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Abstract—Self organizing maps (SOMs) or cognitive maps are
designed to preserve major topological attributes of manifolds in
a higher dimensionality data space to corresponding projections
thereof in a low dimensional coordinate space. This is performed
by mapping neighborhoods and the distances contained therein
from the data space to ones in the coordinate space. Thus,
SOM functionality relies heavily on the geometrical properties
of both spaces. Topologically flexible data space distance metrics
are constructed by combining tensors with graph filters, the
latter coming from graph signal processing. The power of these
distance metrics comes from naturally expressing the higher
order relationships between points of the data space. This
paves the way for addressing engineering scenarios involving a
large number of densely interrelated attributes. One such case
is discerning personalities from textual information based on
the Myers-Briggs taxonomy indicator (MBTI), a framework of
archetypal personalities derived from Jungian psychodynamic
theory. Various graph filters were tested on a benchmark Kaggle
dataset with ground truth with comparisons assessed in terms of
topological error, cluster purity, average inter-cluster distance,
and cluster curvature variability. Data points were stored in
Pinecone, a recent vector database, with Python integration.

Index Terms—SOMs, graph filters, graph signal processing,
graph topology, tensor distance metrics, geometric analytics,
cluster curvature, dimensionality reduction, MBTI, Pinecone

I. INTRODUCTION

Self organizing maps (SOMs) or cognitive maps are unsu-
pervised neural network architectures designed to approximate
a manifold in a high dimensional data space V by constructing
an approximately continuous projection thereof, a topological
map, in a lower dimensional coordinate space C [1]. Geometry
is crucial in shaping said projection as the latter preserves up
to a point the primary topological properties of the original
manifold [2]. Dimensionality reduction is thus achieved, which
may be an intermediate step for clustering or visualization.

Human personality and the evolving dynamics underpinning
their interplay have been for quite a number of years central
research points across domains such as psychology [3], social
network analysis [4], online marketing and digital campaign
design [5], computational neurosciences [6], and sociology
[7]. Gaining insight into team dynamics allows informed
decisions in tasks so diverse as workgroup formulation, mentor
matching, designing unobviated and unobtrusive communica-
tion, and task delegation. The basic building block of any

TABLE I
NOTATION SYNOPSIS.

Symbol Meaning First in
△
= Definition or equality by definition Eq. (1)
{s1, . . . , sn} Set with elements s1, . . . , sn Eq. (1)
|·| Set cardinality Eq. (14)
loc (·) Location function for data points Eq. (1)
invloc (·) Inverse location relationship for neurons Eq. (1)
weight (u) Synaptic weights of neuron u Eq. (3)
Γ (u) Neighborhood of neuron u Eq. (2)
∆ (u; η0) Cover of neuron u with threshold η0 Eq. (2)
⋆ Application of spatial filter to graph Eq. (7)
∥·∥F Frobenius tensor norm Eq. (7)
f (k) (x) k-th derivative of function f Eq. (23)
prob {Ω} Probability of event Ω occurring Eq. (16)

such approach is a methodological and systematic framework
for characterizing human personalities based on fundamental
psychological traits [8]. One such model is the Myers-Briggs
Type Indicator (MBTI) which is derived from the Jungian
psychoanalytical framework [9]. The latter is a personality
taxonomy based on four independent variables corresponding
to cognitive functions including information collection and
decision making in the face of incomplete data.

The primary research objective of this conference paper is
the description of an SOM architecture with a graph filter for
clustering personalities of the MBTI taxonomy using linguistic
attributes extracted from written text. As a secondary objective
the role of geometry to the overall learning process of the
SOMs is explored through the proposal of the cluster curvature
variability metric. Additionally, the capabilities of Pinecone1,
a new vector database, driven over Python are explored.

The remainder of this conference paper is structured as
follows. In section II the recent scientific literature regarding
tensor metrics and SOMs is reviewed. In section III the
proposed methodology is described, while in section IV the
results obtained are discussed. Possible research directions are
given in section V. Bold capital letters denote tensors and
matrices, boldface lowercase vectors, and lowercase scalars.
Technical acronyms are explained the first time they appear in
text. Finally, the notation is summarized in table I.

