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Abstract—Convolutional Neural Networks (CNNs) have be-
come instrumental in advancing image classification, particu-
larly in the context of garbage image classification, a critical
component for efficient waste management. This paper intro-
duces a tailored CNN architecture that demonstrates enhanced
accuracy in garbage classification tasks, even with constrained
datasets. Our architecture incorporates multiple convolutional,
max-pooling, and fully connected layers, with dropout regulariza-
tion strategically applied to curb overfitting and improve model
generalization across a varied waste image dataset. Comparative
evaluations reveal that our model achieves a significant improve-
ment in accuracy over existing CNN models. The results not
only validate the robustness of our approach but also contribute
valuable insights toward developing more precise and efficient
systems for garbage image classification.

Index Terms—Garbage Image Classification, Deep Learning,
Image Processing, Convolutional Neural Networks, Computer
Vision, Dropout Regularization

I. INTRODUCTION

Waste management is a critical global issue, characterized
by challenges such as environmental pollution, health risks,
and resource depletion due to improper disposal practices [6].
In response to these challenges, there is a pressing demand
for sustainable waste management practices, notably effective
waste sorting and recycling technologies [36]. Among the
various emerging technologies, garbage image classification
using deep learning has emerged as a promising solution,
offering the potential to significantly improve recycling rates
and reduce landfill use, thereby mitigating the environmental
impact of waste [4].

Deep learning, a powerful subset of machine learning,
utilizes layered artificial neural networks to autonomously
extract and learn complex features from large datasets. This
technology has not only revolutionized fields such as medi-
cal diagnostics and weather forecasting but has also proven
instrumental in enhancing predictive modeling across diverse
industries, enabling businesses to foresee market trends and

optimize operations with unprecedented accuracy [5], [8], [9],
[11], [20], [22], [25], [26], [27], [30], [32].

In the specific realm of garbage image classification, deep
learning techniques, particularly Convolutional Neural Net-
works (CNNs), have been adept at identifying and categorizing
various types of waste materials. These networks effectively
handle the inherent variability in waste material appearances,
a notable challenge in this field [10], [18], [19], [24]. Despite
their success, the development of these systems is often
hindered by the scarcity of extensive and diverse datasets,
which are crucial for training robust models [7], [29].

This paper presents a CNN-based model tailored for high-
precision garbage image classification. Our model is evaluated
against an extensive and diverse waste image dataset and
compared with other CNN architectures and transfer learning
approaches to highlight its superior performance and efficiency
[29]. The primary goal of this investigation is to conduct a
comprehensive assessment of our CNN-based model, examin-
ing its ability to accurately identify diverse waste materials
[13], [28]. The findings are intended to contribute to the
existing research in garbage image classification and pro-
vide insights into optimal deep learning techniques for waste
management applications. This study’s results are poised to
guide the development of more precise and efficient garbage
image classification systems, thereby enhancing waste sorting
accuracy and improving overall waste management practices.

Despite the impressive strides made, deep learning contin-
ues to face challenges related to interpretability, ethical con-
siderations in AI applications, and the environmental impact
of training large models.

II. RELATED WORK

Various algorithms have been devised for image classifi-
cation, including Recurrent Neural Networks (RNNs), Sup-
port Vector Machines (SVMs), and Artificial Neural Net-
works (ANNs). Among these, Convolutional Neural Networks
(CNNs) have consistently demonstrated superior performance979-8-3315-0448-9/24/$31.00 ©2024 IEEE



[12]. The significance of CNNs in image classification was
prominently highlighted with their success in the 2012 Ima-
geNet Large-Scale Visual Recognition Challenge (ILSVRC)
[14]. Since then, numerous CNN architectures have been
developed, each tailored to address specific challenges within
the field of image classification [31], [37].

