stretching oneself, and blowing the nose.

In all cases, we measured F1 score and accuracy. Results of the proposed methodology
are depicted in Table 1 for the 11 activities of daily living of the PKU-MMD dataset, in
Table 2 for the 12 medical conditions of NTU-RGB+D dataset, and in Tables 3 and 4 for the
full PKU-MMD and NTU-RGB+D datasets, respectively.

Starting with the PKU-MMD dataset and based on the results depicted in Tables 1 and 3,
we observe the following:

• In almost all experiments, both the F1 score and the accuracy of the proposed approach
are improved compared to the “simple” case of occlusion;

• In general, it is also comparable to the baseline case;
• The only exception to the above-mentioned are the cases of cross-view experiments

when using:

– Only the 11 activities of daily living, and specifically in the case where the left
and the middle cameras were used for training, while the right one was used for
testing; and

– The full PKU-MMD dataset, and specifically in the case where the left camera
was used for training, while the right one was used for testing;

• As expected, and due to the activities involved, in cases of the occlusion of legs, a drop
of performance is not observed, in general.
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Table 1. Results of the evaluation using the 11 activities of daily living of the PKU-MMD dataset. Setup cases are Cross-Subject (CS), Single-View (SV), and
Cross-View (CV). Camera views are Left (L), Right (R), and Middle (M). In the baseline case (B), all body parts are included in both training and testing, while in the
“simple” case of occlusion (S), the training set consists of full body parts and the test set consists of occluded body parts, and in the “augmented” case of occlusion
(A), the training set consists of full and occluded body parts, while the test set consists of occluded body parts. Moreover, LA, RA, LL, and RL denote the occlusion
of left arm, right arm, left leg, and right leg, respectively. F1 and Acc. denote F1 score and accuracy, respectively. In all cases, bold numbers indicate the best result
between S and A cases.

LA LA + LL LL LA + RA LL + RL RA RA + RL RL
Setup Train Test Metric B

S A S A S A S A S A S A S A S A

CS LRM LRM F1 0.68 0.56 0.71 0.53 0.71 0.62 0.74 0.18 0.59 0.47 0.69 0.53 0.70 0.49 0.69 0.66 0.73
Acc. 0.70 0.59 0.74 0.55 0.75 0.64 0.77 0.28 0.64 0.52 0.72 0.55 0.73 0.50 0.71 0.67 0.75

SV

L L F1 0.68 0.51 0.76 0.49 0.77 0.70 0.77 0.18 0.68 0.58 0.76 0.40 0.70 0.37 0.72 0.66 0.75
Acc. 0.69 0.54 0.76 0.54 0.77 0.71 0.78 0.29 0.69 0.60 0.76 0.42 0.70 0.40 0.71 0.66 0.76

M M F1 0.77 0.66 0.81 0.62 0.79 0.74 0.81 0.27 0.72 0.63 0.76 0.63 0.80 0.57 0.75 0.74 0.79
Acc. 0.78 0.67 0.81 0.64 0.79 0.75 0.81 0.37 0.72 0.66 0.76 0.65 0.79 0.59 0.75 0.74 0.79

R R F1 0.75 0.54 0.75 0.49 0.71 0.71 0.71 0.16 0.63 0.64 0.70 0.59 0.71 0.59 0.73 0.72 0.73
Acc. 0.76 0.57 0.76 0.53 0.72 0.72 0.72 0.29 0.66 0.65 0.71 0.62 0.72 0.60 0.74 0.72 0.74

CV

L M F1 0.71 0.59 0.78 0.58 0.77 0.69 0.79 0.22 0.70 0.60 0.76 0.61 0.75 0.60 0.74 0.70 0.79
Acc0. 0.72 0.62 0.78 0.60 0.78 0.70 0.79 0.32 0.70 0.63 0.77 0.64 0.75 0.62 0.74 0.71 0.79

