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Abstract: Educational AI systems often do not employ proper sophistication techniques to
enhance learner interactions, organize their contextual knowledge or even deliver person-
alized feedback. To address this gap, this paper seeks to reform the way ChatGPT supports
learners by employing fuzzy memory retention and thematic clustering. To achieve this,
three modules have been developed: (a) the Fuzzy Memory Module which models human
memory retention using time decay fuzzy weights to assign relevance to user interactions,
(b) the Schema Manager which then organizes these prioritized interactions into thematic
clusters for structured contextual representation, and (c) the Response Generator which
uses the output of the other two modules to provide feedback to ChatGPT by synthesiz-
ing personalized responses. The synergy of these three modules is a novel approach to
intelligent and AI tutoring that enhances the output of ChatGPT to learners for a more per-
sonalized learning experience. The system was evaluated by 120 undergraduate students
in the course of Java programming, and the results are very promising, showing memory
retrieval accuracy, schema relevance and personalized response quality. The results also
show the system outperforms traditional methods in delivering adaptive and contextually
enriched educational feedback.

Keywords: fuzzy logic; adaptive learning systems; generative AI in education; ChatGPT;
memory retention; programming education; personalized education

1. Introduction
Personalized education encompasses adapting to learners’ personal needs and pref-

erences, such as prior knowledge and learning style [1,2]. Specifically, learning computer
programming, such as the Java language, presents several challenges due to the complexity
of the language [3]. Indeed, Java has a rich feature set, including, among others, concepts
of object-oriented programming, multithreading and exception handling, and thus requires
learners to grasp foundational and advanced concepts in a structured manner. Beginners of-
ten face obstacles in understanding basic syntax or control structures, while more advanced
learners may face difficulties in optimizing code and implementing design patterns. As
such, the different learners’ skill levels pose a barrier to traditional educational software to
adapt to their individual needs, specifically in programming education. On top of that, in
Java, concepts like problem solving or debugging demand contextualized feedback tailored
to each learner’s progress. So, the idea of “one size fits all” seems to not be valid, and even
personalized learning approaches need refinement for further enhancing the adaptivity to
learners and providing them with contextual support.

In particular, this necessity for adaptive systems that mimic human-like memory reten-
tion and contextual understanding becomes highly relevant within the modern framework
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of education, especially in programming education [4]. Human memory intrinsically has
a dynamic nature, emphasizing the latest and most relevant information while naturally
forgetting the outdated or less important details [5]. This natural process helps humans
avoid distraction from current tasks by not having to pay attention to irrelevant information.
This is again an essential capability of educational artificial intelligence in the pursuit of
providing personalized learning experiences that work. The adaptive systems will need to
remember some important user interactions and adapt their content delivery with progress
in learning and provide responses contextualized to a history of interaction with the learner.
Moreover, it will also, with the contextual understanding, allow those systems to provide
some related topics structured and thematically approached in such a way that meaningful
clustering should offer a proper manner of learning [6]. Such a combination-insured mem-
ory retention together with the contextual adaptability provide learners timely, relevant,
and personalized support for better learning and improved learning engagement.

Most of the existing educational AI systems lack the power to prioritize recent and
relevant interactions and lay a basis for remembering contextual knowledge for long
periods in adaptive ways [7–10]. Many of them either rely on static memory structures or
have no retention of long-term context, and responses are totally incapable of reflecting
learner progress or evolution in their needs [11]. For example, interactions that were made
on previous sessions are usually lost and thus cannot build upon the prior knowledge let
alone detect recurring difficulties. Also, the mechanism for distinguishing between high-
priority recent interactions and older ones with less relevance in current conversational
flow eludes existing models [12]. This lack of adaptive memorization impairs the system’s
ability to tailor learning experiences, especially in rich domains such as programming
education, where context and progress are paramount. These gaps can only be filled with
dynamic memory systems that genuinely mimic human-like forgetting and prioritization
to ensure that learners receive timely and contextually aware support [13].