1https://www.pinecone.io978-8-xxxx-xxxx-xx/24/$31.00 ©2024 IEEE



II. PREVIOUS WORK

As stated earlier SOMs are unsupervised neural network
architectures [10] explicitly designed to perform dimension-
ality reduction by building a projection in a low dimensional
space of a manifold from a high dimensional one [11]. Since
topological attributes like distances and neighborhoods are
maintained in the projection [12], the latter maintains a degree
of fidelity to the original manifold [13]. A general theory
for topological maps is described in [14]. The potential of
message passing mechanism similar to that of graph convolu-
tional neural networks (GCNNs) is explored in [15]. Other
architectures which have been applied to humanistic data
processing include tensor stack networks (TSNs) for social
graph decompression [16], multi-view clustering [17], and
large language models (LLMs) [18] as well as graph neural
networks (GNNs) for affective social network analysis [19],
few-shot image classification [20], and audio tagging [21], and
Twitter community discovery [22]. Graph signal processing
(GSP) is an emerging field with applications to matrix approx-
imation [23], biosignal analysis [24], and graph filters [25]. A
space efficient data structure for evolving graphs is proposed
in [26]. It is conjectured that hippocampus constructs a low
dimensional representation of the physical world in a similar
way to the SOM training process [27] [28].

The MBTI framework defines a total of sixteen distinct
personalities [29]. Such taxonomies constitute a considerable
improvement compared to the various emotion models such
as those proposed by Plutchik [30] or Eckman [31] since
they go far beyond individual reponses elicited by specific
stimuli [32]. MBTI has been applied among others to teaching
[8] and online social networks [33]. Moreover, it has been
used in conjunction with signal processing methodologies [34].
Human emotion estimators include gait [35], face [36], text
attributes [37] [38], and more recently indicators defined on a
broad spectrum of cognitive tasks [39] [40].

III. PROPOSED METHODOLOGY

A. Approach Overview

The algorithmic approach proposed here consists of the
following steps. These can be altered depending on the un-
derlying domain, forming thus the basis of a GSP framework.

• The dataset, consisting of data vectors along tagged with
the respective real class, is stored in a Pinecone instance.

• The vector set V ⊆ V is clustered with an SOM using a
distance metric based on graph filters and tensor metrics.

• Clustering is evaluated over the |V | vectors through a
combination of algebraic and geometric indicators.

The following subsections outline the above steps in detail.

B. MBTI Taxonomy

The MBTI personality taxonomy [9] is a framework for
classifying personalities and it a tool for a wide range of tasks
including team building, negotation, and conflict resolution.
Perhaps the most tangible and recognazible result of MBTI is
the set of sixteen archetypes resulting from the combinations

of the four binary variables shown in table II. Each of these
fundamental personalities is symbolized with a unique four
letter acronym2 denoting their cognitive functionality. The
latter includes the balance between thought and action, the
type of information considered, the objectives prioritized, and
the general decision making process. For example, ISTJ stands
for Introversion, Sensing, Thinking, Judging and similarly
ENFP means Extraversion, Intuition, Feeling, and Perceiving.

TABLE II
MBTI VARIABLES [9].

Variable Meaning
I vs E Response to events and interactionb with the world
Introvert Mental work and introspection, indirect cues
Extrovert Frequent and open communication, direct feedback
S vs N Information collection and gathering
Sensing Emphasis on current state of affairs
Intuition Highlights on possible evolutionary paths
T vs F Decision making process pylons
Thinking Impersonal and objective indicators towards results
Feeling Emotional taking into account consequences on people
P vs J Strategy for dealing with the outer world
Perceiving Flexible, adjustive, and open ended
Judging Structured through a chain of smaller decisions

Each individual contributes in their unique way to a team or
workgroup. For instance, S-type individuals relying on sensory
observe the outside world and can report body language nu-
ances or group collective dynamics to N-type individuals who
can understand their meaning. Furthermore, J-type persons can
implement abstract guidelines set forth by P-type individuals.

TABLE III
MBTI PERSONALITY PROBABILITES (p0 = 1/16).