L R F1 0.70 0.50 0.64 0.46 0.63 0.66 0.67 0.15 0.65 0.54 0.67 0.50 0.68 0.47 0.69 0.64 0.69
Acc. 0.70 0.52 0.65 0.48 0.64 0.66 0.68 0.24 0.66 0.58 0.67 0.53 0.69 0.51 0.69 0.65 0.70

M L F1 0.71 0.58 0.77 0.56 0.77 0.68 0.76 0.19 0.67 0.61 0.71 0.48 0.71 0.44 0.69 0.70 0.74
Acc. 0.72 0.62 0.78 0.60 0.77 0.69 0.76 0.32 0.69 0.63 0.72 0.50 0.71 0.47 0.68 0.70 0.74

M R F1 0.55 0.35 0.66 0.34 0.63 0.52 0.69 0.15 0.51 0.40 0.64 0.42 0.70 0.38 0.70 0.50 0.70
Acc. 0.56 0.41 0.67 0.39 0.64 0.53 0.70 0.26 0.56 0.43 0.66 0.44 0.71 0.40 0.72 0.51 0.71

R L F1 0.60 0.53 0.62 0.48 0.60 0.55 0.59 0.18 0.48 0.44 0.56 0.49 0.57 0.48 0.55 0.58 0.57
Acc. 0.59 0.54 0.64 0.49 0.62 0.54 0.59 0.29 0.53 0.47 0.56 0.50 0.57 0.49 0.55 0.58 0.57

R M F1 0.73 0.60 0.70 0.52 0.69 0.65 0.74 0.25 0.61 0.57 0.72 0.60 0.71 0.57 0.70 0.72 0.74
Acc. 0.73 0.61 0.71 0.54 0.70 0.66 0.74 0.34 0.63 0.60 0.72 0.60 0.72 0.57 0.71 0.72 0.74

LR M F1 0.87 0.70 0.88 0.67 0.87 0.84 0.90 0.23 0.80 0.68 0.88 0.60 0.88 0.56 0.88 0.83 0.89
Acc. 0.87 0.71 0.88 0.68 0.86 0.85 0.90 0.36 0.79 0.71 0.88 0.64 0.88 0.59 0.88 0.83 0.89

LM R F1 0.79 0.67 0.65 0.65 0.62 0.76 0.68 0.21 0.52 0.64 0.64 0.56 0.66 0.53 0.67 0.77 0.70
Acc. 0.79 0.68 0.66 0.66 0.63 0.76 0.69 0.34 0.54 0.66 0.65 0.59 0.66 0.55 0.67 0.77 0.70

RM L F1 0.74 0.68 0.79 0.69 0.79 0.74 0.78 0.22 0.68 0.62 0.71 0.55 0.73 0.54 0.71 0.72 0.76
Acc. 0.75 0.69 0.80 0.70 0.80 0.74 0.77 0.34 0.69 0.63 0.71 0.57 0.73 0.56 0.70 0.72 0.76
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Table 2. Results of the evaluation using the 12 medical conditions of the NTU-RGB+d dataset. Setup cases are Cross-Subject (CS), Single-View (SV), and Cross-View
(CV). Camera views are Left (L), Right (R), and Middle (M). In the baseline case (B), all body parts are included in both training and testing, while in the “simple”
case of occlusion (S) the training set consists of full body parts and the test set consists of occluded body parts, and in the “augmented” case of occlusion (A), the
training set consists of full and occluded body parts, while the test set consists of occluded body parts. LA, RA, LL, and RL denote the occlusion of left arm, right arm,
left leg, and right leg, respectively. F1 and Acc. denote F1 score and accuracy, respectively. In all cases, bold numbers indicate the best result between S and A cases.

