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Abstract—Automatic classification of weather images is a
crucial task in the field of meteorology. Recent advancements in
Convolutional Neural Networks (CNNs) have demonstrated their
effectiveness in image classification. In this paper, we propose an
innovative CNN-based approach for weather image classification.
Building upon prior research, our model capitalizes on the
exceptional feature extraction capabilities of CNNs to accurately
classify weather images across various categories. To enhance the
generalization performance, we train the model using a combina-
tion of data augmentation techniques, including rotation, scaling
and flipping. This paper introduces a CNN model specifically
made for weather image classification, encompassing categories
such as cloudy, sunny, rainy and snowy conditions. Through
extensive training and evaluation on a substantial weather image
dataset, our proposed model achieves an impressive accuracy
rate of 98%. Our experimental results highlight the superior
performance of our CNN model when compared to various state-
of-the-art methods in weather image classification.

Index Terms—Weather Image Classification, Convolutional
Neural Network (CNN), Image Recognition, Machine Learning,
Meteorological Data Analysis

I. INTRODUCTION

Weather conditions play a pivotal role in our everyday
activities, and precise weather forecasting holds paramount
importance for diverse applications such as agriculture, trans-
portation and disaster management. An effective approach to
enhance weather forecasting is by analyzing and classifying
weather images. However, the classification of weather condi-
tions through image analysis is challenging due to the inherent
variability of weather patterns, intricate atmospheric phenom-
ena and diverse imaging conditions [20], [30]. Fortunately,
recent advancements in CNNs have showcased exceptional
capabilities in image classification tasks, including the clas-
sification of weather images [3].

The field of image classification has experienced remarkable
growth in recent years, primarily attributed to advancements
in computer vision techniques [10], [17], [19], [23]. Among
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these techniques, CNNs have emerged as a powerful tool, con-
sistently achieving state-of-the-art performance across various
domains [25]. Weather image classification is one such domain
that has garnered significant attention, owing to its applications
in weather forecasting and climate monitoring. By accurately
categorizing weather images, valuable insights can be gained
to enhance our understanding of weather patterns and facilitate
informed decision-making processes.

Weather image classification holds immense significance
for multiple reasons. Firstly, it offers valuable insights into
weather patterns and atmospheric phenomena, greatly enhanc-
ing the accuracy of weather forecasting. By effectively cate-
gorizing weather images, we can gain a deeper understanding
of the complex dynamics that influence our weather systems.

Secondly, the classification of weather images plays a vital
role in identifying hazardous weather conditions, such as
thunderstorms, hail or tornadoes. This capability enables the
prediction of potential damages and helps in implementing
timely precautionary measures to minimize the risk of loss of
life and property.

Furthermore, weather image classification contributes to
the monitoring of climate change by tracking and analyzing
weather patterns over extended periods. By identifying long-
term trends and variations, we can better comprehend the im-
pacts of climate change and make informed decisions towards
mitigating its effects.

A wide range of approaches has been proposed for weather
image classification, encompassing both traditional machine
learning and advanced deep learning techniques. Notably,
CNNSs have emerged as a prominent method in this field, owing
to their remarkable capability and potential to learn and extract
features from complex images.

CNNs offer a notable advantage by learning features at
various levels of abstraction, empowering them to classify
images based on their semantic content [31]. This inherent
capacity to discern intricate patterns and extract meaningful
representations has propelled CNNs to the forefront of weather
image classification research. The ability of CNNs to automat-
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ically learn hierarchical features from raw image data makes
them particularly suitable for handling the intricate and diverse
nature of weather images [15], [18], [29].

Despite the notable successes achieved in weather image
classification using CNNs, there remains ample room for
improvement in this field. One of the primary challenges
lies in handling the imbalanced distribution of classes within
datasets, where certain weather patterns occur significantly
less frequently than others. This class imbalance poses a
considerable hurdle, often resulting in poorer performance on
the minority classes. Addressing this issue is crucial to ensure
comprehensive and accurate classification across all weather
patterns.

Furthermore, the generalization of models to new and
unseen weather patterns presents another significant challenge.
Weather conditions exhibit immense variability, with the emer-
gence of new patterns and atmospheric phenomena.

Overcoming these challenges necessitates novel approaches
that specifically tackle class imbalance issues and focus on
enhancing the models’ ability to generalize to unseen weather
patterns. Addressing these concerns will contribute to fur-
ther advancements in weather image classification, facilitating
more accurate and comprehensive analysis of weather condi-
tions.