MBTI ISFJ ESFJ ISTJ INTJ ENTJ INFJ
Prob 2.19p0 1.92p0 1.86p0 0.33p0 0.29p0 0.25p0

Substantial evidence corroborates that the distriubtion of
the MBTI personalities is not uniform. Assuming an average
uniform probability of p0, the three most common MBTI
personalities are ISFJ, ESFJ, and ISTJ, while the three rarest
ones are INTJ, ENTJ, and INFJ. The approximate probab-
bilities for these personalities as a fraction of p0 are given
in table III [8]. Therefore, ISFJ is roughly ten times more
probable than INFJ. There have been many explanations in the
scientific literature about this particular gap as well as about
the character variation in general including social, educational,
geographic, and neurobiological factors [9].

C. Self Organizing Maps
SOMs operate by progressively connecting points from the

following two distinct spaces of different dimensionality and
semantics through learning based on a modified Hebbian learn-
ing rule. The framework is shown in algorithm 1. Additionally,
the projection from V to C is shown conceptually in figure 1.

• Data space: The high dimensional space V contains the
manifold to be approximated. Data points are selected
from there based on a selection policy.

2www.16personalities.com



Fig. 1. SOM projection from data space to a two dimensional coordinate space.

• Coordinate space: The low dimensional space C is the
grid where each point is a neuron with adjustable weights.

Algorithm 1 SOM training.
Require: SOM parameters as mentioned here
Ensure: SOM is smooth and partially preserves topology

1: repeat
2: for all data points vj ∈ V do
3: select a data point vj according to selection policy
4: find the winning neuron u∗ as in (1) using (7)
5: update weight (u) , u ∈ ∆ (u∗; η0) as in (3)
6: end for
7: until SOM training has converged
8: return cognitive map

The SOM training process is as follows. First, let an epoch
be defined as the time steps necessary for the enire data point
set to be used once to train SOM. During a given epoch each
point vj , selected at random exactly once, is assigned to the
neuron u∗ with the closest synaptic weights as determined
by a metric distance g (·, ·). Subsequently u∗, termed the
winning neuron, and the neurons in its cover set ∆ (u∗; η0) are
rewarded in a way that reinforces the connection between vj

and them through their respective synaptic weights. Rewarding
the cover set neurons besides u∗ is central to smoothness of
the topological map, as updating only the winning neuron or a
narrow area around it leads to sparse and discontinuous maps.

The low dimensional projection of the original manifold is
constructed in the coordinate space C. This is accomplished
by mapping through a distance metric data points from V .
The location loc (u) of a neuron u is the vector containing its
coordinates in the grid, with the number of components being
the dimension of C, whereas the weight (u) is a vector in V .
Along a similar line of reasoning invloc (u) is the set of points
mapped to u determined by distance metric g (·, ·).

invloc (u)
△
= {vj | u = argmin [g (vj ,weight (uk))]} (1)

Two important sets for each neuron u are its neighborhood
Γ (u) and its cover set ∆ (u; η0). The former is dervied
directly from the physical neuron placement, whereas the latter
depends on the selection of proximity function h (·, ·) and a
threhold η0. Both are defined in equation (2).

Γ (u)
△
= {u′ | u, u′ are adjacent}

∆ (u; η0)
△
= {u′ | h (u′, u) ≥ η0} (2)

Once a neuron is selected during an epoch, it becomes
the center of a cluster with the corresponding cover set
determining its periphery. When the cardinality of invloc (u)
of a neuron u is zero after one or even more epochs and
additionally u does not belong to a cluster periphery, then
either u should be assigned to the closest cluster or its synaptic
weights should be recalibrated based on cluster centers. For
large data sets cardinality estimators [41] may be used.

The reward for the synaptic weights is given in equations (3)
and (4) for every neuron u in the cover set ∆ (u∗; η0) of the
cluster center u∗. What differentiates the cluster center from its
periphery is the weight function w (·, ·), which is maximized
at the center and it is usually symmetric with respect to it.

weight (u)
[n] △

= weight (u)
[n−1]

+ δ (u)
[n] (3)

The correction factor is computed as in equation (4). Ob-
serve that it depends on attributes taken both from V and C.

δ (u)
[n] △

= µ[n]w (u, u∗)
�
weight (u∗)[n−1] − vj

�
(4)

In (4) the learning rate during epoch m is as given in (5).
Therein n0 is a prespecified hyperparameter. The advantages
of the specific selection is that it is smooth and it decays
with approximately a quadratic rate, allowing thus an initial
cluster formation and additionally a mild correction thereof in
subsequent epochs. Thus, clusters are progressively built.

