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Abstract—Medical image analysis has undergone significant
advancements with the emergence of deep learning techniques,
offering great promise in improving diagnostic precision and ex-
pediting patient care. This research investigates the effectiveness
of ResNet and VGG architectures in detecting breast cancer
through the analysis of histopathology images. By meticulously
fine-tuning hyperparameters and optimizers, we establish robust
and accurate deep learning models. Our findings reveal that the
ResNet model with the SGD optimizer excels, surpassing the
performance of VGG in terms of accuracy and F1-score. How-
ever, employing transfer learning with pre-trained VGG16 and
ResNet50 networks does not yield competitive results, potentially
due to disparities in input image size and data distribution. The
primary focus of this study is to address the critical challenge
of early breast cancer detection, ultimately leading to enhanced
patient outcomes. By exploring state-of-the-art deep learning
architectures and methodologies, we contribute to the growing
body of research aimed at leveraging artificial intelligence for
medical diagnosis.

Index Terms—Medical Image Analysis, Deep Learning, Breast
Cancer Detection, Histopathology Images, ResNet, VGG, Trans-
fer Learning

I. INTRODUCTION

Medical image analysis plays a pivotal role in addressing
clinical challenges by leveraging advanced technologies to in-
terpret and extract vital information from medical images [17].
In recent years, the integration of deep learning techniques
has revolutionized this field, empowering neural networks to
discern intricate features within medical images that were once
reliant on specialized medical knowledge [1]. Neural networks
have exhibited remarkable success across diverse aspects of
medical image analysis, including categorization, detection,
and segmentation, significantly augmenting diagnostic accu-
racy and expediting treatment decisions.

The success of deep learning in medical image analysis can
be attributed, in part, to transfer learning and data augmen-
tation techniques, which overcome challenges such as data
scarcity and incomplete categorization [15]. Transfer learning
enables the utilization of pre-trained deep neural networks on
other data, which significantly accelerates model training and

enhances performance. Meanwhile, data augmentation aug-
ments the training dataset by generating variations of existing
images, diversifying the network’s exposure to different image
patterns and enhancing its ability to generalize to new cases
[18].

Breast cancer stands as a pressing health concern, represent-
ing the leading cause of cancer-related deaths in women aged
20-59 and the second most common cause for women over
59 [2]. Early diagnosis and timely intervention are crucial in
improving treatment outcomes, prognosis, and overall survival
rates. The conventional diagnostic process typically involves
the identification of suspicious findings through palpation,
mammography, or ultrasound, followed by tissue sampling
and biopsy. The subsequent analysis of the tissue sample
by histopathologists plays a critical role in determining the
presence and characteristics of malignant cells.

Manual examination of breast tissue and cellular structures
necessitates significant expertise and imposes a consider-
able workload on histopathologists. As a consequence, the
agreement among pathologists’ assessments can vary, with
the average agreement on results hovering around 75% [7].
Furthermore, specific types of breast cancer pose additional
challenges, with a study reporting that in one out of three
patients (33%), malignancies were not diagnosed through
conventional medical imaging methods [6].

To address the complexities and variability in breast cancer
diagnosis, the integration of deep learning in medical image
analysis offers a promising avenue. By leveraging the power of
artificial intelligence and large datasets, it holds the potential to
enhance diagnostic accuracy, reduce human error, and improve
overall patient outcomes.

The remainder of this paper is organized as follows: Section
II presents an overview of related work in the field, highlight-
ing the novelty and contributions of our research. Section III
provides insights into the fundamental concepts, and methods
employed in our investigation. Section IV presents the research
findings, accompanied by details about the dataset utilized
in our experiments. Finally, Section V concludes the paper,
summarizing key insights, and outlines potential avenues for
future research.979-8-3503-2771-7/23/$31.00 © 2023 IEEE
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II. RELATED WORK

Computer-aided diagnosis (CAD) systems encompass a fu-
sion of Image Analysis and Machine Learning methodologies
designed to aid medical practitioners in the diagnostic process.
By functioning as a supplementary opinion provider, CAD
systems alleviate the burdens on specialists, thereby enhancing
diagnostic efficiency and cost-effectiveness. This often entails
an emulation of physicians’ procedures. For instance, the
evaluation of nuclei morphology in isolation has the potential
to serve as the basis for classifying tissue as benign or
malignant [20].

