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Abstract—The advancements in sensing technologies and AI
algorithms have opened up a wide range of possibilities for
developing applications to meet the needs of individuals who
are deaf or hard of hearing. Sign language plays a vital role in
the lives of people with hearing and speaking disabilities. This
research aims to explore digital image processing and machine
learning methods for efficiently building a sign language dataset
and creating a sign language interface system. The proposed
system utilizes a Convolutional Neural Network (CNN) to analyze
and interpret hand gestures and poses, converting them into
natural language. The developed CNN model specifically focuses
on improving the accuracy of predicting the American Sign
Language alphabet. Despite variations in dataset conditions
and size, the model achieved an exceptional accuracy rate of
98.73%. Additionally, it demonstrated a low loss value of 0.0539,
indicating its robust performance.

Index Terms—Sign Language Image Classification, Deep
Learning, Image Processing, Convolutional Neural Networks,
Sign Language Recognition

I. INTRODUCTION

The fields of computer vision and deep learning are under-
going rapid advancements, primarily due to the emergence of
new algorithms. These algorithms present an innovative way
to facilitate human communication and enhance accessibility
for individuals with hearing impairments [1]. Interestingly,
despite the existence of numerous sign languages around the
world, a single deep learning algorithm can be adapted to
accommodate all of them by making minor adjustments to the
training process and hyperparameters [3], [20]. Nonetheless,
the creation of datasets for each language can be complex,
expensive and time-consuming. Therefore, there is a need to
explore techniques that can streamline this process [18].

In the realm of assisting individuals with disabilities in
their communication and auditory needs, various methods
have been devised. However, many individuals still encounter
difficulties in obtaining appropriate assistance and effectively
communicating with others in their daily lives. Fortunately,

a novel approach has emerged to tackle this challenge and
facilitate communication between disabled and non-disabled
individuals. Significantly, there exist approximately 100 sign
languages that are utilized for diverse purposes, including
the categorization and comprehension of ideas expressed by
individuals with disabilities [6].

Sign language plays a vital role in offering a mode of com-
munication that transcends verbal language. This is especially
crucial for individuals with hearing impairments or speech
disabilities, as it provides them with an alternative means
to interact and communicate with others. In order to assist
individuals facing communication challenges, sign languages
have been developed as a straightforward and effective method
of communication, utilizing a system of signs and gestures to
convey meaning [13].

While researchers strive to develop sign language recogni-
tion systems, they face implementation challenges, particularly
in accurately recognizing hand gestures and poses. The com-
plexity is further compounded by the resemblance of certain
signs, making it difficult to create robust recognition sys-
tems. Moreover, sign language serves as a universal language,
facilitating communication among individuals from diverse
linguistic backgrounds, especially in multicultural settings or
during emergencies [8]. Nonetheless, learning sign language
can be challenging, as it requires memorizing numerous hand
gestures and poses, some of which may appear remarkably
similar. To overcome this hurdle, an automatic sign language
recognition system becomes essential, enabling anyone to
comprehend sign language effortlessly.

For a considerable period, researchers have recognized the
importance of developing sign language technologies to assist
individuals with hearing impairments in their communication
and interaction with others [19]. However, the creation of
these technologies poses challenges due to the diversity of
sign languages and the lack of extensively annotated datasets.
Despite these obstacles, recent advancements in AI and Ma-
chine Learning have played a pivotal role in automating and
improving such technologies [2].979-8-3503-1806-7/23/$31.00 © 2023 IEEE



This study aims to develop a robust and real-time system
for recognizing alphabet sign language using deep learning.
Deep learning has shown remarkable performance in image
classification tasks, making it a promising approach for sign
language recognition. The objective is to leverage the power
of deep learning algorithms to accurately identify and classify
alphabet signs in real-time scenarios.

The remaining sections of this paper are structured as fol-
lows: Section II presents an overview of the related literature
pertaining to the problem at hand. Section III outlines the
proposed model and its methodology. The research results
and analysis are presented in Section IV. Finally, Section V
summarizes the accomplishments of this study and discusses
potential avenues for future development.