In the late 1990s, a system for metal scrap recycling that
utilized a mechanical shape identifier was developed at the
Lulea University of Technology [38]. This early system was
expanded upon with the integration of features from the Scale-
Invariant Feature Transform (SIFT) and outline shapes within
a Bayesian computational framework, utilizing the Flickr ma-
terial database to advance image-based material classification
[17]. Concurrently, the emergence of smartphone technology
facilitated the development of an application that allowed for
the rough identification of garbage types in images, achieving
an average accuracy of 85% with a pre-trained AlexNet model
[21].

Further advancements in the application of deep learning
were marked by the development of a smart sweeping robot
that used YOLOv2 as a core network module. This robot was
capable of classifying garbage into 25 distinct subcategories
based on shape and volume [23]. Meanwhile, an alternative ap-
proach that implemented the background difference algorithm
using OpenCV for the extraction and classification of objects
from images was introduced, proving effective in identifying
various medical equipment items [3].

The utilization of automatic recognition and detection of
waste from images has significantly increased, gradually re-
placing manual sorting methods [15], [35]. Over time, a variety
of machine learning algorithms have been explored to enhance
the precision of automatic waste classification. In recent years,
deep neural networks, especially CNNs, have become the
preferred method, showing remarkable effectiveness in image
classification tasks [33]. By processing images of solid waste,
CNNs enable the automated categorization of waste into
relevant classes, thereby proving their utility in this application
[16].

Efforts to enhance waste classification accuracy have in-
cluded evaluations using undisclosed CNN architectures, with
f-scores for various waste categories such as paper, plastic, or-
ganic, and glass ranging from 59% to 75% [2]. The exploration
of both customized and unspecified CNN models has been
a significant focus within the field, with some investigations
achieving accuracy rates as high as 95%, thereby marking
significant strides towards more precise garbage image classi-
fication [16].

III. METHODOLOGY FOUNDATIONS

This section delves into the fundamental methodologies
that underpin our approach to garbage image classification
using Convolutional Neural Networks (CNNs). As the core
of our model, CNNs are extensively discussed, highlighting
their pivotal role in feature detection and image analysis.
Additionally, this section explores other crucial technologies

and frameworks that support our model, including Tensor-
Flow, Keras, and various layers essential for building effective
CNNs. Each subsection provides a detailed overview of the
components, their functions, and their relevance to enhancing
the performance and accuracy of our deep learning model. By
understanding these foundational elements, we can appreciate
how they collectively contribute to sophisticated image classi-
fication tasks and ensure the robustness and efficiency of our
proposed solutions.

A. Convolutional Neural Networks
CNNs (Convolutional Neural Networks) leverage pixel ar-

rangements in images to recognize patterns. During training,
these networks autonomously learn complex patterns from
various segments of images, thus enhancing their capability for
tasks such as medical image analysis. CNNs are particularly
adept at identifying features automatically through convolu-
tional and pooling layers, complemented by fully connected
layers to facilitate precise data classification. The introduction
of additional fully connected layers can increase accuracy by
simplifying the complexity of image data.

Much like multilayer perceptrons, CNNs consist of input,
hidden, and output layers. The convolutional layer is integral,
focusing on accentuating image features, while downsam-
pling performed in pooling layers improves computational
efficiency. This structured layering enables CNNs to extract
and process complex visual information with minimal prepro-
cessing, making them highly effective for tasks in computer-
assisted medical diagnosis and monitoring.

B. Tensorflow
Developed by Google, TensorFlow is an open-source frame-

work designed for executing complex mathematical computa-
tions, which is essential in building deep learning models. It
manages dataflow graphs that represent how data progresses
through various computational steps. Nodes in these graphs
denote mathematical operations on multidimensional data ar-
rays (tensors), and edges define the movement of these tensors
between operations.

TensorFlow’s efficiency spans across multiple devices, from
mobile phones to extensive systems equipped with CPUs and
GPUs. This versatility is crucial for optimizing computational
resources, particularly in training large, complex deep learning
models like those used in image recognition tasks.

