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Abstract—This paper shows the development and application 

of a fuzzy weight model methodology for the optimization of 

educational environments in augmented reality. A technology-

based learning process in an augmented reality learning 

environment, notoriously able to improve spatial abilities and 

increase user engagement with the material learned as well as 

knowledge retention, has revolutionary potential in education. 

However, its effectiveness varies greatly. In this, we collaborated 

with 13 experts in augmented reality and education to deeply 

evaluate the following six key in-depth strategies: interactive 

feedback, gamified leaderboards, challenges, personalized 

learning path, AR-based simulations, and badges. Thus, strategies 

were rated upon the impact on the learners' outcome, and the 

ratings were agreed upon as a fuzzy set, because it is a subjective 

matter of evaluation. Normalization was done to get a balanced 

measurement that gave weights on which strategies are to be given 

higher priority. Such a model has been developed and 

implemented in a case study of AR-based spatial ability training 

application, focusing on AR-based simulations supplemented with 

interactive feedback. Pre- and post-tests among 30 respondents 

have shown significant improvements in the experimental group 

using the AR application over the control group using traditional 

means of spatial ability training. The results strongly support the 

potential of the model for later implementation in AR educational 

applications that focus on individual specifics and effective 

learning. 

Keywords—Augmented reality; educational technology; fuzzy 

weights; spatial ability training; educational strategies 

I. INTRODUCTION 

Education is one of the new roads, by which the technology 
of augmented reality is enriched or, on the contrary, offers 
unprecedented possibilities to involve the students in an 
immersive, interactive learning environment. This is the 
technology that superimposes digital information on top of the 
real world, making it possible for the learners to interact with 
virtual objects in the physical space [1], [2], [3], [4], [5], [6], [7]. 
Augmented reality has been shown to improve such educational 
outcomes as spatial ability, user engagement, and knowledge 
retention.[8], [9], [10], [11], [12], [13], [14]. Understanding and 
optimization of AR techniques in educational settings rise to be 
a highly important topic with the changing educational 
paradigms toward more technologically oriented approaches. 

Further, there are many studies proving that AR can be very 
successful for education [15], [16], [17], [18], [19], [20]. 
Recently, AR was used in training spatial abilities, which is a 
very important factor in most work spheres, such as engineering, 
architecture, or medicine. It is in this sense that it has been 
shown that AR can present dynamic visualizations that enhance 
the understanding of learners concerning complex spatial 
relationships, which are quite hard to show by traditional 
methods. Besides, the interactive nature of AR stimulates active 
participation, which is one of the prerequisites for deeper 
cognitive processing and long-term memory. 

Still, not all AR methods of education have to come up to be 
equally successful. Quite on the contrary, different educational 
strategies used within AR learning environments may 
enormously vary, insofar, that is, as these strategies are 
differentially well-aligned with the needs of the learner and the 
educational goals [21], [22], [23], [24], [25], [26], [27], [28]. 
This is the reason why a systematic approach will evaluate and 
optimize strategies within educational AR, which will ensure 
that AR applications are providing personally appropriate and 
effective learning experiences. 

This paper posits the development of a fuzzy weight-based 
model for educational strategies within learning environments 
targeted at AR-based learning. Fuzzy logic is a multi-valued 
concept of logic consisting of fuzzy set theory, which allows us 
to reason from information that is imprecise or somehow 
variable. It is very useful within educational setups, where 
qualitative and subjective assessments are high. The concept of 
fuzzy weights may allow creating a model that will depict the 
relative importance of the different skills, based on expert 
opinions, thereby creating a fine-grained framework that can 
account for the complexities and variabilities exhibited within 
the educational practices. 

The latter capitalizes on insights borrowed from experts 
working in the field of augmented reality and related educational 
technology. These experts evaluate different educational 
strategies, such as interactive feedback, gamified elements, 
personalized learning paths, and AR-based simulations. From 
the evaluation of the experts, one can now derive average scores 
on each strategy and change these scores to fuzzy sets before 
normalizing them to have a balanced evaluation. This will give 
weights to different strategies within the fuzzy set, according to 



the perceived strength of the impact that the strategy might have 
in enhancing learning experiences. 