LA LA + LL LL LA + RA LL + RL RA RA + RL RL
Setup Train Test Metric B

S A S A S A S A S A S A S A S A

CS LRM LRM F1 0.61 0.30 0.55 0.32 0.54 0.59 0.64 0.18 0.44 0.51 0.64 0.43 0.61 0.43 0.62 0.58 0.66
Acc. 0.61 0.32 0.54 0.33 0.54 0.62 0.64 0.22 0.42 0.58 0.65 0.44 0.62 0.44 0.62 0.58 0.66

SV

L L F1 0.60 0.35 0.54 0.37 0.54 0.58 0.64 0.17 0.41 0.46 0.63 0.45 0.61 0.43 0.62 0.57 0.66
Acc. 0.61 0.38 0.55 0.39 0.54 0.59 0.64 0.24 0.44 0.48 0.64 0.47 0.62 0.45 0.62 0.57 0.66

M M F1 0.49 0.28 0.50 0.30 0.49 0.49 0.59 0.12 0.42 0.36 0.61 0.38 0.59 0.37 0.60 0.46 0.61
Acc. 0.50 0.30 0.50 0.32 0.49 0.49 0.60 0.19 0.43 0.38 0.61 0.41 0.59 0.38 0.60 0.46 0.62

R R F1 0.53 0.29 0.48 0.30 0.48 0.51 0.59 0.11 0.37 0.44 0.62 0.39 0.54 0.37 0.55 0.52 0.61
Acc. 0.54 0.31 0.48 0.32 0.48 0.52 0.59 0.19 0.37 0.46 0.62 0.42 0.54 0.40 0.55 0.52 0.61

CV

L M F1 0.50 0.25 0.50 0.26 0.51 0.43 0.63 0.14 0.38 0.36 0.63 0.39 0.62 0.36 0.64 0.47 0.64
Acc. 0.50 0.28 0.50 0.27 0.51 0.43 0.63 0.19 0.40 0.39 0.63 0.39 0.62 0.37 0.64 0.46 0.64

L R F1 0.50 0.33 0.50 0.34 0.51 0.49 0.58 0.18 0.37 0.42 0.58 0.38 0.53 0.37 0.54 0.48 0.58
Acc. 0.50 0.35 0.50 0.35 0.51 0.49 0.58 0.22 0.37 0.43 0.58 0.39 0.53 0.38 0.55 0.47 0.59

M L F1 0.59 0.31 0.51 0.33 0.51 0.55 0.64 0.13 0.36 0.47 0.63 0.45 0.58 0.44 0.58 0.55 0.64
Acc. 0.59 0.33 0.51 0.34 0.51 0.55 0.64 0.19 0.39 0.49 0.63 0.47 0.59 0.44 0.58 0.55 0.65

M R F1 0.61 0.37 0.42 0.36 0.45 0.57 0.53 0.12 0.30 0.49 0.54 0.42 0.49 0.40 0.50 0.56 0.53
Acc. 0.61 0.38 0.43 0.38 0.45 0.57 0.54 0.18 0.31 0.51 0.54 0.44 0.49 0.41 0.50 0.56 0.54

R L F1 0.59 0.28 0.51 0.31 0.51 0.57 0.61 0.11 0.39 0.49 0.61 0.43 0.56 0.42 0.58 0.55 0.62
Acc. 0.59 0.31 0.52 0.32 0.52 0.57 0.62 0.18 0.41 0.50 0.61 0.44 0.56 0.43 0.58 0.55 0.63

R M F1 0.55 0.34 0.39 0.34 0.39 0.52 0.47 0.17 0.29 0.46 0.47 0.43 0.46 0.41 0.49 0.49 0.49
Acc. 0.55 0.35 0.40 0.34 0.39 0.52 0.47 0.21 0.31 0.49 0.47 0.42 0.46 0.42 0.48 0.51 0.49

LR M F1 0.57 0.32 0.51 0.31 0.52 0.53 0.61 0.17 0.44 0.44 0.64 0.44 0.62 0.44 0.65 0.55 0.64
Acc. 0.58 0.33 0.52 0.31 0.52 0.53 0.62 0.22 0.45 0.46 0.64 0.46 0.63 0.46 0.65 0.56 0.65