µ[n] △
=





cos

�
πn

2 (1 + n0)

�
0 ≤ n ≤ n0

cos

�
πn0

2 (1 + n0)

�
, n > n0

(5)

The abovementioned smooth behavior of the cosine learning
rate can be explained by the second order Taylor expansion
of the cosine function as shown in equation (6) below.

cosϑ =
+∞X

k=0

(−1)
k ϑ2k

(2ϑ)!
≈ 1− ϑ2

2
(6)

Since the cosine function is analytic, like most trigonometric
functions, it allows higher order polynomial approximations
with more terms and higher accuracy. However, since these
terms vanish more quickly than the quadratic term, they have
little effect on it. Moreover, because of their alternating signs,
they cancel each other up to an extent as ϑ grows.



D. Linguistic Attributes

The linguistic attributes used here are shown in table IV
and they are related to the four MBTI variables of table II.
Said attributes describe how cognitive functions are reflected
in text and were extracted from the Kaggle MBTI dataset3

which has a usability score of 8.82 with 93 distinct code
segments developed over it. Since it contains ground truth, it
allows for elaborate subsequent analysis. The natural language
features pertaining to sentence and word length are related to
the tendency for extroversion [32]. Moreover, the emotional
terms and the punctuation tend to reveal the structure of the
human thought process at a subconscious level [34].

In the majority of existing approaches the distance metric
g (·, ·) in V would rely on stacking the attributes of table IV
to a single vector. However, such a scheme is oblivious to
the fact that the features come from two distinct categories.
Moreover, any connections between features of the same
category or across categories are ignored. Furthermore, any
weight matrices would be big. Instead, more information can
be extracted through an attribute graph where the location
of each available feature and its spatial replationships also
play a role besides its numerical value. This is the case of
the graph shown in figure 2 where the structural features
si, the functional ones fi, and the references ri are placed
in three separate lines interconnected as shown. This allows
for higher order patterns to emerge. The attributes themselves
were selected based on recommendations from [34] and [35],
whereas their respective location on the attribute graph was
determined primarily by the semantics of each feature. The
form of the proposed graph is certainly not unique and more
complex graphs can express higher order connections between
features. Nevertheless, it clearly illustrates the advantages of
the proposed strategy as well as the role of topology therein.

s1 s7

f1 f7

r1 r7

Fig. 2. Proposed attribute graph.

Observe that the attribute graph is regular with a rectangular
configuration, which allows the application of image process-
ing filters. The attribute graph has the following advantages:

• Compared to vector encoding, connectivity patterns such
as degrees offer more information about the interdepen-
dencies between attributes.

• Existing knowledge or constraints about the underlying
field can be incorporated into the graph with schemes
similar to domain decomposition.

• Geometrical insight can yield distance metrics tailored
for the data at hand, which can shed light into the true
cluster structure, and graph filters can be applied.

3https://www.kaggle.com/datasets/datasnaek/mbti-type

• In clustering applications data points and clusters them-
selves can be represented with mutiple attribute sets, each
with its own strengths.

Tensors are the primary algebraic tools for expressing graph
topology and additionally they naturally handle matrices as
data points. Moreover, tensor operations allow the modeling
of graph filter operations such as spatial convolution. The latter
is important as the graph of figure 2 can be regarded as a single
data point which algebraically takes the form of a matrix with
additional interdependencies between its entries. Equation (7)
is the proposed tensor distance metric in unrolled form where
Ic is the number of attribute categories, in this case three, and
Ia is the maximum number of features per category, seven in
this case. This is facilitated by both the rectangular form of
the attribute graph and the equal number of features in either
category. The Ic × Ia matrices X and Y encode directly the
values of each attribute, normalized from 0 to 1.

g (X,Y)
△
=

1

IcIa







IaX

ia=1

IcX

ic=1

H [ia, ic] ⋆ (X−Y)







F

(7)

The Frobenius tensor norm of equation (7) is defined for a
q-dimensional tensor M of dimensions I1×I2× . . .×Iq as in
equation (8). It is a common norm which is easy to implement
in parallel or distributed computational environments and
expresses the mean energy of the elements of the tensor.