This paper addresses the design and application of a fuzzy 
weight-based model for educational strategy optimization 
within AR learning environments. With the expertise of the 
professionals in AR technology and educational methodologies, 
impact assessment of diverse educational strategies such as 
interactive feedback, gamified elements, personalized learning 
paths, and AR-based simulations will be carried out on learner 
outcomes. This entails receiving expert judgments, fuzzifying 
these judgments, and then normalizing the results to find 
weights to be attached to each strategy. 

This paper, therefore, is meant to give subtle guidelines to 
drive the implementation of AR applications in education so that 
these applications are fine-tuned to meet the learner's needs and 
the result of the achievement of learner education goals. This 
paper, therefore, gives not only a description of the methodology 
in the fuzzy weight-based model but also illustrates it with a case 
study in the area of AR spatial ability training. In this line, it is 
evident that the model holds the potential to increase learner 
engagement, while at the same time enhancing the learning, 
therefore providing crucial contributions to the educational 
technology field and the general goal of improving educational 
outcomes through modern AR solutions. 

The remainder of this paper is organized as follows: Section 
2 details the development of the fuzzy weight-based model for 
educational strategies in AR learning environments. Section 3 
presents a case study on the application of the model in an AR-
based spatial ability training context. Section 4 discusses the 
evaluation results, highlighting the effectiveness of the proposed 
model and the AR application. Finally, Section 5 addresses the 
limitations of the study and suggests directions for future 
research to further refine and expand the application of fuzzy 
weight-based models in educational technology. 

II. DEVELOPING THE FUZZY-BASED MODEL FOR 

EDUCATIONAL STRATEGIES IN AR LEARNING ENVIRONMENTS 

We first developed the fuzzy weight-based model through 
expert opinions about the effectiveness of each educational 
strategy in improving learners' logical reasoning, engagement, 
and knowledge retention in AR-based learning. It is done 
through an expert panel with immense experience and 
knowledge in AR technology and educational methodologies. In 
this research, 13 experienced experts were involved. They all 
worked as educators or instructional designers or AR developers 
and, therefore, had extensive experience, involved from 
educators and had a broad background of the effectiveness of 
each of the educational strategies. Experts were asked to rate six 
particular educational strategies: interactive feedback, gamified 
leaderboards, challenges, personalized learning paths, AR-based 
simulations, and integration of badges, but the intent of those is 
not stated. 

The selection of these precise strategies was based on their 
prevalence within AR-enhanced educational applications and on 
their ability to create the highest impact on the outcomes 
associated with augmented learning. The experts were asked to 
rate these strategies on an impact scale from 1 to 10, where 1 
assumed minimal impact and 10 assumed maximal impact on 

objectives in terms of enhancing logical thinking, engaging 
students in the learning process, and boosting learners' 
knowledge. To get these estimations of the impact, we had 
developed a survey containing a detailed description of each of 
the strategies, both quantitative and qualitative questions. The 
quantitative section involved a rating scale with six items from 
one to six—one item for each of the strategies—whereas the 
qualitative section invited the expert to give more information 
and to provide, in addition, an explanation justifying their 
assessment. 

The process of fuzzy logic allows us to address the 
uncertainty and subjectivity of human perception somehow by 
taking the levels of the impact and dividing them into the 
following: low, medium, and high. This translation is included 
in order to consider inherent variability in human judgment and 
to allow the model to subtly infer in regard to the potential 
effectiveness of a strategy. Based on the trapezoidal membership 
functions in Table I, the model incorporates fuzzy logic in order 
to deal appropriately with imprecisions and uncertainties 
inherently linked to human cognitive assessment, as illustrated 
in Fig. 1. 

TABLE I.  MEMBERSHIP FUNCTIONS 

Impact Level Membership Function 
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Fig. 1. Fuzzy weights schemes.  

First, we calculated the average score for each educational 
strategy based on the ratings provided by all experts (Table II). 
These average scores were to be transferred into fuzzy sets. For 
instance, scores between 1 and 4 were categorized as “low 
impact,” scores between 5 and 7 as “medium impact,” and 
scores between 8 and 10 as “high impact”. The boundary 
conditions of the membership functions have been concretized 
in several steps in an iterative process and in cooperation with 
the experts in a way so that the pairwise differences of the 
perceived impact levels were realized. 

