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Abstract. In the era of Big Data and Artificial Intelligence (AI), the
unprecedented scale and complexity of data collection, processing, and
analysis pose significant privacy challenges. This paper presents the first
findings of a survey in progress providing a comprehensive and focused
overview of privacy-enhancing technologies (PETs) designed to mitigate
these challenges and ensure the protection of sensitive information. We
explore cryptographic and non-cryptographic techniques including differ-
ential privacy (DP), homomorphic encryption (HE), secure multi-party
computation (SMPC), and federated learning (FL). Each of these tech-
niques is examined in terms of its basic principles and advantages. Also,
some key challenges for implementing PETs are briefly discussed. Finally,
we conclude the survey by denoting our future research directions in the
field.
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1 Introduction

In an era characterized by data explosion and AI’s rapid advancement, the pro-
liferation of data-driven technologies has led to increasing concerns about data
privacy. Safeguarding individual privacy has emerged as a paramount concern
[2]. The integration of AI into various domains — from cloud computing [12],
healthcare [10], [7], and social networks [11] to smart cities [15]— promises un-
precedented benefits but also poses significant risks to personal privacy.

AI systems often require vast data to train models, which can inadvertently
expose personal information. This exposure can lead to unauthorized data access,
identity theft, and other privacy breaches. Privacy-preserving AI seeks to address
these risks by developing techniques that protect sensitive information while
still enabling the powerful capabilities of AI. The challenge lies in striking a
balance between leveraging the full potential of AI and ensuring robust privacy
protections.
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Several critical factors have motivated the adoption of privacy-preserving in
AI workflow. Firstly, AI systems often process large amounts of personal and sen-
sitive data. So, privacy-preserving techniques ensure that individual privacy is
maintained, safeguarding sensitive information from misuse or unauthorized ac-
cess. Secondly, users are more likely to trust and engage with AI applications that
guarantee the privacy and security of their personal information. Trust is cru-
cial for the widespread adoption of AI technologies. Thirdly, privacy-preserving
techniques reduce the risk of data breaches and cyberattacks. By ensuring that
data remains private and secure even when processed, organizations can mitigate
the potential damage caused by such incidents. Finally, privacy-preserving AI
(PPAI) enables safe data sharing and collaboration between organizations with-
out exposing sensitive information. PPAI employs techniques such as DP, FL,
HE, and SMPC to achieve these goals. By integrating these methods, AI can be
both powerful and respectful of privacy, ensuring a balance between innovation
and the protection of individuals.

This paper capitalises on the relevant literature and presents the first re-
sults of a survey analysis in progress; especially, Section 2 focuses on the major
privacy-preserving techniques and applications, describing a taxonomy of the
main existing cryptographic and non-cryptographic techniques. Additionally, in
Section 3, the paper examines and lists the key challenges of implementing
privacy-preserving research techniques. Lastly, Section 4 concludes the paper
and sets future research directions.

2 Techniques for Privacy-Enhancing

AI techniques like machine learning and deep learning can be used to analyze
patterns and behaviours in a way that preserves user privacy. This approach is
often referred to as privacy-preserving or privacy-enhancing AI.

In Encrypted Data Analysis, AI algorithms can be trained on encrypted data
using techniques like HE or SMC. This allows the AI model to perform compu-
tations on the encrypted data without ever decrypting it, preserving the privacy
of the underlying information [14].

HE is a form of encryption that enables computations to be carried out
directly on encrypted data, producing an encrypted result that, when decrypted,
matches the result of operations performed on the plaintext data. There are
several types of HE schemes, including partially HE (PHE) and fully HE (FHE)
[13]. With PHE, it’s possible to perform only one type of mathematical operation
(either addition or multiplication) on encrypted data. FHE schemes allow for
both addition and multiplication operations to be performed on encrypted data.
This means that complex computations can be carried out on encrypted data
without ever needing to decrypt it [12].

SMPC [15] is a cryptographic technique that allows multiple parties to jointly
compute a function over their private inputs while keeping those inputs confi-
dential. The primary goal of MPC is to enable collaboration and computation
over sensitive data without revealing that data to any of the involved parties.
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Each party privately encrypts their input using cryptographic techniques such
as secret sharing. This process ensures that no single party has access to the
complete input data. The parties then collaborate to perform the desired com-
putation on the encrypted inputs. This is typically achieved through a series of
cryptographic protocols that allow the parties to perform operations on their
shares of the inputs while ensuring that they never learn anything about the
other parties’ inputs. Once the computation is complete, the parties combine
their shares of the output to obtain the final result. Importantly, no party learns
anything about the other parties’ inputs beyond what can be inferred from the
output.

Moreover, AI models can be trained using non-cryptographic techniques such
as DP [17], achieved by adding statistical noise or randomness to the computa-
tion process (e.g., training data) ensuring that individual contributions to the
data cannot be reliably distinguished. This noise is added in a controlled manner
to balance privacy guarantees with the usefulness of the output. This ensures
that even if the model learns from sensitive information, it cannot memorize or
reveal specific details about individual users.

In FL, AI models are trained across multiple decentralized devices or servers,
with each device holding its data. The model is trained locally on each device,
and only the model updates (not the raw data) are aggregated centrally. This
approach allows for collaborative model training without sharing raw data, pre-
serving user privacy [8]. HE is increasingly used in FL to enhance privacy and
security. [16] provides an overview of privacy-preserving enhancing techniques
specifically in FL, such as SMC and HE, and discusses their impact on model ac-
curacy and training efficiency. HE allows computation on encrypted data, which
is crucial in FL as it involves multiple parties collaborating without sharing raw
data.