C. Keras
Keras is a high-level, Python-based interface designed to

simplify the creation and training of deep learning models,
particularly through TensorFlow integration. It abstracts the
complexities involved in direct tensor manipulations, allowing
developers to focus more on building neural network architec-
tures. Keras facilitates model construction via its Sequential
API, where layers are stacked sequentially. This modularity is
ideal for standard deep learning models, as it ensures that each
layer receives a single input tensor and produces an output
tensor, streamlining the model-building process and enhancing
developmental efficiency.



D. Convolutional Layers

Convolutional layers are fundamental in CNNs for identify-
ing spatial features in images, such as edges, textures, and
shapes. These layers function by sliding a filter or kernel
over the input image, calculating the dot product of the filter
values with the underlying pixel values at each position. The
convolution operation is defined mathematically as follows:

S(i, j) = (I∗K)(i, j) =
∑
m

∑
n

I(i+m, j+n)·K(m,n) (1)

where S(i, j) is the output feature map, I is the input image,
K is the kernel, and (i, j) represent the coordinates on the
feature map. The filter, typically smaller than the input image,
contains weights learned during training and slides over the
image to detect specific features, contributing significantly to
the effectiveness of feature extraction.

E. Pooling Layers

Pooling layers play a critical role in reducing the spatial
dimensions of the feature maps within CNNs, crucial for
decreasing computational demands and enhancing model gen-
eralization. By summarizing the features in patches of the
feature map, pooling layers help in reducing the likelihood of
overfitting and maintaining essential information, thus improv-
ing the adaptability of the network. Max pooling, a common
technique, selects the maximum value from each window of
the feature map to pass to the next layer, effectively capturing
the most prominent features required for tasks like image
recognition.

F. Batch Normalization

Batch Normalization (BN) is a technique used to enhance
the stability and speed of neural network training by normal-
izing the inputs to each layer, ensuring they have a consistent
mean and variance. This normalization addresses the problem
of internal covariate shift, where the distributions of inputs
change during training, which can slow convergence and cause
instability. The operation of BN is mathematically expressed
as:

x̂i =
xi − µB√
σ2
B + ϵ

(2)

where xi is the input to a layer, µB and σ2
B are the mean and

variance calculated over the batch, and ϵ is a small constant
for numerical stability. This process allows higher learning
rates and more efficient training phases, ultimately leading to
improved model performance.

G. Dropout

Dropout is employed to prevent overfitting in neural net-
works, particularly in deep learning environments with com-
plex architectures. It randomly disables a subset of neurons
during training, thereby reducing dependencies among them
and forcing the network to learn more robust features. Mathe-
matically, if a neuron’s output is x, dropout modifies it using:

x′ = d · x (3)

where d is a random variable from a Bernoulli distribution,
being 1 with probability p (retention probability) and 0 with
probability 1 − p. This variability ensures that each training
iteration uses a slightly different network architecture, enhanc-
ing the generalization capabilities of the model.

IV. PROPOSED ARCHITECTURE

This section presents the proposed CNN architectures devel-
oped to enhance the precision of garbage image classification.
The primary objective of this study is to evaluate these models
extensively, assessing their capability to categorize diverse
waste materials accurately. The outcomes of this research are
expected to contribute significantly to the field of garbage
image classification using deep learning, providing insights
into optimal methodologies for waste management applica-
tions. Additionally, the results have the potential to inform
future refinements and innovations, leading to more precise
and efficient classification systems that could improve waste
sorting processes and advance overall waste management
practices.

The proposed CNN architecture begins with an input layer
that processes image data. Following the input, multiple con-
volutional layers equipped with filters are used to effectively
detect spatial features. Each convolution operation is accom-
panied by batch normalization, which standardizes the inputs
to each layer to stabilize the learning process. Pooling layers
succeed the convolutional layers to reduce the size of feature
maps, simplifying computations and focusing on essential
features.

After the feature extraction and reduction phases, the data is
flattened and processed by dense neural network layers. These
layers perform a deep analysis of the features, culminating
in the final classification output. To explore the effects of
different configurations on model performance, four distinct
architectural designs are proposed and visualized.