As a result, certain research endeavors are centered around
nuclei analysis to discern malignancy from benignity. In [12],
a variety of clustering algorithms were employed to seg-
ment nuclei in microscopic images from fine needle biopsies.
They harnessed morphological, topological, and texture-based
attributes to train a classifier, achieving accuracies ranging
between 84% and 93% across a dataset of 500 images sourced
from 50 patients. Similarly, in [8], [9], nuclei-centric features
were extracted from fine needle biopsy samples. The initial
phase encompassed the utilization of the circular Hough
transform to detect potential nuclei candidates, followed by
the implementation of machine learning techniques and Otsu
thresholding to mitigate false positives. Both studies leveraged
shape and texture attributes of nuclei for training a diverse
array of classifiers. Apart from nucleus-related data, authors
in [3] incorporated tissue organization as a factor for binary
classification in more complex images. Their investigation
encompassed the assessment of 70 images from a proprietary
40× magnification breast histology H&E dataset.

Another facet of research has been dedicated to addressing
the intricate challenge of categorizing breast cancer histology
images into three distinct classes. Illustratively, authors in [4],
[21] undertook the classification of images into normal, in
situ carcinoma, and invasive carcinoma, utilizing a dataset
sourced from the Israel Institute of Technology. A strategy
involving the application of multiple threshold values for
image binarization, followed by the use of connected com-
ponent statistics to train a support vector machine (SVM)
classifier, was adopted in [4]. On a different tangent, a cascade
classification methodology was implemented in [21]. Subsets
of Curvelet Transform and local binary pattern (LBP) features
were randomly channeled into an initial ensemble of parallel
SVM classifiers.

In light of recent advancements in computational capabil-
ities and the expansion of dataset sizes, the application of
CNNs to image classification tasks has gained prominence.
In contrast to conventional approaches that involve manual
curation of features, CNNs acquire pertinent attributes directly
from training image patches through the optimization of a
classification loss function. These deep learning models have
demonstrated exceptional performance across diverse domains
in image classification challenges [5], [13] including the
realm of medical image analysis [14], with particular efficacy
observed in the domain of histopathology images [19].

III. METHODOLOGY

In this section, we present a comprehensive description of
the methodology employed in this study, encompassing the
libraries utilized and the architectural details of the networks.

A. Libraries

The following libraries were utilized to implement and
experiment with our machine learning models:

• Augmentor: A library for data augmentation, which can
be beneficial in increasing the diversity of the training
dataset.

• Imutils: This library provides a set of basic image manip-
ulation functions, such as rotation, resizing, edge control,
graph display, etc.

• Keras: A high-level API that works in conjunction with
Tensorflow, enabling the seamless creation of convolu-
tional or recursive networks, or a combination of both.

• Matplotlib: A popular library used for creating two-
dimensional plots in various formats, facilitating data
visualization and model performance analysis.

• Numpy: Python’s package, which includes manipulation
of n-dimensional vectors, and random number manipula-
tion capabilities, essential for efficient data handling.

• OpenCV: This library contains computer vision algo-
rithms, making it valuable for image-related tasks.

• Pandas: Pandas provides tools for quickly creating flexi-
ble data structures, simplifying data handling and manip-
ulation.

• Pillow: Used for image manipulation and processing,
Pillow allows the handling of various image formats and
enables pre-processing steps for the image-based datasets.

• PyTorch: A popular deep learning library that provides
a flexible and efficient platform for building and training
neural networks.

• Scikit-learn: A comprehensive library for data mining and
analysis, supporting classification, regression, clustering,
feature extraction, and both supervised and unsupervised
learning techniques.

• Scipy: A package for manipulating numerical data, offer-
ing a wide array of mathematical functions and statistical
operations.

• Tensorflow: Developed by Google, Tensorflow enables
easy creation of machine learning models and deep neural
networks.