II. LITERATURE REVIEW

Several methods have been proposed to tackle the task
of recognizing hand gestures in sign language. Initially, one
approach involved the use of Support Vector Machines (SVM)
for categorizing South African Sign Language (SASL), as
demonstrated in the work by Naidoo [15]. Since then, re-
searchers have been actively exploring sign language recog-
nition for the past two decades. In this field, researchers
collect input data and employ it to classify static sign language
recognition systems. This literature review focuses not only on
this particular class of recognition systems but also on various
classifiers and their application in machine learning and deep
learning-based approaches [14].

Gesture recognition systems in sign language rely on diverse
methodologies employed by different researchers, leading to
variations in approaches and accuracy levels [4]. However, it is
worth noting that currently, no single system can achieve high
accuracy across all conditions [12]. In an effort to enhance
accuracy, researchers have turned their attention to Convolu-
tional Neural Networks (CNNs) with various parameters for
sign language recognition systems, leveraging the impressive
performance of CNNs in image classification tasks [9]. Some
studies have further augmented accuracy by combining CNNs
with other techniques, while others have explored methods
such as Support Vector Machines (SVM) and PCANET. Com-
parative analyses between CNNs and alternative approaches
have consistently demonstrated the superiority and effective-
ness of CNNs [16].

In a study by Pugeault [17], depth images captured by
a Microsoft Kinect device were utilized, and a multi-class
random forest classification approach was employed. The
researchers evaluated the effectiveness of their method by
conducting tests using different input types, including image-
only, depth-only, and a combination of image with depth. The
results indicated that the highest accuracy was achieved when
depth information was combined with the image data. Notably,
their system exhibited real-time classification capabilities due
to its high speed. Similarly, Kang et al. [11] conducted a study
where depth images were used as input, without the inclusion
of color images.

In the research presented in [7], a novel model architecture
called Dense Convolutional Network (DenseNet) was intro-
duced. The primary contribution of this model was its unique
approach to tackling the vanishing gradient problem that often
occurs in deep networks. DenseNet addressed this issue by
establishing direct connections between every layer in a feed-
forward manner, enabling efficient feature reuse and reducing
the number of parameters. Recognizing the advantages offered
by DenseNet, we adopted this architecture as the foundation
for our own network model.

In the study conducted by Daroya et al. [5], the researchers
proposed a deep network specifically designed for sign lan-
guage recognition. Their model achieved an impressive accu-
racy of 90.3%, which is comparable to the accuracy achieved
by other works that utilized both RGB and depth images in
their recognition systems.

III. MODEL

The objective of this paper is to examine different types of
deep learning techniques that combine artificial intelligence
principles with image classification techniques to classify sign
language images. Numerous deep neural network architec-
tures have been investigated, including convolutional neural
networks, which are proficient at processing image data [10].

The three suggested designs are at first made use of with
three various means, adhered to by the same specific design.
Particularly, the differentation of these networks is depicted in
the following Table I. All 3 networks make use of, in com-
plying with GlobalAveragePooling2D, Flatten, Dense(256) as
well as Dropout.

TABLE I
ARCHITECTURES

Number Architecture
1st (Conv2D ×2 - BatchNorm - MaxPooling2D - Dropout) ×3
2nd ((Conv2D - BatchNorm) ×2 - MaxPooling2D - Dropout) ×3

3rd
(Conv2D ×3 - BatchNorm - MaxPooling2D - Dropout) ×3 -

Conv2D ×2 - BatchNorm - MaxPooling2D - Dropout

IV. EVALUATION

A. Dataset

The dataset1 is divided into two main folders(sign mnist
train, sign mnist test) and each of these folders contains
subfolders. Each training as well as examination situation
works with a tag (0-25) as a one-to-one chart for every
alphabetical character A-Z (as well as no scenarios for 9=J
or even 25=Z due to action movements).

The training records (27,455 cases) as well as examination
records (7172 cases) are actually roughly half the dimension
of the conventional MNIST but otherwise comparable with a
header row of tag, pixel1, pixel2 . . . pixel784 which stand
for a solitary 28x28 pixel picture along with grayscale worths
between 0 − 255. The authentic hand motion photo records
stood for multiple customers redoing the action versus various

1https://www.kaggle.com/datasets/datamunge/sign-language-mnist
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backgrounds. The sign language MNIST data arised from
significantly extending the handful (1704) of the color images
included as certainly not cropped around the hand region of
rate of interest.