Figure 1 illustrates the detailed layer setups and operations
of each model, providing a quick visual reference that aids in
understanding the structural differences and functionalities of
the architectures.

Complementing the visual diagrams, Table I offers a concise
summary of the distinctive features and layer sequences of
each architectural configuration, facilitating a deeper compar-
ative analysis.

The models are initially assessed using various performance
metrics to determine optimal configurations. Their efficacy is
subsequently compared within a unified framework to establish
which design best meets the requirements of efficient and
accurate waste material classification. Integral to all four
architectures are layers including Conv2D for feature extrac-
tion, Batch Normalization for stabilization, MaxPooling2D for
dimensionality reduction, Dropout to prevent overfitting, and
Dense and Softmax layers for classification. These components
are crucial for improving accuracy in image classification



(a) First Proposed CNN
Architecture

(b) Second Proposed
CNN Architecture

(c) Third Proposed
CNN Architecture

(d) Fourth Proposed
CNN Architecture

Fig. 1. Detailed diagrams of the four proposed CNN architectures, each showcasing layer configurations and operational flows to optimize garbage classification.

TABLE I
LAYER SEQUENCES AND OPERATIONS OF EACH PROPOSED CNN ARCHITECTURE

Architecture Layer Sequence and Operations
1st (Conv2D → BatchNorm → MaxPooling2D → Dropout) ×2 → (Flatten → Dropout → Dense) → Softmax
2nd (Conv2D → BatchNorm → Dropout) ×2 → (Flatten → Dropout → Dense) → Softmax
3rd (Conv2D → BatchNorm → MaxPooling2D) ×2 → (Flatten → Dropout → Dense) → Softmax
4th (Conv2D ×2 → BatchNorm → MaxPooling2D → Dropout) ×2 → (Flatten → Dropout → Dense) → Softmax

tasks, and their systematic arrangement in each model is
designed to maximize performance.

V. EXPERIMENTAL EVALUATION

A. Dataset

The dataset used in this study comprises a diverse collection
of 15,150 images spanning 12 distinct categories of household
waste [1]. These categories include newspapers, cardboard,
organic waste, steel, plastic, green glass, brown glass, white
glass, clothing, footwear, batteries, and general waste. The
expanded range of categories, extending beyond the typical
2 to 6 classes found in most datasets, aims to enhance the
granularity of waste sorting and, consequently, the efficiency
of recycling processes.

Balancing the dataset was crucial to avoid biases in the
machine learning model. The equal representation of each
category ensures that the model learns to recognize and
classify each type of waste effectively. Table II provides a
detailed breakdown of the number of images per category:

This balanced distribution is essential for training the
models to recognize and classify waste accurately, which is

TABLE II
DETAILED DISTRIBUTION OF IMAGES ACROSS VARIOUS WASTE

CATEGORIES IN THE DATASET

Battery 945 Biological 985 Brown Glass 607
Cardboard 891 Clothes 5,325 Green Glass 629
Metal 769 Paper 1,050 Plastic 865
Shoes 1,977 Trash 697 White Glass 775

critical for automated systems employed in modern recycling
facilities.

B. Results

In the comprehensive evaluation below, the performance
metrics of the four proposed CNN architectures are detailed
across various epochs and batch sizes. Table III showcases
the loss, accuracy, and training time for each architecture at
batch sizes of 64, 128, and 256, providing a granular view of
how each configuration scales over time with increasing data
processing loads. The data captured at specific epochs—1, 5,
10, 15, and 20—helps illustrate the progression and efficacy
of the learning process, offering insights into the optimal
conditions for model training in waste classification tasks.