In this paper, we present a novel CNN-based approach
for weather image classification that effectively tackles key
challenges associated with this task. Our approach aims to
address two critical aspects: class imbalance and limited train-
ing data. To overcome the challenge of class imbalance, we
adopt strategic techniques in our model design. Additionally,
we augment our dataset with synthetic data, which helps to
alleviate the scarcity of samples for underrepresented weather
patterns. By incorporating synthetic data, we enhance the
overall training data distribution and improve the model’s
ability to accurately classify both common and rare weather
patterns.

Through our proposed CNN-based approach, augmented
dataset and data augmentation techniques, we aim to improve
the accuracy and reliability of weather image classification.
The combination of these strategies addresses important chal-
lenges associated with this task and contributes to advance-
ments in the field of weather analysis and forecasting.

The rest of the paper is organized as follows. Section
IT presents an overview of related work in weather image
classification, highlighting the existing research in this domain.
In Section III, we present our proposed CNN-based approach
in detail. This includes a comprehensive description of our
dataset, the architectural details of our model, and the training
procedures employed. Section IV showcases the experimental
results obtained from our approach and provides a comparative
analysis against existing methods. Finally, Section V concludes
the paper by summarizing the key findings and implications,
followed by a discussion on potential avenues for future
research in this field.

II. LITERATURE REVIEW

CNNs have emerged as powerful deep learning algorithms
renowned for their capability to extract significant image
features [26]. This effectiveness is attributed to their deep
architecture, utilization of local receptive fields, spatial sub-
sampling and shared weights. CNNs have achieved remarkable
success across diverse domains, including face recognition,
regression prediction and object detection [12]. Notably, the
breakthrough performance of the AlexNet model in the Im-
ageNet Large-Scale Visual Recognition Challenge (ILSVRC)
has further solidified the prominence of CNNs in image clas-
sification tasks [11]. By leveraging their inherent hierarchical
structure and feature extraction capabilities, CNNs have paved
the way for advancements in numerous applications involving
visual data analysis.

In recent years, the application of CNNs has extended into
the domain of meteorological studies, showcasing their versa-
tility and effectiveness. Researchers have leveraged CNNs to
tackle various weather-related challenges with notable success.
For instance, Guo [5] employed deep CNNs to extract snow
cover from remote sensing imagery, enabling precise moni-
toring and analysis of snow patterns. Lu [16] proposed CNN-
based architectures specifically designed for cloud recognition,
yielding improved accuracy in identifying and classifying
different cloud types. These advancements have enhanced our
understanding of cloud formations and their implications in
weather forecasting.

Furthermore, Dev [2] introduced a lightweight deep learning
architecture that seamlessly integrates daytime and nighttime
image segmentation, achieving superior results in image recog-
nition tasks. This approach holds promise in capturing and
analyzing weather patterns during different periods, thereby
enabling comprehensive monitoring and analysis.

Moreover, researchers have delved into the classification
performance of CNNs across various weather phenomena.
Some investigations have concentrated on two-class weather
classification, distinguishing between “sunny” and “cloudy”
conditions or three-class classification encompassing “rainy,’
“foggy” and “snowy” weather [4], [24]. Building upon these
studies, other researchers have expanded the classification
scope to encompass six distinct weather phenomena, including
”dew,” ”dust,” “’rain,” “frozen,” ”snow” and “haze.” To achieve
this, they employed deep learning techniques and utilized
three-channel convolutional neural networks (3C-CNN) [28].
These endeavors aimed to recognize weather phenomena by
treating it as a multi-label classification task.

However, it is important to note that these studies focused
on a limited number of weather categories, failing to encom-
pass the full spectrum of real-life weather phenomena. The
field of meteorology entails a considerably broader range of
weather patterns and atmospheric conditions. Thus, it becomes
crucial to account for a wider variety of weather phenomena
when analyzing and recognizing them. By considering a more
comprehensive set of weather categories, we can facilitate a
more accurate and comprehensive understanding of weather
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patterns, leading to advancements in meteorological research
and applications.

Authors in [8] present a novel approach for weather infor-
mation retrieval concerning winter precipitation types, employ-
ing machine learning techniques. The methodology utilizes
data gathered from weather sensors and focuses on forecasting
the weather type based on three precipitation classes: rain,
freezing rain and snow, as recorded by the Automated Surface
Observing System (ASOS). To enable accurate classification,
the authors evaluate six supervised machine learning mod-
els, namely Naive Bayes, Decision Stump, Hoeffding Tree,
HoeffdingOption Tree, HoeffdingAdaptive Tree and OzaBag.
These models are selected for their potential in accurately
predicting winter precipitation types within the proposed
framework.