This paper contributes the Fuzzy Memory Network that models memory retention
through the application of fuzzy weights, hence simulating human-like forgetting to
dynamically prioritize recent and relevant interactions. The system applies fuzzy logic
in computing retention weights for user interactions regarding recency and contextual
importance to thereby support the gradual decay of memory relevance over time. The
fuzzy retention mechanism will ensure that the system stays focused on interactions that
are most relevant to the learner’s current progress, deprioritizing older or less relevant
details without discarding them. The system further enhances contextual understanding
by employing a Schema Manager to perform the thematic clustering of related interactions.
This component groups user interactions into meaningful schemas based on semantic
similarity, creating a structured and dynamic framework for knowledge organization. These
thematic clusters enable the system to provide richer and more cohesive educational content,
aligning retrieved materials with the learner’s ongoing queries and prior interactions. The
clustering approach ensures that the retrieval process is both efficient and contextually
relevant, supporting personalized and progressive learning pathways. These components
are tightly integrated with a generative AI model, specifically ChatGPT, for delivering
personalized and context-aware responses. The Fuzzy Memory Network and Schema
Manager collaboratively provide enriched input to ChatGPT, equipping it with user-specific
contextual knowledge and prioritized interactions to enhance the quality of response.
This integration will enable the generative model to build responses that incorporate not
only historical learner interactions but also their present needs, closing the gap between
static educational systems and adaptive learning environments. By incorporating fuzzy
memory retention, thematic clustering, and generative AI capabilities, the proposed system
addresses key shortcomings of educational frameworks in use today, allowing for a scalable,
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personalized, and contextually enriched learning experience that responds to the complexity
of programming education.

2. Related Work
The concept of memory in AI systems plays a pivotal role in enabling long-term

interaction and dynamic learning. In conversational AI systems [14–19], memory is often
implemented as a static or short-term mechanism, where interactions are limited to a fixed
context window. For example, ChatGPT can only store context up to the scope of the
present session and has no memory to recollect previous sessions as soon as it is closed.
This prevents continuity and continuity to the previous interaction of the users, making
their effectiveness in personal education somewhat minimal. Traditional educational AI
systems, like Intelligent Tutoring Systems (ITSs), depend on a predefined knowledge base
and a static rule-based approach for the delivery of instructional content [20–27]. Since
these systems focus more on structured lessons and guide learners through personalized
guidance, they lack the adaptive memory mechanism, which may reflect recency, relevance,
and user-specific learning trajectories. More significant shortcomings of standard models
have spurred attempts to alleviate these issues: augmenting them with external memory
modules either in the form of attention mechanisms or knowledge graphs that can retain
interaction histories more elaborately. Nonetheless, these often fail to adequately model the
important aspect of gradually forgetting the irrelevant information such as human memory.
This gap underscores the need for more dynamic memory systems capable of retaining,
prioritizing, and decaying information in a human-like manner, especially in domains like
programming education where contextual progression is critical.

Fuzzy logic has emerged as one of the powerful tools in the modeling of AI that
expresses gradual changes and manages uncertainties inherent in real-world scenarios.
Unlike binary logic, relying on crisp true-or-false states, fuzzy logic allows systems to
represent information with partial memberships. This enables nuanced decision making
and adaptability. This feature makes fuzzy logic especially apt for applications in dynamic
transitions like adaptive systems, user modeling, and decision support systems in vari-
ous fields, including education [28–38]. One of the applications of fuzzy logic is in the
PARSAT system [32], where weights with fuzzy application model student knowledge lev-
els. PARSAT uses the trapezoidal membership function in defining states of knowledge and
therefore allows it to dynamically adjust instructions as the learner moves along the knowl-
edge chain. This will help capture the continuity of human learning, whereby transitions
across knowledge levels are not abrupt but rather smooth. In addition to education, fuzzy
logic has also found other applications in control systems, robotics, and natural language
processing for handling uncertainty and variability. In the context of memory retention,
fuzzy logic provides a promising framework for modeling time decay and prioritization,
as it can dynamically assign relevance to interactions based on recency and other factors.
Despite its potential, the application of fuzzy logic in personalized programming education
remains underexplored, offering a fertile area for innovation.