∥M∥F
△
=

vuuut
I1X

i1=1

I2X

i2=1

. . .

IqX

iq=1

|M [i1, i2, . . . , iq]|2 (8)

The graph filter matrix H [i, j] is a 3 × 3 symmetric mask
centered at graph coordinates (i, j). After the application of
the graph filter at each point is obtained a weighted sum of
the nearby differences akin to the way a two-dimensional filter
is applied on an image. They take the elementwise forms of
equations (9), (10), (11) and (12), and (13).

The Gaussian kernel of equation (9) is a common choice
as it has many properties. Its decay allows the defintion of
clusters with a reasonable number of points, whereas the
boundary between two Gaussian kernels is linerly separable.
Moreover, the Gaussian function is the eigenfunction of the
Fourier operator, meaning that it can be also applied in
the frequency domain unaleterd. Additionally, the Gaussian
distribution has the maximum differential entropy among all
continuous probability density functions of the same variance,
meaning it can explain the broadest spectrum of probabilistic
scenaria under the aforementioned variance constraint.

Hg [i, j;σ0]
△
=

1

σ0

√
2π

exp

 
− (i− j)

2

2σ2
0

!
(9)

The logistic kernel of equation (10) is frequently used in
ML problems as it describes the evolution of a population over
time. Moreover, its saturation property, monotonicity change,



TABLE IV
CHARACTER ATTRIBUTES.

Name Structure Name Function Name References
s1 Total words f1 Positive terms r1 To self
s2 Total characters f2 Negative terms r2 To persons
s3 Words per sentence f3 Neutral terms r3 Other
s4 Punctuation marks f4 Adjectives r4 Judging terms
s5 Question marks f5 Nouns r5 Sensing terms
s6 Exclamation points f6 Adverbs r6 Emotional terms
s7 Two or more ’.’ f7 Connectors r7 Rational terms

and decay rates allow for the construction of smooth clusters
of shapes controlled by two hyperparameters.

Hl [i, j; γ0, γ1]
△
=

1 + γ1
1 + γ1 exp (−γ0 |i− j|) (10)

The p-th degree Chebyshev polynomial of the first kind of
equation (11) has a multitude of numerical and algorithmic
properties as well as for being extensively employed in signal
processing and ML applications. Only the degree of these
polynomials needs to be defined, as its coefficients follow
automatically from either (11) or (12).

Hc [i, j; p]
△
=

2

1 + cos

�
p arccos

� |i− j|
2π

�� (11)

An alternative definition of Type I Chebyshev polynomials
to the trigonometric one of equation (11) is the second
order recursion shown in equation (12). The latter allows for
algebraic understanding of this class of polynomials

Tp (x)
△
=





2xTp−1 (x)− Tp−2 (x) , p ≥ 2

x, p = 1

1, p = 0

(12)

The Cauchy kernel of (13) is the frequency response of
a first order Butterworth filter in the frequency domain and
is extensively used in many ML applications like the t-SNE.
Its positive hyperparameter β0 is the relative weight of the
squared difference term, essentially defining a filtering radius.

Hy [i, j;β0]
△
=

1

1 + β0 (i− j)
2 (13)

From the above descriptions it follows that they have smooth
and differentialbe shape which can be controlled by a small
number of hyperparameters, which can be determine in some
cases by heuristics. This is paramount for clustering.

IV. RESULTS

In table V the results for each of the seven test cases
are shown. Specifically for each graph filter it has been
recorded the number of epochs necessary for the SOM to
converge according to the criterion of definition 1. The metrics
evaluation are explained throughout this section. Each column
has been normalized with respect to its maximum except the
power law exponents in order to provide better insight.
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Fig. 3. Topological error vs round percentage.

The number of iterations requires the definition of a conver-
gence criterion. One way to detect convergence is definition
1, assuming the cluster centroids do not cycle.

Definition 1 (SOM convergence): Training can stop when
the centeroids have not moved for three successive epochs.

In section is assumed that SOM training results in a cluster
set C. The latter consists of |C| clusters in total as in (14).

C
△
=

�
c1, . . . , c|C|

	
(14)

The topological error has been designed for SOMs and relies
heavily on their geometrical properties as definition 2 shows.