Besides, AI algorithms can be specifically designed to operate on encrypted or
anonymised data - Privacy-Preserving Algorithms - while still extracting mean-
ingful insights. For example, techniques like SMC enable multiple parties to
jointly compute a function over their inputs without revealing them. On the other
hand, AI models can be used to generate synthetic data - Privacy-Preserving
Data Generation- that mimics the statistical properties of real data while ensur-
ing individual privacy. This synthetic data can then be used to train AI models
or share with third parties without disclosing sensitive information.

By leveraging these PPAI techniques, organizations can benefit from the
insights derived from user data while respecting user privacy and complying
with privacy regulations. This approach enables a wide range of applications,
including personalized recommendations, predictive analytics, and risk assess-
ment, while minimizing the risk of privacy breaches. Table 1 summarizes some
recent papers on privacy-preserving AI applications, highlighting their domain,
techniques used and key insights.
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Table 1. Summary of recent papers on applications of PPAI.

Domain Techniques Used Applications Key Insights

Healthcare
[3] DP Biomedical prediction

models

Ensures privacy of
patient data

while maintaining
model performance

Finance
[4] FL, MPC Credit scoring

assessment

Enhances credit scoring
ML models without sharing

sensitive data

Smart
Cities
[9], [1]

FL

Transportation systems
traffic flow

traffic monitoring
mobility-aware systems

Demonstrates effective
traffic control

while protecting
privacy

e-commerce,
Social
media

[6]

FL
Personalized

recommendation
systems (PRS)

Enhance
privacy in PRS

IoT
[5] DP Real-time data analysis

in IoT networks

Ensures privacy
in real-time IoT data
analysis applications

IoT
Healthcare HE, FL medical data

Builds a novel HE-based
FL prototype system

that preserves user privacy

3 Challenges for Implementing PPAI

Despite the advancements, implementing privacy-preserving AI presents several
challenges. These include computational overhead, scalability issues, and the
complexity of integrating PETs into existing AI workflows. Ongoing research
aims to develop more efficient algorithms, standardize protocols, and enhance
the practical deployment of privacy-preserving techniques.

The future of privacy-preserving AI holds promise, with continuous innova-
tions aimed at reconciling the need for data-driven insights with the imperative
of protecting individual privacy. As stakeholders from academia, industry, and
government collaborate, the development of robust, scalable, and user-friendly
privacy-enhancing solutions will be crucial in ensuring that AI advancements
benefit society without compromising privacy. Developing more efficient and
scalable privacy-preserving solutions in AI involves addressing several key areas:

– Efficiency and Scalability:
• Computational Overhead: Techniques like homomorphic encryption (es-

pecially FHE) and SMPC are often computationally intensive due to
the advanced mathematical constructs involved and require more re-
sources than conventional encryption methods making them impractical
for large-scale and real-time AI applications. FHE schemes tend to be
more computationally intensive and less practical than PHE schemes
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• Communication Costs: Federated learning and SMPC can incur high
communication costs, particularly when dealing with large models and
datasets. Reducing these costs is crucial for scalability.

– Accuracy and Utility Trade-offs:
• Privacy vs. Utility: Ensuring strong privacy guarantees while maintain-

ing high model accuracy and utility remains a significant challenge. Bal-
ancing these trade-offs is essential for practical adoption.

• Noise Calibration: Techniques such as DP require careful calibration of
noise to balance privacy and utility, which is not always straightforward.

– Interoperability and Standardization:
• Lack of Standards: There is a lack of standardized protocols and frame-

works for implementing privacy-preserving techniques across different
platforms and applications.

• Interoperability Issues: Ensuring that privacy-preserving solutions can
seamlessly integrate with existing AI frameworks and tools is a challenge.

– Usability and Adoption
• Complexity. Implementing privacy-preserving techniques can be com-

plex and requires specialized knowledge, which can hinder widespread
adoption.

• User Awareness. There is a need to increase awareness and understanding
of privacy-preserving techniques among developers and end-users.

– Security Assumptions
• Robustness Against Attacks: Ensuring that privacy-preserving methods

are robust against various types of attacks, such as model inversion and
membership inference attacks, remains an ongoing challenge.

• Adversarial Settings: Research is needed to develop methods that can
operate securely in adversarial settings where participants may not be
fully trusted.

4 Conclusions and Future Directions

Privacy-enhancing AI is a critical area of research that addresses the need to pro-
tect individual privacy in the age of big data and AI. Techniques like differential
privacy, homomorphic encryption, secure multi-party computation and feder-
ated learning offer promising solutions to the privacy challenges posed by mod-
ern AI systems. While existing privacy-enhancing technologies provide strong
privacy guarantees, they often come with significant computational/communi-
cation overhead. Our future research will focus on existing techniques for im-
proving the efficiency and scalability of these technologies to make them more
practical for large-scale, real-world applications. Federated learning primitives
and algorithms are another area of active research we will emphasize; targeting
hybrid techniques as well, namely those that combine federated learning with ho-
momorphic encryption, differential privacy, and secure multiparty computation,
to name a few, to provide robust privacy guarantees. Moreover, we plan to inves-
tigate existing libraries and tools that can easily incorporate these technologies
for privacy-enhancing AI into existing workflows and frameworks.
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To sum up, by continuing to innovate and address the challenges in the field,
researchers and practitioners can ensure that the benefits of AI are realized
without compromising individual privacy. The advancements will pave the way
for more secure, trustworthy, and privacy-respecting AI systems.
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