Thematic clustering and contextual organization, often referred to as schema-based
learning, have gained prominence as effective techniques for managing and retrieving
information in AI systems [39–45]. Inspired by cognitive psychology, schemas are frame-
works for organizing related knowledge into coherent structures, allowing both humans
and machines to generalize and adapt to new situations. Schema-based learning has been
highly used in many applications of AI, including recommendation systems, knowledge
management, and dialogue systems. For instance, the use of knowledge graphs usually
relies on clustering algorithms that group semantically similar concepts together so that a
system can offer more contextualized responses. Educational AI systems have also con-
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sidered the application of schemas in organizing instructional content to ensure related
topics are presented sequentially and in context. For instance, a tutoring system might
cluster concepts like “loops”, “conditionals”, and “iterations” into a “control structures”
schema to enhance contextual learning. Advances in natural language processing have
further facilitated schema formation by enabling systems to calculate semantic similarity
between interactions using embedding techniques, such as cosine similarity. However,
while schema-based learning has proven effective in enhancing contextual relevance, ex-
isting systems often lack integration with dynamic memory mechanisms. Thus, they lack
responsiveness to shifting user requirements and also do not prioritize current important
interactions that tend to reduce their usages in teaching programming.

There is still a big gap to fill between integrating fuzzy memory retention and schema-
based contextual learning into personalized programming education [46]. Existing conver-
sational and educational AI systems, as presented earlier, are either too rigid, with static
knowledge bases, or too transient, discarding past interactions once a session ends. Al-
though fuzzy logic has seen many applications in the context of adaptive learning systems,
when modeling knowledge states, very few are those applications focusing on memory
retention and time decay [47]. Likewise, schema-based clustering was successfully applied
for organizing related content but is generally unaware of the prioritization mechanism
concerning the memorization and therefore unable to adapt dynamically with regard to
recency and relevance. The intersection of these approaches—combining fuzzy memory re-
tention with thematic clustering—offers immense potential for addressing the diverse and
evolving needs of programming learners. A system that integrates these elements could em-
ulate human-like memory, prioritizing recent and important interactions while organizing
knowledge contextually to facilitate a tailored and adaptive learning experience. This paper
fills this gap by proposing a Fuzzy Memory Network that bridges these methodologies,
delivering personalized and context-aware education for Java programming.

3. System Architecture
The proposed system involves three modules including the Fuzzy Memory Module,

Schema Manager, and Response Generator. To generate context-rich personalized edu-
cational responses, modules integrate one with another such that human-like memory
retention happens, combining knowledge within the blocks and response generation by
selecting appropriate responding contexts to their learners. Therefore, the coordination of
the modules is illustrated in Figure 1 and briefly described below:

• Fuzzy Memory Module:
This module captures and holds user interactions by fuzzy weights that simulate
memory decay and focus on recent relevant information. It emulates human-like
forgetting by granting degrees of relevance to memories over time, so that the system
concentrates on interactions which are most relevant to the query at hand.

• Schema Manager:
The Schema Manager categorizes retrieved memories into thematic clusters called
schemas. Clustering related interactions by contextual similarity allows the module to
structure knowledge dynamically and create a strong representation of the learner’s
progress and areas of focus.

• Response Generator:
The Response Generator synthesizes information from the Fuzzy Memory Module
and Schema Manager to create personalized responses generated using a generative
AI model (ChatGPT), hence ensuring relevance to the current query of the learner and
enriched by past interactions.
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The system works together in an integrated process to provide interactive, person-
alized responses dynamically for training purposes. To better understand system func-
tionality, suppose a learner posts the question to the system on how to “iterate over the
array in Java”. The Fuzzy Memory Module immediately identifies and recovers relevant
interaction history. Based on values of their fuzzy weights, this reflection of interaction
recency and relevance is put across, thus, ensuring that, for example, last queries for “loops”
and “arrays” are given relevant importance.

The Schema Manager then takes over, organizing these retrieved interactions into
meaningful thematic clusters or schemas. Here, relevant interactions are then grouped
within a “Control Structures Schema” providing a structured context that aligns with
the learner’s query. This further helps the system understand the broader topic and the
relationships among the pieces of information retrieved.

Finally, the Response Generator creates a customized response based on the result
of the memory retrieval as well as the schema organization. Combining the immediate
query with the historical context of the learner and his/her progress can give an enriched
explanation such as detailed steps of applying for-loops with arrays in Java.

The integration of modules allows the system to be responsive to the learners’ needs
and provide support in a contextual manner, hence making the educational experience
both personalized and responsive.