TABLE II.  FUZZY LOGIC CONVERSION 

Educational Strategy Average Score Fuzzy Set Category 

Interactive Feedback 8.46 High 

Gamified Leaderboards 6.54 Medium 

Challenges 7.77 High 

Personalized Learning Paths 8.38 High 

AR-Based Simulations 8.77 High 

Badges 3.54 Low 

For each strategy, a number of fuzzy scores were given in a 
fuzzy set, each indicating a different level of impact. For 
instance, a strategy scored with a mean score of 6.5 might have 
a medium impact with a high degree of membership in the 
"medium impact" and hence need a lower degree of membership 
in the "high impact" set. It is in such a sense that the gradation 
in experts' opinions can be taken, captured, and attached to the 
model in representing the effectiveness of the strategies in a 
more concrete manner. 

The sum across elements was normalized to 1 so that total 
weight across elements equals 1. In doing so, we divided the 
mean score of each element by the sum of all mean scores. 
Normalization scales the value of scores onto a common scale, 
which can be fairly compared and added up into the model. We 
then calculated the sum of the normalized fuzzy scores of all 
strategies. Then we converted the fuzzy scores into weights 
associated with the relative importance of the strategies. These 
weights provide expert opinion consensus as to the importance 
of an educational strategy in adding value to the AR-based 
learning experience. The derived weights are presented in Table 
III. 

 

TABLE III.  FINAL WEIGHTS FOR EDUCATIONAL STRATEGIES 

Educational Strategy Weight 

Interactive Feedback 0.206 

Gamified Leaderboards 0.159 

Challenges 0.189 

Personalized Learning Paths 0.204 

AR-Based Simulations 0.203 

Badges 0.086 

These weights give a priority list of strategies according to 
the level of effectiveness, therefore, weights toward the higher 
range should be put into AR educational applications with the 
most import to be able to affect the most impact on learners.  

III. APPLICATION OF THE FUZZY WEIGHT-BASED MODEL IN 

AR SPATIAL ABILITY TRAINING 

This is further implemented using a case study in this section 
of the proposed fuzzy weight-based model: A case study has 
been implemented in an AR-based learning application. In our 
case, a fuzzy weight-based model was implemented in an AR 
application targeted at spatial skill development [29], [30].  

It is indeed a vital skill in the field of engineering, 
architecture, and medicine. The concepts and operations of 
three-dimensional objects must be well understood [31]. The 
spatial ability was not possible to teach using traditional 
methods since the episode of spatial skills does not offer the 
interactive and immersive experience necessary for deep 
learning. AR's unique ability to overlay digital content onto the 
real world is because it can generate effective and realistic 
training environments [32]. 

The weights that were used from the proposed model were 
utilized in an attempt to incorporate the most effective strategies 
for education in the AR-based simulations, personalized 
learning path, and interactive feedback in the AR application, 
since these possessed the highest weights in our expert 
evaluations. The present AR application, in this regard, 
attempted to highlight the most effective educational strategies 
to maximize learner outcomes. 

The AR spatial ability training application was constructed 
with two significant components, AR-based simulations and 
interactive feedback. Both of them were interdependent on the 
learner's path. The AR-based simulations engaged learners in a 
realistic 3D environment where they learned spatial tasks. Some 
of the exercises mentioned in the following list are the mental 
rotation, the spatial visualization, and the spatial orientation. It 
was possible to rotate the viewed object, view the object from a 
different angle, and try to assemble parts of a model that had 
been disassembled. They constituted a challenge in the use of a 
challenging yet achievable progressive learning curve. 

The AR-based experiential learning environments allowed 
trainees to manipulate the virtual elements as they would do in 
the real world, thereby improving the realism of the simulations. 
This practice could facilitate more competent development of 
spatial skills in learners than is possible by traditional methods. 

 



Interactive feedback was part of the learning process. The 
feedback design of the system is planned so that it is immediate 
and context-embedded to respond to the learner's action. For 
example, during the construction of a virtual model, if a learner 
erred, the system would highlight the error and give indications 
on how to rectify it. Immediate feedback makes the learners 
realize their errors and learn from them immediately. 