B. ResNet

The ResNet (Residual Network) architecture is a ground-
breaking innovation in deep learning that addresses the chal-
lenge of vanishing gradients in extremely deep neural net-
works. Vanishing gradients occur when the gradients calcu-
lated during the backpropagation process become infinites-
imally small as they propagate through numerous layers,
hindering the effective training of very deep networks. ResNet
introduces a clever solution in the form of residual blocks,
which enable the training of much deeper networks with
improved convergence.
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A fundamental concept of the ResNet architecture is the
notion of ”skip connections” or ”shortcut connections”. In
a conventional deep network, the output of one layer serves
as the input for the next layer. However, in ResNet, instead
of propagating the input through a single layer, it is passed
along a shortcut connection to a deeper layer. This approach
enables the network to learn residual mappings, i.e., the
difference between the input and the desired output. The
residual mappings can be easier for the network to learn than
the actual mappings, thus facilitating more efficient training.

Residual Level:

Output = Conv1x1(Input) → ReLU →
→ Conv3x3(Output) → ReLU → Conv1x1(Output)

(1)

Output = Output+ Input (2)

The residual level begins with a 1x1 convolution layer, fol-
lowed by a Rectified Linear Unit (ReLU) activation function. It
is then passed through a 3x3 convolutional layer with another
ReLU activation. Finally, another 1x1 convolution layer is
applied to obtain the final output. The summation operation
(Output = Output + Input) combines the output of the residual
level with the original input, forming the skip connection.
The skip connection is crucial in preserving the gradient flow
during backpropagation and mitigating vanishing gradients.

The ResNet architecture is organized into blocks, with
each block containing one initial residual level that employs
a stride of 2 to downsample the spatial dimensions of the
input. This downsampled output then goes through additional
residual levels with a stride of 1, which maintains the spatial
dimensions. The number of filters used in each residual level
can vary based on the specific block’s configuration.

The ResNet architecture has been demonstrated to achieve
remarkable results in various computer vision tasks, including
image classification, object detection, and image segmentation.
In this study, ResNet was applied to the classification of IDC
positive and IDC negative patches from breast histopathology
images. By leveraging the power of residual connections, the
network aims to learn intricate patterns and representations
from the data, enabling accurate classification and detection
of breast cancer.

C. VGG (Visual Geometry Group)

The VGG network, developed by researchers from the
Visual Geometry Group at the University of Oxford, is a well-
known and influential architecture in the field of computer
vision. VGG gained significant popularity due to its simple
yet effective design and remarkable performance in image
recognition tasks, especially image classification.

The main characteristic of the VGG architecture is its deep
structure, achieved by stacking multiple convolutional layers.
Unlike previous models that employed larger convolutional
filters, VGG uses smaller 3x3 filters throughout the network,
which allows for more non-linear transformations and results
in a more expressive model. The use of 3x3 filters with a stride

of 1 also ensures that the receptive field of the network remains
relatively small, making it possible to stack more convolutional
layers while keeping the number of parameters manageable.

Two variants of the VGG architecture exist: VGG16 and
VGG19. VGG16 consists of 16 layers, including 13 convo-
lutional layers and 3 fully connected layers, while VGG19
has 19 layers. The deeper VGG19 architecture enables it to
capture more intricate and fine-grained features from the input
images, but it also increases the computational complexity and
memory requirements.

The typical building block in VGG is a combination of
convolutional layers followed by a ReLU activation func-
tion and max pooling layers. The convolutional layers are
responsible for learning local features from the input data,
and the ReLU activation introduces non-linearity, allowing the
network to model complex relationships between features. The
max pooling layers perform down-sampling by selecting the
maximum value within a small region of the feature map,
reducing the spatial dimensions and increasing the network’s
robustness to translations and small distortions in the input.

Convolutional Layer:

Output = Conv(Input, F ilters, Stride, Padding) (3)

ReLU Activation:

Output = ReLU(Input) (4)

Max Pooling Layer:

Output = MaxPool(Input, PoolSize, Stride) (5)

D. Training and Cost Functions

During the training of both VGG and ResNet networks,
the ”Adagrad,” ”Adam,” and ”SGD” optimizers are sequen-
tially employed as cost functions, with a loss variable of
”binary crossentropy” due to the two classes of our data.
These functions are chosen for their satisfactory performance
and widespread usage in implementing neural networks. The
final function at the output level is the softmax activation
function, used for multi-class classification tasks.