A three-module framework—Fuzzy Memory Module, Schema Manager, and Response
Generator—is proposed for the design of such a system. Unlike traditional, rule-based
Intelligent Tutoring Systems or LLM tutors which discard memory associations with
previous instances, it is designed to constantly search for the most recent text or interaction
and then systematically cluster these, by theme, into schemas It also adjusts them according
to the different semantics that arise as learners progress from one section of a lesson to
another. When external data retrieval methods (like memory-based models) lack natural
continuity, relevance of response, and the capability for flexible adaptation, this leveled
approach provides what retrieval-based AI models miss. But our system is not static
like the analogs of 2024–2025, which retrieve without prioritizing externally generated
knowledge, nor are these LLM tutors able extend long-term changes. In the personalization
and semantic retrieval front, it presents an integration of fuzzy memory retention with
scaffold retrieval systems. While this architecture increases the computational burden
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and relies on finely tuned similarity thresholds, it significantly enhances adaptability in
learning, coherence in presentations, and the situationality of interactions, bridging the
gulf between generative AI fluency and structured pedagogical support.

3.1. Fuzzy Memory Module

The system’s backbone is the Fuzzy Memory Module, which models memory retention
through fuzzy logic. This approach thus follows human memory dynamics in defining
smooth transitions between states of recency, intermediate retention, and forgetting. Every
interaction will be weighted with respect to time, using fuzzy membership functions that
provide relevance in accord with when the interaction occurred. The system assigns a
value to a memory based on metadata captured during the interaction with the user. This
value captures when the interaction occurred and is thus captured as part of the memory
record within the system’s database. Every time a user interacts with the system in quest
of an answer to a query, by giving some feedback, or providing an answer to a query, the
system captures that interaction as a “memory”. Apart from the interaction content, the
system logs metadata, including the precise timestamp (ti), i.e., the date and time of the
occurrence, the interaction type, i.e., query, clarification request, or feedback, and other con-
textual information, such as the topic or schema to which the interaction is associated, i.e.,
“Control Structures” or “Object-Oriented Programming”. These interactions are committed
to a structured memory repository that holds metadata such as a unique identifier, the
timestamp, and contextual embeddings that capture the semantic content of the interaction.
When a new query is processed, the Fuzzy Memory Module recalls relevant memories
from the repository by extracting the elapsed time (∆t = t − ti, where t is the current time)
and, if needed, computing semantic similarity to further filter relevance. This elapsed
time is taken as input for the predefined membership functions—Recent, Intermediate,
and Forgotten—and evaluates the memory’s relevance degree, thereby helping the system
determine its priority for retrieval based on temporal thresholds and contextual significance.
Figure 2 presents membership functions scheme.
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The Recent membership function manages to incorporate interaction relevance from
when the events occur within the last 7 days. This gives full membership (µR = 1) to
interactions that occurred within the first 3 days, representing peak relevance. The relevance
then decreases linearly from day 3 to day 7, after which the membership becomes zero.

µR(t) =


1, i f t ≤ 3

7−t
7−3 , i f 3 < t < 7

0, i f t ≥ 7

where t is the number of days since the interaction occurred.
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Between day 0 and day 3 (t ≤ 3), the interaction is at its maximum importance
(µR = 1). From day 3 to day 7, the interaction’s relevance decreases in a linear way until it
reaches µR = 0 at =7.

The Intermediate membership function (µI(t)) denotes interactions that occurred
between 5 and 45 days ago, reflecting medium-term retention. The relevance rises gradually
from day 5 to day 15, stays at peak membership (µI = 1) from day 15 to day 30, and then
decreases linearly until day 45.

µI(t) =



0, i f t ≤ 5
t−5

15−5 , i f 5 < t ≤ 15
1, i f 15 < t ≤ 30

45−t
45−30 , i f 30 < t ≤ 45

0, i f t > 45

The interaction begins to gain relevance from day 5 to day 15 as it transitions into the
intermediate memory range. Between day 15 and day 30, the interaction achieves peak
relevance (µI = 1), highlighting the role of medium-term retention in reinforcing knowledge.
After day 30, relevance gradually diminishes, eventually reaching µI = 0 at t = 45.

The Forgotten membership function (µF(t)) addresses interactions older than 30 days,
representing long-term memory. The membership remains zero for interactions up to day
30 and then increases linearly between days 30 and 60. Beyond day 60, it stabilizes at its
maximum value (µF = 1).