LM R F1 0.60 0.28 0.51 0.29 0.52 0.54 0.61 0.14 0.37 0.47 0.61 0.44 0.55 0.43 0.56 0.56 0.60
Acc. 0.60 0.31 0.52 0.30 0.53 0.54 0.61 0.18 0.38 0.50 0.61 0.45 0.55 0.43 0.56 0.56 0.61

RM L F1 0.65 0.38 0.58 0.39 0.59 0.62 0.72 0.14 0.44 0.52 0.72 0.48 0.68 0.46 0.69 0.62 0.72
Acc. 0.65 0.39 0.58 0.39 0.59 0.62 0.73 0.21 0.45 0.55 0.72 0.50 0.69 0.48 0.69 0.62 0.73
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Table 3. Results of the evaluation using the PKU-MMD dataset. Setup cases are Cross-Subject (CS), Single-View (SV), and Cross-View (CV). Camera views are
Left (L), Right (R), and Middle (M). In the baseline case (B), all body parts are included in both training and testing, while in the “simple” case of occlusion (S) the
training set consists of full body parts and the test set consists of occluded body parts, and in the “augmented” case of occlusion (A), the training set consists of full
and occluded body parts, while the test set consists of occluded body parts. LA, RA, LL, and RL denote the occlusion of left arm, right arm, left leg, and right leg,
respectively. F1 and Acc. denote F1 score and accuracy, respectively. In all cases, bold numbers indicate the best result between S and A cases.

LA LA + LL LL LA + RA LL + RL RA RA + RL RL
Setup Train Test Metric B

S A S A S A S A S A S A S A S A

CS LRM LRM F1 0.69 0.29 0.51 0.25 0.48 0.65 0.64 0.10 0.34 0.60 0.62 0.39 0.59 0.36 0.58 0.65 0.65
Acc. 0.70 0.33 0.53 0.29 0.51 0.66 0.66 0.17 0.37 0.62 0.65 0.45 0.61 0.42 0.60 0.66 0.67

SV

L L F1 0.64 0.29 0.52 0.27 49 0.58 0.65 0.09 0.37 0.50 0.63 0.30 0.60 0.28 0.60 0.61 0.65
Acc. 0.65 0.33 0.53 0.30 0.50 0.59 0.66 0.16 0.39 0.52 0.64 0.36 0.60 0.35 0.60 0.61 0.66

M M F1 0.63 0.26 0.54 0.21 0.51 0.59 0.67 0.09 38 0.50 0.67 0.36 0.65 0.33 0.65 0.62 0.68
Acc. 0.64 0.29 0.55 0.26 0.52 0.60 0.68 0.15 0.41 0.53 0.68 0.41 0.65 0.39 0.65 0.62 0.69

R R F1 0.63 0.29 0.53 0.26 0.53 0.60 0.65 0.09 0.37 0.56 0.62 0.38 0.64 0.33 0.63 0.61 0.65
Acc. 0.63 0.32 0.54 0.30 0.54 0.60 0.65 0.15 0.39 0.57 0.63 0.42 0.64 0.38 0.63 0.62 0.65

CV

L M F1 0.61 0.23 0.50 0.22 0.47 0.55 0.64 0.10 0.34 0.49 0.63 0.34 0.60 0.32 0.60 0.59 0.65
Acc. 0.62 0.27 0.51 0.26 0.48 0.56 0.65 0.15 0.37 0.53 0.64 0.39 0.61 0.37 0.61 0.59 0.66

L R F1 0.58 0.23 0.34 0.21 0.33 0.53 0.44 0.08 0.27 0.45 0.44 0.36 0.42 0.32 0.42 0.56 0.46
Acc. 0.59 0.28 0.37 0.25 0.35 0.54 0.46 0.14 0.30 0.49 0.46 0.40 0.44 0.36 0.45 0.57 0.48