IV. EXPERIMENTAL EVALUATION

A. Dataset

The experimental evaluation utilized the Breast Histopathol-
ogy Images dataset [10], accessible on Kaggle1. The orig-
inal dataset comprised 162 whole mount slide images of
Breast Cancer (BCa) specimens scanned at 40x magnifi-
cation. From this, 277,524 patches of size 50 x 50 were
extracted, consisting of 198,738 IDC negative and 78,786
IDC positive samples. Each patch’s file name follows the
format: u xX yY classC.png, where u is the patient ID (e.g.,
10253 idx5), X and Y are the coordinates of the cropped
patch, and C denotes the class (0 for non-IDC and 1 for IDC).

1https://www.kaggle.com/datasets/paultimothymooney/breast-
histopathology-images
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B. Data Subset Selection

The dataset exhibits significant inhomogeneity, with vari-
ations in image quality, tissue appearance, and staining tech-
niques. Working with such a large and diverse dataset can lead
to increased computational complexity and may also introduce
noise and hinder model training.

To address this issue, a data subset selection process was
performed. The objective was to create a more manageable and
balanced dataset while preserving the essential characteristics
of the original data. For this purpose, a random subset of the
dataset was chosen for the final experiments.

Specifically, 50,000 images from each class were randomly
selected and used for training and evaluation. This ensured
that both classes (IDC positive and IDC negative) were equally
represented in the subset, with a total of 100,000 images.

By working with a more balanced and manageable subset,
the training process became more efficient and less prone
to overfitting. The selected subset still contained sufficient
diversity to capture the essential features and patterns related
to IDC classification.

It is important to note that the data subset selection was
performed randomly to avoid introducing any bias in the
dataset. The random selection process helps in creating a
representative sample that is more generalizable and applicable
to real-world scenarios.

Overall, the data subset selection was a crucial step in
preparing the dataset for training and evaluation. It allowed
for more focused experiments, improving the model’s ability
to learn meaningful features and achieve better performance
on the Breast Histopathology Images dataset.

C. Model Hyperparameter Tuning

To achieve the best performance from the neural network
models, an extensive hyperparameter tuning process was con-
ducted. The goal of this process was to find the optimal
combination of hyperparameters that would lead to improved
accuracy, sensitivity, specificity, and F1-score.

The hyperparameters that were considered for tuning in-
clude:

• Batch Size: The batch size determines the number of sam-
ples processed by the network in each training iteration.
In this study, batch sizes of 8, 16, and 32 were explored.

• Epochs: The number of epochs represents the total num-
ber of times the entire dataset is passed through the neural
network during training. A higher number of epochs may
lead to better model performance, but it can also increase
the risk of overfitting. The values of 10, 30, and 50 epochs
were tested in this study.

• Learning Rate: The learning rate controls the step size in
the gradient descent optimization algorithm. It determines
how much the model’s weights are updated during train-
ing. A carefully chosen learning rate is critical to ensure
efficient training and model convergence. In this study, a
learning rate of 0.01 was utilized.

• The optimizer plays a crucial role in adjusting the model’s
weights to minimize the loss function. Different optimiz-
ers offer various algorithms to achieve this optimization.
The study explored three popular optimizers: Adagrad,
Adam, and SGD (Stochastic Gradient Descent).

All experiments were conducted using the ReLU (Rectified
Linear Unit) activation function, which is known for its
effectiveness in deep learning models. The activation func-
tion introduces non-linearity, enabling the network to learn
complex patterns and representations in the data.

For each combination of hyperparameters and optimizers,
the models were trained and evaluated on the randomly se-
lected subset of the Breast Histopathology Images dataset. The
evaluation metrics, including accuracy, sensitivity, specificity,
and F1-score, were used to assess the models’ performance.

D. Results

The experimental evaluation was conducted on the Breast
Histopathology Images dataset using three different network
models: ResNet and VGG. The performance of these models
was assessed using three different optimizers: Adagrad, Adam,
and SGD. The evaluation was carried out by varying the
number of epochs and batch sizes for each optimizer as shown
in Table I.

Regarding the optimizer comparison, it was observed that
the SGD optimizer consistently outperformed the other two
optimizers in terms of overall accuracy, sensitivity, specificity,
positive predictive value (PPV), negative predictive value
(NPV), and F1-score. Regardless of the model architecture,
SGD consistently yielded better results compared to Adagrad
and Adam.

For the ResNet model, the overall performance improved
as the number of epochs and batch size increased. Notably,
the accuracy, sensitivity, specificity, PPV, NPV, and F1-score
consistently improved, indicating that ResNet benefits from
longer training and larger batch sizes.