Definition 2 (Topological error): During epoch n the topo-
logical error is the fraction of data vectors assigned neither to
a cluster center nor to its neighboring neurons. Thus, they are
assigned to cluster periphery. Formally, this is shown in (15):

e [n]
△
=

|{vj ∈ V | loc (vj) ̸∈ {u∗ ∪ Γ (u∗)}}|
|V | (15)

Another clustering metric is cluster impurity, defined as the
average number of data points assigned to the right cluster. Its
computation implies knowledge of the ground truth.

Definition 3 (Cluster impurity): The cluster impurity Ω for
|C| clusters is the number of data points incorrectly assigned



TABLE V
GRAPH FILTER RESULTS (NORMALIZED).

Graph filter Epochs Topological Impurity Avg. Max Exponent* Curvature
No graph filter 162 0.1533 0.3319 0.1655 0.1833 1.9982 0.2141
Gaussian


σ2
0 = 1

�
109 0.0411 0.1714 0.2475 0.2682 2.6711 0.4315

Gaussian

σ2
0 = 0.5

�
117 0.0733 0.2140 0.2333 0.2561 2.5333 0.4122

Logistic (γ0 = 1) 128 0.1133 0.2355 0.2267 0.2399 2.2161 0.3618
Logistic (γ0 = 0.5) 141 0.1267 0.2412 0.2271 0.2475 2.1967 0.3881
Chebyshev I (n = 1) 152 0.1392 0.2619 0.2222 0.2321 2.1166 0.3717
Chebyshev I (n = 2) 121 0.1033 0.2233 0.2282 0.2542 2.3333 0.3925
Chebyshev I (n = 3) 144 0.1285 0.2416 0.2267 0.2418 2.2175 0.3867
Cauchy (β0 = 0.5) 127 0.1313 0.2391 0.2041 0.2350 2.1888 0.3612
Cauchy (β0 = 1) 137 0.1366 0.2549 0.1773 0.2133 2.1331 0.3450
* Not normalized

to a cluster c regardless of their true cluster. It approximates
the misclassification probability as shown in (16).

Ω
△
=

1

|C|
X

c∈C

|loc (v) = c ∧ v ̸∈ c|
|c|

≈ prob {loc (v) = c ∧ v ̸∈ c} (16)

A more general approach is that of the average inter-cluster
distance which requires only knowledge of the final result.
Although it is not directly interpretable, comparing its values
for different clustering schemes may well yield useful insight.

Definition 4 (Average inter-cluster distance): The average
inter-cluster quality d̄ for p clusters is the pairwise distance
between clusters. The latter is computed as the average dis-
tance between every possible pair of data points belonging to
either cluster. It is a measure of how discernible clusters are.

d̄
△
=

1|C|
2

�
X

(c,c′)

X

(v∈c,v′∈c′)

g (v,v′)
|c| |c′| (17)

Along a similar line of reasoning, the average maximum
inter-cluster distance of definition 5 is the averaged maximum
distance taken over all points taken from a cluster pair.

Definition 5 (Max inter-cluster distance): The average max-
imum intercluster distance is the maximum distance taken over
any two cluster data points and over all cluster pairs.

d
△
=

1|C|
2

�
X

max
(v∈c,v′∈c′)

[g (v,v′)] (18)

Computing the decay exponent as given in definition 6
gives insight into the velocity of the convergence in terms
of topological error reduction. This requires a convergence
model, in this case a power law. Such models are closely
associated with learning on graphs and with human activity.

Definition 6 (Decay exponent): The power law model for
the reduction of the topological error is given in (19). The
exponent γ0 determines the convergence rate in epoch n.

v [n]
△
= α0n

γ0 (19)

One way to compute the exponent γ0 of velocity model
(19) is to linearize it as in equation (20) and fit a least squares
model to it with α0 as a nuisance parameter.

ln v [n] = lnα0 + γ0 lnn (20)

The last metric is derived from the geometric properties of
SOMs as it is based on averaging the curvature variance of
the cluster boundaries, essentially evaluating cluster flexibility.
First, for a given cluster the variance of the curvature of each
peripheral point and then these variances are averaged.