M L F1 0.61 0.28 0.53 0.26 0.52 0.54 0.63 0.08 0.34 0.49 0.62 0.34 0.58 0.33 0.58 0.58 0.64
Acc. 0.62 0.31 0.54 0.28 0.53 0.56 0.64 0.14 0.37 0.51 0.63 0.39 0.59 0.38 0.58 0.60 0.65

M R F1 0.50 0.20 0.47 0.18 0.46 0.45 0.62 0.09 0.34 0.39 0.62 0.29 0.61 0.24 0.61 0.47 0.63
Acc. 0.51 0.24 0.49 0.22 0.47 0.47 0.63 0.14 0.36 0.41 0.62 0.32 0.61 0.27 0.61 0.47 0.63

R L F1 0.47 0.18 0.38 0.16 0.37 0.41 0.47 0.08 0.25 0.37 0.44 0.26 0.44 0.26 0.43 0.44 0.48
Acc. 0.48 0.22 0.40 0.19 0.39 0.43 0.49 0.16 0.28 0.40 0.47 0.32 0.46 0.33 0.45 0.46 0.50

R M F1 0.60 0.25 0.48 0.22 0.47 0.54 0.62 0.08 0.33 0.46 0.61 0.38 0.58 0.33 0.57 0.57 0.64
Acc. 0.61 0.30 0.50 0.24 0.48 0.54 0.63 0.16 0.35 0.48 0.62 0.42 0.58 0.37 0.58 0.57 0.64

LR M F1 0.70 0.31 0.58 0.26 0.56 0.65 0.74 0.09 0.40 0.60 0.73 0.42 0.69 0.38 0.69 0.68 0.75
Acc. 0.70 0.34 0.58 0.30 0.56 0.67 0.74 0.15 0.41 0.63 0.73 0.46 0.69 0.43 0.68 0.68 0.75

LM R F1 0.65 0.26 0.50 0.25 0.49 0.61 0.63 0.11 0.36 0.56 0.62 0.36 0.61 0.35 0.62 0.60 0.64
Acc. 0.66 0.30 0.52 0.29 0.50 0.62 0.64 0.17 0.39 0.58 64 0.42 0.62 0.41 0.62 0.61 0.65

RM L F1 0.65 0.27 0.50 0.26 0.49 0.60 0.62 0.09 0.34 0.55 0.60 0.36 0.56 0.35 0.55 0.61 0.62
Acc. 0.65 0.30 0.51 0.30 0.49 0.61 0.63 0.15 0.36 0.56 0.60 0.40 0.57 0.40 0.56 0.62 0.63
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Table 4. Results of the evaluation using the NTU-RGB+D dataset. Setup cases are Cross-Subject (CS), Single-View (SV), and Cross-View (CV). Camera views are
Left (L), Right (R), and Middle (M). In the baseline case (B), all body parts are included in both training and testing, while in the “simple” case of occlusion (S) the
training set consists of full body parts and the test set consists of occluded body parts, and in the “augmented” case of occlusion (A), the training set consists of full
and occluded body parts, while the test set consists of occluded body parts. LA, RA, LL, and RL denote the occlusion of left arm, right arm, left leg, and right leg,
respectively. F1 and Acc. denote F1 score and accuracy, respectively. In all cases, bold numbers indicate the best result between S and A cases.

LA LA + LL LL LA + RA LL + RL RA RA + RL RL
Setup Train Test Metric B

S A S A S A S A S A S A S A S A

CS LRM LRM F1 0.49 0.25 0.37 0.22 0.36 0.46 0.45 0.09 0.25 0.39 0.45 0.31 0.44 0.29 0.44 0.47 0.47
Acc. 0.49 0.26 0.38 0.23 0.37 0.47 0.47 0.12 0.27 0.41 0.47 0.32 0.45 0.31 0.45 0.47 0.48