On the other hand, the performance of the VGG model
showed more variability as the number of epochs and batch
size increased. While the accuracy and sensitivity improved,
there were fluctuations in other metrics, suggesting that the
VGG model may be more sensitive to changes in hyperpa-
rameters.

Overall, the ResNet model demonstrated better performance
compared to VGG, as it achieved 8 out of 10 best perfor-
mances across different configurations.

Furthermore, neither model exhibited signs of overfitting
or underfitting, likely due to the incorporation of data aug-
mentation and dropout techniques, and the selection of a
homogeneous dataset.

In conclusion, the experimental evaluation showed that the
ResNet model with the SGD optimizer achieved the best
results for the Breast Histopathology Images dataset. The study
highlights the importance of selecting appropriate optimizers
and tuning hyperparameters to achieve optimal performance
in deep learning tasks.
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TABLE I
RESULTS FOR ADAGRAD OPTIMIZER

Net Epochs Batch Size Accuracy Sensitivity Specificity PPV NPV F1-score
Adagrad Optimizer

Resnet 10 8 0.885 0.884 0.886 0.888 0.882 0.886
Resnet 30 8 0.892 0.891 0.894 0.896 0.890 0.893
Resnet 50 8 0.901 0.899 0.902 0.904 0.898 0.902
Resnet 10 16 0.898 0.896 0.900 0.902 0.894 0.898
Resnet 30 16 0.902 0.900 0.903 0.905 0.899 0.902
Resnet 50 16 0.907 0.904 0.910 0.911 0.902 0.907
Resnet 10 32 0.918 0.925 0.910 0.913 0.922 0.919
Resnet 30 32 0.923 0.923 0.911 0.913 0.924 0.921
Resnet 50 32 0.921 0.930 0.911 0.914 0.927 0.922
VGG 10 8 0.816 0.920 0.712 0.768 0.899 0.838
VGG 30 8 0.827 0.924 0.720 0.777 0.902 0.844
VGG 50 8 0.828 0.927 0.727 0.776 0.908 0.845
VGG 10 16 0.805 0.883 0.709 0.759 0.895 0.815
VGG 30 16 0.846 0.906 0.778 0.811 0.881 0.857
VGG 50 16 0.848 0.906 0.780 0.812 0.881 0.858
VGG 10 32 0.864 0.872 0.856 0.859 0.869 0.865
VGG 30 32 0.854 0.889 0.818 0.832 0.879 0.860
VGG 50 32 0.864 0.870 0.858 0.861 0.867 0.866

Adam Optimizer
Resnet 10 8 0.892 0.889 0.895 0.898 0.886 0.893
Resnet 30 8 0.884 0.878 0.890 0.890 0.876 0.884
Resnet 50 8 0.898 0.889 0.907 0.907 0.889 0.898
Resnet 10 16 0.905 0.900 0.909 0.910 0.900 0.905
Resnet 30 16 0.900 0.893 0.908 0.909 0.895 0.900
Resnet 50 16 0.906 0.908 0.913 0.913 0.908 0.906
Resnet 10 32 0.910 0.906 0.913 0.914 0.906 0.910
Resnet 30 32 0.914 0.917 0.902 0.906 0.913 0.916
Resnet 50 32 0.911 0.897 0.925 0.925 0.908 0.911
VGG 10 8 0.860 0.916 0.743 0.820 0.935 0.884
VGG 30 8 0.872 0.912 0.767 0.819 0.951 0.870
VGG 50 8 0.895 0.916 0.883 0.888 0.952 0.897
VGG 10 16 0.884 0.898 0.870 0.878 0.890 0.888
VGG 30 16 0.889 0.919 0.837 0.858 0.906 0.888
VGG 50 16 0.893 0.927 0.844 0.867 0.908 0.888
VGG 10 32 0.900 0.924 0.857 0.864 0.872 0.887
VGG 30 32 0.898 0.905 0.851 0.855 0.861 0.870
VGG 50 32 0.907 0.915 0.877 0.856 0.878 0.883