The system was also adaptive, meaning it adjusted in 
response to the learner's performance. For those who were 
lackluster in some aspects, the system offered more detailed 
advice and practice opportunities, and for those adept at the 
tasks, the system would increase the level of difficulty to keep 
them motivated and engaged. It is an adaptive approach to 
ensure that each learner gets the kind of support that best works 
for his or her needs and progress at a certain point. 

IV. EVALUATION RESULTS 

An experimental study was carried out among 60 
participants to determine the efficacy of an AR spatial ability 
training application. Participants were placed into the 
experimental group (group A), which was taught using the AR 
application, and the control group (group B), which was trained 
using the traditional training method. Pre-tests were first run on 
all these participants to determine their baseline spatial ability. 
The experiment ran over a period of four weeks, and that 
included the use of the AR application by the experimental 
group, and the same group under traditional teaching methods, 
so that in the measurement of any improvements to spatial 
ability, both groups now took post-tests. 

In estimation, it will compare improvements in spatial 
abilities in both groups, in which the AR-based educational 
strategy is given priority, using the fuzzy weight-based model. 
A pre-test drawing on the crucial basic spatial abilities was 
carried out, and all the students had taken the test prior to the 
training. Tasks were selected from the mental rotation, spatial 
visualization, and spatial orientation, which are regarded as the 
most important in spatial ability. The scores of this pre-test acted 
as the baseline for measurement of improvement. 

After a training period of four weeks, during which the 
experimental group used the AR spatial ability training 
application and the control group used traditional methods, both 
groups completed a post-test identical to the pre-test. The 
difference in pre-test and post-test scores was used to assess the 
effectiveness of the training methods. Table IV presents the 
results of the t-test evaluation. 

TABLE IV.  T-TEST RESULTS OF PRE-TEST AND POST-TEST 

 Group A Group B 

Pre-test Mean 2.833 2.467 

Post-test mean 4.733 3.800 

Difference 1.900 1.333 

Standard Deviation  0.648 0.900 

Pearson Correlation 0.079 -0.589 

t Stat -13.714 -4.492 

p-Value <0.001 <0.001 

To analyze the results, we used hypothetical pre-test and 
post-test scores. The pre-test and post-test scores (on a scale of 

1 to 5) for the experimental and control groups are presented in 
Tables V and VI: 

TABLE V.  T-TEST: PAIRED TWO SAMPLES FOR MEANS OF GROUP A 

 Pre-test Post-test 

Mean 2.833 4.733 

Variance 0.420 0.202 

Observations 30 30 

Pearson Correlation 0.079  

Hypothesized Mean Difference 0  

df 29  

t Stat -13.714  

P (T < = t) one-tail <0.001  

t Critical one-tail 1.699  

P (T < = t) two-tail <0.001  

t Critical two-tail 2.045  

The analysis of the results of group A (Table  from the pre-
test (M = 2.833, SD =0.648) and post-test (M = 4.733, SD = 
0.648) indicate that the use of the proposed personalized AR 
application resulted in an improvement in students’ spatial 
skills, t(29) = −13.714, p < 0.05. Furthermore, the Pearson 
correlation value of r = 0.079 suggests a positive correlation 
between the pre-test and the post-test scores (Evans, 1996). 

TABLE VI.  T-TEST: PAIRED TWO SAMPLES FOR MEANS OF GROUP B 

 Pre-test Post-test 

Mean 2.467 3.800 

Variance 0.809 0.855 

Observations 30 30 

Pearson Correlation -0.589  

Hypothesized Mean Difference 0  

df 29  

t Stat -4.492  

P (T < = t) one-tail <0.001  

t Critical one-tail 1.699  

P (T < = t) two-tail <0.001  

t Critical two-tail 2.045  

The analysis of the results of group B (Table V) from the 
pre-test (M = 2.467, SD = 0.900) and post-test (M = 3.800, SD = 
0.900) indicate that the traditional educational method also 
resulted in an improvement in students’ spatial skills, t(29) = 
−4.492, p < 0.05. The correlation between the scores of group B 
is -0.589, suggesting another acceptable correlation. 