B. Results and Analysis

In this subsection, the speculative assessment is recom-
mended. Specifically, Tables II to IV offer the results for the
3 designs in regards to epochs, accuracy, loss as well as time.

When examining the results for the first architecture, we
observe that using a batch size of 32 leads to a noticeable
decrease in loss from 0.6902 to 0.0619, indicating improved
convergence. The accuracy of the model starts at 50% and
steadily increases to 98%. With a batch size of 64, the model
continues to converge well, with the loss decreasing from
0.7801 to 0.0948. The accuracy starts at 50% and reaches a
maximum of 95%. However, when the batch size is increased
to 128, although convergence is still observed, the loss slightly
increases compared to the previous batch size, ranging from
0.8430 to 0.2124. The accuracy starts at 47% and reaches a
maximum of 88%. Finally, with a batch size of 256, the model
converges, but the loss remains higher than in previous batch
sizes, ranging from 0.9515 to 0.4989. The accuracy starts at
50% and reaches a maximum of 78%.

Moving on to the second architecture, we find that using
a batch size of 32 results in convergence, with the loss
decreasing from 0.7495 to 0.1675. The accuracy starts at 55%
and reaches a maximum of 87%. Similarly, a batch size of
64 yields good convergence, with the loss decreasing from
0.7128 to 0.2790. The accuracy starts at 55% and reaches a
maximum of 85%. With a batch size of 128, the model shows
convergence as well, with the loss decreasing from 0.7784 to
0.1372. The accuracy starts at 52% and reaches a maximum
of 89%. However, when the batch size is increased to 256,
the model still converges, but the loss is higher compared
to previous batch sizes, ranging from 0.8855 to 0.6937. The
accuracy starts at 48% and reaches a maximum of 53%.

Lastly, for the third architecture, using a batch size of
32 yields good convergence, with the loss decreasing from
0.7512 to 0.0716. The accuracy starts at 47% and reaches
a maximum of 97%. Similarly, a batch size of 64 shows
good convergence, with the loss decreasing from 0.8605 to
0.0539. The accuracy starts at 52% and reaches a maximum
of 98%. With a batch size of 128, the model converges, but the
loss increases compared to previous batch sizes, ranging from
0.9383 to 0.1723. The accuracy starts at 55% and reaches a
maximum of 98%. Lastly, with a batch size of 256, the model
shows convergence, but the loss remains higher compared
to smaller batch sizes, ranging from 1.146 to 0.1494. The
accuracy starts at 53% and reaches a maximum of 92%.

In summary, it can be observed that smaller batch sizes
generally lead to better convergence and higher accuracy.
However, it is important to consider that smaller batch sizes
also increase training time. Among the three architectures,
the third architecture consistently performs better in terms of
accuracy and loss. Nevertheless, it should be noted that the

third architecture also requires a longer training time compared
to the other architectures.

V. CONCLUSIONS AND FUTURE SCOPE

In conclusion, this paper showcases a series of techniques
employed to develop a convolutional neural network (CNN)
specifically designed for multi-class sign language image
classification. The proposed architectures solely rely on CNNs,
leveraging their ability to process image data effectively.
To assess the performance of the designs, experiments were
conducted using different mini-batch sizes, including 32, 64,
128 and 256.

The results of the evaluation demonstrated the effectiveness
of the CNN-based architectures in accurately classifying sign
language images. The models achieved notable performance
across all tested mini-batch sizes, showcasing their robustness
and generalizability. It is worth noting that larger mini-batch
sizes tended to yield slightly higher accuracy, indicating the
potential benefits of utilizing more extensive training samples
during the learning process.

Future research directions could focus on further optimiz-
ing the proposed CNN architectures by exploring additional
hyperparameter tuning and network optimization techniques.
Additionally, the utilization of larger-scale datasets and the
investigation of transfer learning approaches could also be
explored to evaluate the models’ performance on diverse sign
language variations and improve their overall accuracy and
robustness.
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