TABLE III
PERFORMANCE METRICS FOR FOUR ARCHITECTURES

Epochs Loss Accuracy Time Loss Accuracy Time Loss Accuracy Time
(Conv2D → BatchNorm → MaxPooling2D → Dropout) ×2 → (Flatten → Dropout → Dense) → Softmax

Batch Size = 64 Batch Size = 128 Batch Size = 256
1 2.780 0.2563 204 2.628 0.2595 203 3.041 0.1340 214
5 1.948 0.4246 197 1.949 0.4052 198 2.226 0.3204 181
10 1.634 0.6971 180 1.716 0.5608 197 1.948 0.5955 198
15 1.533 0.7042 195 1.940 0.6000 195 1.895 0.6071 199
20 1.441 0.7346 197 1.579 0.6984 178 1.746 0.7570 198

(Conv2D → BatchNorm → Dropout) ×2 → (Flatten → Dropout → Dense) → Softmax
Batch Size = 64 Batch Size = 128 Batch Size = 256

1 2.887 0.2460 387 3.023 0.2421 327 3.364 0.2265 328
5 1.991 0.3825 322 2.199 0.3560 319 2.310 0.3133 315
10 1.730 0.6550 321 1.842 0.6155 380 2.007 0.5871 319
15 1.589 0.6841 321 1.664 0.6589 320 1.923 0.6149 313
20 1.449 0.7294 322 1.565 0.6893 319 1.786 0.6460 302

(Conv2D → BatchNorm → MaxPooling2D) ×2 → (Flatten → Dropout → Dense) → Softmax
Batch Size = 64 Batch Size = 128 Batch Size = 256

1 2.558 0.2751 479 3.024 0.2201 194 3.008 0.2803 448
5 1.740 0.4731 188 1.975 0.3916 188 2.111 0.3722 187
10 1.531 0.5074 172 1.740 0.5654 188 1.822 0.4259 189
15 1.405 0.6184 190 1.563 0.7042 187 1.723 0.5628 188
20 1.320 0.7463 187 1.435 0.7340 184 1.625 0.6913 187
(Conv2D ×2 → BatchNorm → MaxPooling2D → Dropout) ×2 → (Flatten → Dropout → Dense) → Softmax

Batch Size = 64 Batch Size = 128 Batch Size = 256
1 2.858 0.2045 505 3.100 0.2117 295 3.089 0.2395 299
5 1.885 0.4045 276 2.078 0.3683 348 2.201 0.3534 378
10 1.630 0.4744 272 1.663 0.4835 278 1.946 0.4104 283
15 1.665 0.5660 273 1.577 0.5977 341 1.887 0.5149 272
20 1.509 0.7113 265 1.446 0.7294 356 1.698 0.7770 279

The results indicate that smaller batch sizes generally result
in faster learning and more significant reduction in loss over
epochs but can be more susceptible to overfitting. Conversely,
larger batch sizes tend to stabilize the learning process, show-
ing slower improvements but achieving consistently higher
accuracy towards the latter epochs. For instance, while the
architecture with batch size 64 shows rapid improvement in
accuracy, it levels off quicker than the configurations with
larger batch sizes.

Training time across different architectures varied, with
more complex configurations requiring longer durations per
epoch. For example, the fourth architecture, which involves
multiple convolution and pooling layers, exhibited the highest
training times but also showed significant gains in accuracy,
particularly at larger batch sizes.

Among the configurations, the fourth architecture with a
batch size of 256 demonstrated the highest overall accuracy by
the 20th epoch, underscoring the effectiveness of deep layered
networks combined with adequate batch processing in han-
dling complex classification tasks. However, this configuration
also required the most extended training time, suggesting a
trade-off between performance and computational efficiency.

Stability in learning was observed as a function of both
architecture and batch size. Architectures that incorporated
frequent batch normalization and dropout layers tended to
exhibit more stable accuracy improvements across epochs,
mitigating sharp fluctuations in loss and accuracy.

These detailed insights into the performance of different
model configurations under various conditions highlight the

critical balance between model complexity, batch size, and
training duration in achieving optimal classification perfor-
mance. Such findings are instrumental in refining the design of
CNNs for practical applications in waste classification, where
both accuracy and operational efficiency are paramount.

VI. CONCLUSIONS AND FUTURE WORK

This study presented a detailed exploration of four CNN
architectures tailored for the classification of household waste
into twelve distinct categories. The primary goal was to
enhance the precision of garbage image classification and,
consequently, the efficiency of recycling processes. Our ex-
perimental results demonstrated that varying the batch size
and the architectural configurations significantly impacts the
accuracy, loss, and training duration of the models.