The quantitative results showed a significant improvement 
in the spatial abilities of the experimental group compared to the 
control group. Participants in the experimental group 
demonstrated higher gains in tasks involving mental rotation, 
spatial visualization, and spatial orientation. They also reported 
higher levels of engagement and satisfaction with the training 
process 

Besides these quantitative evaluations, data involving 
participant engagement and satisfaction were captured in the 
questionnaires. Participants from the experimental group exhibit 
higher rates of engagement and enjoyment over the entire 
process of training. They have perceived this to be very 
motivational, with interactive feedback and realistic simulation 
through the AR application in understanding spatial concepts. A 
participant, in this regard, commented, ''Concretely, the 3D 



object manipulation makes the learning at hand much more 
concrete and intuitive''. The immediate context-sensitive 
feedback makes the detection and correction of errors fast, and 
in turn, the learning process more effective. 

The fuzzy weight-based model, therefore, identifies the 
educational strategies to be effective. The huge weight 
associated with AR-based simulations and the interactive 
feedback were justified by the resultant scores received from the 
experimental group. It was these strategies that were 
accountable to provide a wonderful learning environment, 
which is no doubt immersive and supportive and largely 
contributes to increasing the spatial abilities of the participants. 

AR-based simulations thus enable the practice of spatial 
tasks within a controlled, yet realistic setting. The quality of the 
AR-based simulation qualitatively enhances the learning 
experience of the participant in grasping and retaining the 
understanding of spatial concepts. The activities of receiving 
timely and adaptive guidance with the aid of interactive 
feedback enable the learners to alter their behavior to enhance 
performance with constructive and immediate responses. 

This outcome in the evaluation of the application AR spatial 
ability training clearly depicts the vast benefit of integrating the 
AR technology and the fuzzy weight-based educational 
strategies in improving spatial abilities. Of major importance is 
how the experimental group has indeed achieved higher 
improvement scores than that obtained by the control group, and 
this only goes on to show the benefit of integrating the AR-based 
simulations and interactive feedback to provide an interesting 
and optimal learning experience. 

V. CONCLUSIONS 

The obvious results of the evaluation of an AR-based spatial 
ability training application clearly show great benefits toward 
the combination of AR technology and fuzzy weight-based 
educational strategies in the learning process. Learners in the 
experimental group, who were provided AR learning with the 
application, showed a considerable improvement in spatial 
ability in comparison to those in the control group, who were 
provided with traditional training. AR simulations and the 
effective fuzzy weight-based model, which gave more weight to 
personalized learning paths and interactive feedback, gave 
highly significant results in enhancing the spatial skills of the 
learners. It made the learner's experience definable in many 
ways as immersive, engaging, and personalized for learning 
techniques, which traditional methods fail to match. In fact, 
doing manipulations over 3D digital objects with the possibility 
of obtaining context-sensitive feedback that can be immediately 
realized helped to clarify and reinforce spatial material in a way 
other methods could not achieve. 

These are promising results, but a number of limitations 
should be noted. First, relatively small sample size, which 
consists of 60 participants, divided arbitrarily into two groups of 
30. Such a sample size may limit the generalization of the 
findings to a larger population. Second, the study was only four 
weeks in duration, which might be inadequate to fully capture 
the long-term effects and retention of spatial skills as acquired 
through AR training. Third, due to the fact that the pre-test and 
post-test data has been designed conceptually, it may not have 

the capacity to reflect realistic trends and variations of real 
applications. Moreover, because it depends on subjective expert 
input during the development stages of the fuzzy weight-based 
model, it may have introduced some bias despite every effort 
being made to seek the opinions of a variety of people from 
several fields. 

Further research may therefore go on to adopt the 
weaknesses of this study. Generalization of findings can be done 
by increasing the sample size to include people from various 
educational backgrounds. Long-term studies are required with a 
view to checking the long-term impact of this kind of training 
on spatial abilities and other cognitive skills. Validation of the 
efficacy of the AR application for real-world trials in different 
educational and professional setups can be most helpful. Future 
work could possibly find ways to incorporate other new 
technologies, such as artificial intelligence and machine 
learning, to make this training even more personalized and 
adaptive. 
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