Definition 7 (Cluster curvature variance): The average
curvature variance for a cluster set C is the arithmetic mean
over the number of clusters of the curvature variance of the
points at the boundary of each cluster as shown in (21).

K
△
=

1

|C|
X

c∈C

K1 (c)

K1 (c)
△
=

1

|Π (c)|− 1

s X

u∈Π(c)

(ω (u)−K2 (c))
2

K2 (c)
△
=

1

|Π (c)|
X

u∈Π(c)

ω (u) (21)

The periphery Π (c) of a cluster c is defined as the set of its
points with at least one neighbor assigned to another cluster. In
equation (21) the last two branches compute the deterministic
variance of K (c) for a cluster c, whereas the first branch
averages them over every cluster in cluster set C. The local
approximation of curvature at a neuron u in the boundary of
a cluster c is given in (22). It is a measure of elasticity at the
location of u, which is a building block of cluster flexibility.

ω (u)
△
=

ω2 (u)�
1 + (ω1 (u))

2
�3/2

(22)

The inspiration for (22) is the definition of curvature κ for
a continuous and twice differentiable function f (x) as shown
in equation (23). As the SOM grid is discrete, the derivative
approximations of (24) and (26) can be computed.

κ
△
=

f (2) (x)
�
1 +


f (1) (x)

�2�3/2
(23)

The first derivative f (1) (x) of (23) at neuron u is approxi-
mated by the discrete quantity of equation (24).

ω1 (u)
△
=

1

|Ψ (u)|
X

v∈Ψ(u)

g (weight (u) ,weight (v)) (24)



The set of neurons Ψ (u) is the neurons neighboring u which
also belong to the same cluster.

Ψ (u)
△
= {v | v ∈ Γ (u) ∧ v ∈ c} (25)

Along a similar line of reasoning the second derivative
f (2) (x) in equation (23) is approximated as in equation
(26) by the second order differences taken over all possible
trajectories in the SOM grid leading to neuron u.

ω2 (u)
△
=

1

2 |Ψ (u)|
X

v∈Ψ(u)

X

s∈Ψ(v)

ω1 (u, v)− ω1 (v, s)

|Ψ (v)| (26)

From the entries of table V the following conclusions
can be drawn. The Gussian graph filters achieve the best
performance in the sense that they quickly generate the most
compact clusters. This can be attributed to the more flexible the
Gaussian kernel has plus its increased smoothness. Concerning
the inverse polynomials, the quadratic ones seem to outperform
the cubic one which in turn are better to the linear one. Among
the inverse quadratic kernels the Chebyshev type I attains
better scores. This can be attributed to the fact that they are
derived from optimality criteria, whereas the Cauchy kernel
was designed for robustness. The logistic kernels achieve an
intermediate performance between the quadratic polynomials.

Regarding the role of geometry, different combinations of
neighborhood and weight functions can lead to various cluster
shapes in C. To this end, shapes like squares and triangles
are generally not preferred as they are less smooth, whereas
circles and Gaussian shapes are more common as long as the
corresponding parameters are such that cluster boundaries are
continuous.

V. CONCLUSIONS AND FUTURE WORK

This conference paper focused on the development of graph
filters for clustering graphs with self organizing maps (SOMs)
where each such graph is a data point containing structural,
functional, and psychological attributes describing human per-
sonalities, as they are reflected in writing. Clustering took
place according to the MBTI taxonomy, which is based on
Jungian personality theory. The novelty of this work is that
each personality is not represented by a vector but by a graph
where vertex proximity implies semantic one. This allows for
greater flexibility when discovering clusters in the data set.
The SOMs were selected because geometry plays a central
role through the respective topological properties of both the
original data space and the neuron grid. The results, obtained
from MBTI dataset posted on Kaggle indicate the superior
performance of the Gaussian graph filter.

The methodology proposed here can be extended in a
number of ways. First and foremost, the topology of the graphs
representing personalities can be changed to include more
attributes or new interactions between them. Especially the
latter can imply new edges, possibly weighted. Additionally,
graphs are by definition an irregular domain in contrast to,
for instance, images. Graph filters take this into account
by adjusting their structure accordingly, which may well be

another research direction. Finally, larger datasets can reveal
possible scalability issues of the proposed methodology but
they can also hint at ways to circumvent this since graph filters
can be applied locally in parallel.
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