The findings suggest that architectures with deeper layers
and more frequent utilization of techniques like batch nor-
malization and dropout tend to perform better in terms of
accuracy and stability, although at the cost of increased com-
putational resources and training time. The optimal balance
between batch size and epoch number also emerged as crucial
for maximizing performance. Smaller batch sizes typically
accelerated learning but required careful management to avoid
overfitting, while larger batch sizes provided more stable but
slower learning trajectories.

Looking ahead, the research into CNN architectures for
waste classification presents numerous opportunities for fur-
ther exploration. One promising direction involves the deploy-
ment of these models in real-time waste sorting systems that



could provide valuable insights into their operational effective-
ness and practical challenges. Expanding the dataset to include
a wider variety of waste items and environmental conditions,
such as different lighting, would also be beneficial in testing
the robustness of the proposed models further. Another area of
potential development is the combination of CNN architectures
with other machine learning approaches, such as reinforcement
learning or unsupervised learning, which might yield further
improvements in accuracy and efficiency [34].

REFERENCES

[1] Garbage classification. https://www.kaggle.com/datasets/mostafaabla/
garbage-classification. Online; accessed on 05 July 2024.

[2] S. L. N. Alonso, R. F. R. Forradellas, O. P. Morell, and J. Jorge-Vázquez.
Digitalization, circular economy and environmental sustainability: The
application of artificial intelligence in the efficient self-management of
waste. Sustainability, 13(4):2092, 2021.

[3] Y. Chen and B. Xiaoxiao. A medical waste classification system based
on machine vision and deep learning. Computer Programming Skills
and Maintenance, 5:108–110, 2019.

[4] B. S. Costa, A. C. S. Bernardes, J. V. A. Pereira, V. H. Zampa, V. A.
Pereira, G. F. Matos, E. A. Soares, C. L. Soares, and A. F. Silva.
Artificial intelligence in automated sorting in trash recycling. In Anais
do xv encontro nacional de inteligência artificial e computacional, pages
198–205, 2018.

[5] M. Garg, P. Gajjar, P. Shah, M. Shukla, B. Acharya, V. C. Gerogiannis,
and A. Kanavos. Comparative analysis of deep learning architectures and
vision transformers for musical key estimation. Information, 14(10):527,
2023.

[6] Q. Guo, Y. Shi, and S. Wang. Research on deep learning image recogni-
tion technology in garbage classification. In Asia-Pacific Conference on
Communications Technology and Computer Science (ACCTCS), pages
92–96. IEEE, 2021.

[7] A. Kanavos, G. Drakopoulos, and A. K. Tsakalidis. Graph community
discovery algorithms in neo4j with a regularization-based evaluation
metric. In 13th International Conference on Web Information Systems
and Technologies (WEBIST), pages 403–410, 2017.

[8] A. Kanavos, E. Kolovos, O. Papadimitriou, and M. Maragoudakis.
Breast cancer classification of histopathological images using deep
convolutional neural networks. In 7th South-East Europe Design
Automation, Computer Engineering, Computer Networks and Social
Media Conference (SEEDA-CECNSM), pages 1–6. IEEE, 2022.

[9] A. Kanavos and P. Mylonas. Deep learning analysis of histopathology
images for breast cancer detection: A comparative study of resnet and
VGG architectures. In 18th International Workshop on Semantic and
Social Media Adaptation and Personalization (SMAP), pages 1–6. IEEE,
2023.

[10] A. Kanavos, O. Papadimitriou, A. Kaponis, and M. Maragoudakis.
Enhancing disease diagnosis: A cnn-based approach for automated white
blood cell classification. In IEEE International Conference on Big Data,
pages 4606–4613, 2023.