SV

L L F1 0.60 0.25 0.39 0.20 0.38 0.50 0.49 0.08 0.28 0.37 0.50 0.34 0.46 0.29 0.48 0.53 0.51
Acc. 0.60 0.26 0.40 0.21 0.39 0.51 0.50 0.11 0.29 0.41 0.50 0.36 0.46 0.32 0.48 0.55 0.51

M M F1 0.57 0.27 0.36 0.24 0.35 0.50 0.46 0.09 0.24 0.42 0.46 0.36 0.44 0.31 0.43 0.51 0.48
Acc. 0.58 0.28 0.37 0.25 0.36 0.51 0.47 0.11 0.26 0.45 0.47 0.38 0.44 0.32 0.44 0.52 0.49

R R F1 0.58 0.27 0.35 0.22 0.35 0.51 0.44 0.08 0.25 0.40 0.46 0.32 0.38 0.27 0.40 0.52 0.47
Acc. 0.59 0.29 0.36 0.24 0.35 0.52 0.45 0.10 0.27 0.43 0.46 0.34 0.38 0.30 0.40 0.53 0.47

CV

L M F1 0.38 0.14 0.35 0.11 0.34 0.35 0.45 0.04 0.24 0.28 0.46 0.23 0.43 0.20 0.44 0.35 0.47
Acc. 0.37 0.16 0.36 0.13 0.35 0.35 0.46 0.06 0.26 0.30 0.46 0.23 0.43 0.20 0.44 0.34 0.47

L R F1 0.41 0.24 0.35 0.20 0.35 0.37 0.43 0.09 0.23 0.31 0.42 0.26 0.39 0.25 0.39 0.39 0.44
Acc. 0.41 0.24 0.35 0.20 0.35 0.37 0.44 0.12 0.23 0.33 0.43 0.29 0.39 0.28 0.39 0.40 0.44

M L F1 0.46 0.23 0.39 0.20 0.38 0.44 0.49 0.08 0.25 0.35 0.49 0.31 0.45 0.29 0.45 0.45 0.50
Acc. 0.46 0.24 0.39 0.21 0.38 0.44 0.50 0.10 0.26 0.37 0.49 0.32 0.45 0.32 0.45 0.45 0.51

M R F1 0.46 0.26 0.33 0.25 0.32 0.43 0.40 0.09 0.22 0.37 0.39 0.30 0.37 0.28 0.37 0.45 0.41
Acc. 0.46 0.28 0.33 0.26 0.32 0.44 0.40 0.11 0.23 0.39 0.40 0.32 0.37 0.30 0.37 0.46 0.41

R L F1 0.44 0.23 0.33 0.22 0.33 0.41 0.44 0.08 0.21 0.35 0.43 0.27 0.39 0.25 0.39 0.42 0.45
Acc. 0.43 0.24 0.34 0.23 0.33 0.41 0.44 0.10 0.22 0.37 0.44 0.28 0.38 0.27 0.39 0.42 0.46

R M F1 0.50 0.23 0.31 0.20 0.30 0.47 0.38 0.09 0.23 0.42 0.39 0.32 0.38 0.28 0.39 0.47 0.40
Acc. 0.50 0.24 0.32 0.21 0.31 0.48 0.39 0.10 0.25 0.43 0.39 0.33 0.39 0.30 0.39 0.47 0.41

LR M F1 0.42 0.22 0.37 0.21 0.36 0.40 0.46 0.07 0.26 0.35 0.46 0.27 0.44 0.26 0.44 0.41 0.48
Acc. 0.43 0.23 0.38 0.22 0.37 0.42 0.47 0.10 0.28 0.37 0.47 0.30 0.44 0.28 0.45 0.43 0.49

LM R F1 0.46 0.24 0.34 0.22 0.33 0.43 0.42 0.09 0.22 0.38 0.41 0.27 0.37 0.26 0.37 0.44 0.42
Acc. 0.45 0.25 0.35 0.23 0.34 0.43 0.43 0.12 0.24 0.40 0.42 0.28 0.38 0.27 0.38 0.44 0.43