Presently, significant research efforts are dedicated to the
development of accurate forecasting models for weather pre-
diction [22]. Within this context, specific studies focus on
investigating the influence of weather conditions on traffic,
with particular emphasis on factors like rain and fog [1]. These
investigations often utilize real images obtained from cameras
situated in natural scenes, such as roads or highways, which
offer a unique set of features relevant to driving assistance
systems. However, it is essential to acknowledge that these
images introduce variations in background and context, poten-
tially impacting the accuracy of weather classification models
[21].

The utilization of real-world images in weather classifica-
tion poses a challenge due to the inherent complexities intro-
duced by the surrounding environment. Variations in lighting
conditions, occlusions and diverse backgrounds can affect the
performance and robustness of weather classification models.
Consequently, it becomes crucial to address these challenges
by exploring techniques that enhance the models’ ability to
generalize across different backgrounds and effectively extract
weather-related features.

Machine learning techniques play a pivotal role in extracting
significant features from weather images, ultimately enhancing
the accuracy of classification models. In this regard, Huang
[6] conducted a study aimed at improving image retrieval
performance by incorporating texture and color features. The
research findings showcased superior performance compared
to alternative methods, underscoring the efficacy of leveraging
machine learning algorithms to enhance the retrieval and
analysis of weather images.

By incorporating texture and color features, the study by
Huang [6] demonstrates the potential of integrating addi-
tional image characteristics beyond traditional approaches.
This broader feature representation enhances the discrimina-
tive power of the models and enables more accurate retrieval
and classification of weather images. Such advancements
contribute to a deeper understanding of weather patterns, ulti-
mately supporting improved forecasting and decision-making
processes in meteorological applications.

Recent studies have explored the application of deep learn-
ing techniques in various domains, showcasing their potential

to enhance accuracy and provide effective solutions. For
instance, works [27] focused on Twitter sentiment analysis,
specifically analyzing user sentiments in COVID-19-related
tweets. These studies employed seven different deep learning
models based on LSTM neural networks to classify sentiment.
In a similar vein, the work in [7] emphasized the significance
of utilizing up-to-date methods in the aviation industry, further
highlighting the versatility and advancements of diverse tech-
niques across different domains. These references collectively
demonstrate the continuous development and wide-ranging
applications of deep learning, contributing to the creation of
robust and efficient solutions.

Future studies can focus on several areas to advance the
field of weather classification. Firstly, exploring novel feature
extraction techniques that capture intricate patterns and subtle
variations in weather images can enhance the discriminative
power of classification models. Additionally, considering the
integration of multi-modal data sources, such as satellite
imagery, radar data and environmental sensors, can provide
a more comprehensive understanding of weather patterns and
improve prediction accuracy.

Finally, this research will contribute to improved decision-
making processes and better preparedness in various domains
that rely on accurate weather predictions, such as agriculture,
transportation and disaster management.

III. MODEL

The main objective of this research paper is to investigate
different deep learning approaches that combine principles
of artificial intelligence with image classification techniques
for weather image classification. Several architectures of deep
neural networks have been examined, with a specific emphasis
on (CNNs) due to their exceptional performance in handling
image data [9].

The proposed models consist of three distinct architectures,
each initially implemented using different configurations be-
fore converging to the same final design. The architectural
differentiations among these networks are summarized in
Table I. All three networks incorporate common layers such as
GlobalAveragePooling2D, Flatten, Dense(256) and Dropout.

TABLE I
ARCHITECTURES
Number Architecture
1st (Conv2D - MaxPooling2D) x3

2nd (Conv2D %2 - MaxPooling2D) x3
3rd (Conv2D x3 - MaxPooling2D) x3

IV. EVALUATION
A. Dataset

The dataset' has 6-folders: 5-folders possessing each type
of pictures and also one along with the alien-test possessing
the images of all groups. It also consist a csv file having the
labels for the images in alien-test file.

Thttps://www.kaggle.com/datasets/vijaygiitk/multiclass- weather-dataset
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The dataset includes 5 various classes of climate picked up
from the above claimed different resources, however it’s real
world records so any type of unit for weather distinction must
have the ability to handle this sort of photos. The dataset in-
cludes regarding 1500 tagged images featuring the recognition
graphics. Images are not of dealt with measurements and the
photos are actually of different sizes. Each image has just one
weather condition group and are spared in separate file since
the classified class. Each picture have been measured for the
weather condition on a scale of 0 to 4: 0 - Cloudy, 1 - Foggy,
2 - Rainy, 3 - Shine, 4 - Sunrise as it appears in Table II. In
order to create a balanced learning model, the images had to
be balanced. Therefore the number of images exists in Table
1.