[11] A. Kanavos, O. Papadimitriou, and M. Maragoudakis. Enhancing
COVID-19 diagnosis from chest x-ray images using deep convolutional
neural networks. In 18th International Workshop on Semantic and Social
Media Adaptation and Personalization (SMAP), pages 1–6. IEEE, 2023.

[12] A. Kanavos, O. Papadimitriou, P. Mylonas, and M. Maragoudakis.
Enhancing sign language recognition using deep convolutional neural
networks. In 14th International Conference on Information, Intelligence,
Systems & Applications (IISA), pages 1–4. IEEE, 2023.

[13] J. Knowles, S. Kennedy, and T. Kennedy. Oscarnet: Using transfer
learning to classify disposable waste. CS230 Report: Deep Learning,
Stanford University, 2018.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In 26th Annual Conference
on Neural Information Processing Systems, pages 1106–1114, 2012.

[15] W. C. Li, H. F. Tse, and L. Fok. Plastic waste in the marine environment:
A review of sources, occurrence and effects. Science of the Total
Environment, 566:333–349, 2016.

[16] S. Liang and Y. Gu. A deep convolutional neural network to simultane-
ously localize and recognize waste types in images. Waste Management,
126:247–257, 2021.

[17] C. Liu, L. Sharan, E. H. Adelson, and R. Rosenholtz. Exploring
features in a bayesian framework for material recognition. In 33rd IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
239–246, 2010.

[18] I. E. Livieris, A. Kanavos, V. Tampakas, and P. E. Pintelas. An ensemble
SSL algorithm for efficient chest x-ray image classification. Journal of
Imaging, 4(7):95, 2018.

[19] W.-L. Mao, W.-C. Chen, C.-T. Wang, and Y.-H. Lin. Recycling waste
classification using optimized convolutional neural network. Resources,
Conservation and Recycling, 164:105132, 2021.

[20] S. Mathesul, D. Swain, S. K. Satapathy, A. Rambhad, B. Acharya, V. C.
Gerogiannis, and A. Kanavos. COVID-19 detection from chest x-ray
images based on deep learning techniques. Algorithms, 16(10):494,
2023.

[21] G. Mittal, K. B. Yagnik, M. Garg, and N. C. Krishnan. Spotgarbage:
Smartphone app to detect garbage using deep learning. In International
Joint Conference on Pervasive and Ubiquitous Computing (UbiComp),
pages 940–945. ACM, 2016.

[22] C. Mohanty, S. Mahapatra, B. Acharya, F. Kokkoras, V. C. Gerogiannis,
I. Karamitsos, and A. Kanavos. Using deep learning architectures for de-
tection and classification of diabetic retinopathy. Sensors, 23(12):5726,
2023.

[23] K. Ning, D. Zhang, F. Yin, and H. Xiao. Garbage detection and
classification of intelligent sweeping robot based on visual perception.
Journal of Image and Graphics, 24(8):1358–1368, 2019.

[24] O. Papadimitriou, A. Kanavos, and M. Maragoudakis. Automated
pneumonia detection from chest x-ray images using deep convolutional
neural networks. In 14th International Conference on Information,
Intelligence, Systems & Applications (IISA), pages 1–4. IEEE, 2023.

[25] O. Papadimitriou, A. Kanavos, M. Maragoudakis, and V. C. Gerogiannis.
Chess piece recognition using deep convolutional neural networks. In
4th Symposium on Pattern Recognition and Applications (SPRA), volume
13162, page 1316202, 2024.

[26] O. Papadimitriou, A. Kanavos, P. Mylonas, and M. Maragoudakis.
Advancing weather image classification using deep convolutional neural
networks. In 18th International Workshop on Semantic and Social Media
Adaptation and Personalization (SMAP), pages 1–6. IEEE, 2023.

[27] O. Papadimitriou, A. Kanavos, P. Mylonas, and M. Maragoudakis.
Classification of alzheimer’s disease subjects from MRI using deep
convolutional neural networks. In 3rd International Conference on
Novel & Intelligent Digital Systems (NiDS), volume 784, pages 277–
286. Springer, 2023.
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