RM L F1 0.52 0.29 0.37 0.24 0.36 0.48 0.48 0.07 0.25 0.40 0.48 0.32 0.45 0.28 0.46 0.48 0.51
Acc. 0.52 0.29 0.38 0.25 0.36 0.49 0.49 0.10 0.26 0.43 0.48 0.34 0.45 0.31 0.46 0.50 0.51
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In the case of the NTU-RGB+D dataset and based on the results depicted in Tables 2 and 4,
we observe the following:

• In cases where both metrics indicated improved performance, compared to the “simple”
case of occlusion:

• In general, in that case it is also comparable to the baseline case;
• The only exception to the above-mentioned are the cases of the cross-view experiments

when using:

– Only the 12 medical conditions, and specifically in the case where the mid-
dle camera was used for training, while the right one was used for testing or
vice versa;

– The full NTU-RGB+D dataset, and specifically in the case of single view;
– A few combinations of training and testing in the cross-view case;

• Additionally, in this case and as expected, in the case of the occlusion of legs, a drop
of performance is not observed, in general.

A notable observation of our experimental results indicates that, due to data augmen-
tation that is indirectly caused by the addition of the occluded samples in the training
phase, in many cases and in both datasets we may observe that the results of the proposed
approach, i.e., when the training set is augmented with occluded samples, typically lead
to higher accuracy and F1 score. However, this result was not anticipated prior to the
experimental evaluation. Of course, since it is well-known that data augmentation may
typically boost the performance of deep architectures, this result is adequately explained
this way.

5. Conclusions and Future Work

In this paper, we dealt with the problem of human activity recognition in the presence
of occlusion, which still remains an aspect that has not yet received significant attention,
while it compromises performance. Our goal was twofold: (a) we intended to extensively
study the effect of occlusion in human activity recognition tasks; and (b) we aimed to assess
the effect of the inclusion of occluded samples within the training process. As expected,
occlusion is responsible for the loss of parts of motion, which in many cases are crucial for
the recognition of an activity. Since to the best of our knowledge there do not exist any
publicly available datasets, we used artificially-created occluded data and worked under
the hypothesis that one or more body parts remain occluded during the whole duration of
the activity. Of course this is often a harder case than those that are encountered in typical,
real-life occlusion scenarios, wherein occlusion often does not affect a whole body part,
but some of its joints instead. Additionally, in such scenarios, occlusion is not continuous.
Some parts may remain occluded for some time intervals. Thus, it is our belief that the
proposed approach constitutes a harder problem than typical occlusion cases.

To tackle occlusion, we followed a typical recognition approach. We first created 2D
representations of human joint motion. Then we trained a Convolutional Neural Network
both with and without artificially occluded samples. We evaluated our approach in typical
human activity recognition scenarios, i.e., single-view, cross-view, and cross-subject, using
two publicly available, large-scale datasets and upon considering eight occlusion cases
involving one or two arms and/or legs. Prior to the experimental evaluation we expected
that (a) the inclusion of occluded samples will boost the performance of recognition in
the presence of occlusion; and (b) since most activities depend mainly on arms’ motion,
recognition will be mostly affected in cases of arm occlusion. Both the aforementioned
hypotheses have been experimentally proved. To our surprise, we also observed that the
augmentation of the training set with occluded samples led to a boost of performance. We
consider this as the most important finding of this work, since it may constitute a simple
and effective approach for data augmentation in future work.

Future research efforts could focus on several other important aspects of the problem
of occlusion. Firstly, we would like to investigate cases such as temporally partial occlusion.
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Moreover, we intend to investigate the use of other deep neural network architectures,
such as generative adversarial networks (GANs) or approaches such as deep regression, for
completing missing information. Finally, we plan to construct a dataset containing “real”
occluded samples and also perform real-life experiments.
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