SGD Optimizer
Resnet 10 8 0.908 0.930 0.879 0.887 0.926 0.908
Resnet 30 8 0.908 0.935 0.878 0.888 0.929 0.911
Resnet 50 8 0.924 0.944 0.904 0.909 0.941 0.926
Resnet 10 16 0.898 0.926 0.862 0.872 0.918 0.895
Resnet 30 16 0.895 0.930 0.861 0.872 0.919 0.895
Resnet 50 16 0.894 0.931 0.859 0.870 0.919 0.893
Resnet 10 32 0.914 0.925 0.901 0.905 0.922 0.914
Resnet 30 32 0.923 0.931 0.914 0.917 0.929 0.924
Resnet 50 32 0.911 0.902 0.920 0.920 0.903 0.911
VGG 10 8 0.822 0.936 0.680 0.734 0.916 0.819
VGG 30 8 0.833 0.972 0.629 0.723 0.953 0.829
VGG 50 8 0.868 0.953 0.781 0.816 0.943 0.879
VGG 10 16 0.821 0.951 0.637 0.725 0.934 0.767
VGG 30 16 0.834 0.965 0.632 0.729 0.947 0.773
VGG 50 16 0.843 0.949 0.684 0.770 0.928 0.803
VGG 10 32 0.860 0.947 0.772 0.820 0.937 0.879
VGG 30 32 0.870 0.943 0.795 0.824 0.933 0.880
VGG 50 32 0.892 0.885 0.898 0.899 0.885 0.892

E. Transfer Learning

Transfer learning involves utilizing pre-trained neural net-
works that have been trained on large datasets for similar tasks.
In this study, we explored the use of two popular pre-trained
networks, VGG16 and ResNet50 to test their performance on
our dataset. To implement transfer learning, we retained the
main part of the pre-trained networks, excluding the last fully

connected layer. The parameters (weights) of these networks
were frozen during training, assuming that they have been
optimized for a vast amount of data from previous usage. We
finally added a new fully connected layer.

However, the results obtained from the pre-trained networks
were notably different from those achieved with our two
models (ResNet and VGG) trained from scratch. Table II
presents the test results for both VGG16 and ResNet50.
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TABLE II
TRANSFER LEARNING RESULTS

Experiment Network Optimizer Accuracy F1-score
39-BR ResNet SGD 0.941 0.944
39-BR ResNet50 SGD 0.916 0.867
20-BR VGG Adam 0.932 0.938
20-BR VGG16 Adam 0.823 0.845

For the ResNet architecture, our custom ResNet model
(Experiment 39-BR) achieved excellent results when trained
with the SGD optimizer, obtaining an accuracy of 94.1% and
an F1-score of 94.4%. However, when we applied transfer
learning using the ResNet50 model with the same SGD
optimizer, the accuracy dropped to 91.6%, and the F1-score
decreased to 86.7%. Similarly, for the VGG architecture, our
custom VGG model (Experiment 20-BR) achieved competitive
results when trained with the Adam optimizer, yielding an
accuracy of 93.2% and an F1-score of 93.8%. On the other
hand, the transfer learning experiment using the pretrained
VGG16 model with the same Adam optimizer resulted in a
lower accuracy of 82.3% and an F1-score of 84.5%.

V. CONCLUSIONS AND FUTURE WORK

In this study, we explored breast cancer detection using
deep learning models on histopathology images. The per-
formance of ResNet and VGG architectures was evaluated
with different optimizers and hyperparameters. The ResNet
architecture, optimized with the SGD optimizer, outperformed
VGG in terms of accuracy and F1-score. The systematic
hyperparameter tuning played a crucial role in optimizing the
models’ performance and achieving robust results.

Enhancing model robustness and generalization will be a
priority, and we will explore advanced data augmentation
techniques, such as rotation, scaling, and shearing, to augment
the training dataset effectively. Investigating various data pre-
processing methods will also be essential to better align
the input images with the pre-trained networks, facilitating
successful transfer learning.

Moreover, we will explore ensemble techniques, like model
averaging and stacking, to combine predictions from multiple
models [16]. Developing methods for interpretable AI will be
another focus, aiming to visualize and interpret the decision-
making process of our models [11]. By refining the models
and pursuing these future directions, we aim to contribute
to the advancement of early breast cancer detection. Our
ultimate goal is to make a significant impact on patient
outcomes, improving the efficiency and accuracy of breast
cancer diagnosis and treatment.
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