TABLE II
WEATHER CATEGORY

[ 0 - Cloudy 1 - Foggy 2 - Rainy 3 - Shine 4 - Sunrise |

TABLE III
DISTRIBUTION OF CLASS INSTANCES - DATASET MASTER
Alien-Test | Cloudy | Foggy | Rainy | Shine | Sunrise
30 300 300 300 250 350

B. Results and Analysis

In this subsection, the speculative assessment is recom-
mended. Specifically, Table IV and Figure 1 offer the results
for the 3 designs in regards to epochs, accuracy, loss as well
as time.

In the first architecture with batch size 128, the loss starts at
1.409 and reaches 0.0549 by the end of training. The accuracy
for the validation set starts at 39% and gradually increases to
a maximum of 98% during training. The training time for
each epoch is around 5 seconds. As the batch size increases
to 256, the loss starts at 1.523 and reaches 0.2033, while the
accuracy starts at 37% and reaches 93% by the end of training.
The training time per epoch remains similar to the previous
architecture. For batch size 512, the loss starts at 1.599 and
reaches 0.4156, with the accuracy starting at 22% and reaching
84% at the end of training. The training time per epoch is still
around 5 seconds. Finally, with batch size 1024, the loss starts
at 1.613 and reaches 0.6275, while the accuracy starts at 17%
and reaches 75% by the end of training. The training time per
epoch is 6 seconds.

Moving on to the second architecture, with batch size 128,
the loss starts at 1.548 and reaches 0.1834, while the accuracy
starts at 34% and reaches 93% by the end of training. The
training time per epoch is longer than the first architecture,
around 13 seconds. For batch size 256, the loss starts at 1.598
and reaches 0.4303, with the accuracy starting at 22% and
reaching 82% at the end of training. The training time per
epoch is 13 seconds as well. As the batch size increases to
512, the loss starts at 1.601 and reaches 0.6245, while the
accuracy starts at 29% and reaches 76% by the end of training.

The training time per epoch is longer, around 14 seconds.
Finally, with batch size 1024, the loss starts at 1.607 and
reaches 0.8389, with the accuracy starting at 24% and reaching
65% by the end of training. The training time per epoch is 15
seconds.

In the third architecture, with batch size 128, the loss starts
at 1.539 and reaches 0.4064, while the accuracy starts at 22%
and reaches 86% at the end of training. The training time per
epoch is around 15 seconds. For batch size 256, the loss starts
at 1.602 and reaches 0.6558, with the accuracy starting at 28%
and reaching 72% by the end of training. The training time
per epoch remains at 15 seconds. As the batch size increases
to 512, the loss starts at 1.608 and reaches 0.8215, while the
accuracy starts at 25% and reaches 64% by the end of training.
The training time per epoch is around 16 seconds. Finally, with
batch size 1024, the loss starts at 1.609 and reaches 0.8339,
with the accuracy starting at 20% and reaching 63% by the end
of training. The training time per epoch is around 16 seconds.

In summary, the first architecture shows the best perfor-
mance in terms of accuracy, reaching up to 98% for the
validation set. The second and third architectures have lower
accuracy but still show improvement throughout the training
process.

V. CONCLUSIONS AND FUTURE SCOPE

In this research paper, we introduced a set of methodologies
to develop a convolutional neural network (CNN) for multi-
class weather image classification. The utilization of CNNs,
known for their effectiveness in processing image data, was the
core focus of these techniques. We evaluated the performance
of each architecture using various batch sizes, including 128,
256, 512 and 1024.

To further improve accuracy, it is recommended to explore
and experiment with different models and combinations pro-
posed in this study. Additionally, conducting tests on larger
datasets can contribute to additional enhancements in classifier
performance. By expanding the dataset, the model can learn
from a wider range of examples and improve its generalization
abilities. Further research can also investigate the impact of
hyperparameter tuning, data augmentation techniques, and
incorporating transfer learning to achieve even better results
in weather image classification tasks.

An additional avenue for future research could involve the
integration of semi-supervised learning algorithms, which have
emerged as a prominent research area offering an alternative
to conventional classification methods. These algorithms lever-
age both labeled and unlabeled data, combining the explicit
classification information from labeled instances with the
latent knowledge embedded in unlabeled data. By harnessing
this unlabeled data, powerful and effective classifiers can be
constructed. The works in [14], [13] serve as examples of
such an approach and underscore the potential benefits and
advancements that can be achieved by incorporating semi-
supervised learning techniques into the field of classification.
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