µF(t) =


0, i f t ≤ 30

t−30
60−30 , i f 30 < t ≤ 60

1, i f t > 60

Memories begin to transition into the “Forgotten” range after day 30 with relevance
gradually increasing as t approaches day 60. After day 60, the interaction is fully considered
in the forgotten state (µF = 1), though it may still be retrieved if deemed relevant.

The specific time thresholds in the Fuzzy Memory Module are derived from empirical
research on memory retention, notably the replication of Hermann Ebbinghaus’s forgetting
curve. In [48], it was shown that memory retention declines rapidly within the first few
days of learning with a significant drop occurring in the initial 24 h. This sharp early decline
justifies the inclusion of the “Recent” membership function, covering the first 7 days, to
emphasize the critical period for memory reinforcement. Subsequently, the “Intermediate”
membership function spans 5 to 30 days, reflecting a period where, although the rate of
forgetting slows, ongoing review is essential for transitioning information into long-term
memory. The “Forgotten” membership function is how the member is treated after 30 days—
that is, the period when, if not refreshed periodically, information will be forgotten. The
time periods are put together to simulate natural memory decay defined by Ebbinghaus [49]
in this way so the system can rank information for retrieval in a manner consistent with
human cognitive processes.

Thus, the calculation of fuzzy weights is an essential operation that defines how much
a memory at any time t is relevant. It will depend on the output of the three membership
functions Recent (µR(t)), Intermediate (µI(t)), and Forgotten (µF(t)), which define how the
system models the relevance of the memory’s course of change in time. With the outputs of
the mentioned membership functions, the system makes use of the maximum operator for
ensuring the best state selection for this memory.
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The fuzzy weight of a memory at time t is given by

M(t) = max(µR(t), µI(t), µF(t))

where µR(t) is the membership value for the Recent state, µI(t) is the membership value for
the Intermediate state, and µF(t) is the membership value for the Forgotten state [49].

The primary reason for the application of triangular membership functions is their
computational efficiency and simplicity as well as their educational similarity with the
human memory decay models. The triangular function is performed piecewise linearly fast,
while the sigmoidal or Gaussian function needs complex hyperparameter tuning, despite
performing well on modeling gradual forgetting, as predicted by the Ebbinghaus curve.
Their flexibility, along with low computational overhead, make them suitable for use in
modeling memory retention processes in real time.

Let us demonstrate the procedure of the calculation of the fuzzy weight by taking into
account an interaction that occurred 10 days ago. Its membership values are evaluated
against three states: Recent, Intermediate and Forgotten. Starting with the Recent member-
ship function (µR(t)), which is active for interactions occurring between 0 and 7 days, the
membership value decreases linearly from 1 at t = 3 to 0 at t = 7. Since t = 10 falls outside
this range, the value of µR(10) is 0, indicating that the interaction is no longer recent.

For the Intermediate membership function (µI(t)), which applies to interactions be-
tween 5 and 45 days, the membership value rises linearly from t = 5 to t = 15, remains
at its peak between t = 15 and t = 30, and then decreases linearly until t = 45. At t = 10,
the interaction lies within the initial rising phase of this function. Substituting into the
formula, µI(10) = t−7

15−7 = 10−7
8 = 0.375. This indicates that the interaction holds moderate

importance in the intermediate memory range.
The Forgotten membership function (µF(t)) is relevant only for interactions occurring

after 30 days. Since t = 10 lies outside this range, the value of µF(10) is 0, reflecting that the
interaction has not yet transitioned into the forgotten state.

To calculate the fuzzy weight, the maximum operator is applied to the membership values:

M(10) = max(µR(10), µI(10), µF(10)) = max(0, 0.375, 0) = 0.375

This result indicates that the interaction is moderately prioritized, which is primarily
due to its intermediate relevance. While the interaction is no longer recent and has not yet
reached long-term retention, its position within the Intermediate memory range makes
it valuable for retrieval. This example demonstrates how the fuzzy weight calculation
dynamically captures the relevance of an interaction over time, ensuring that the system
prioritizes information based on its cognitive significance and time-decayed importance.

3.2. Schema Manager

The Schema Manager is tasked with organizing the retrieved memories into thematic
clusters, known as schemas, to enrich contextual understanding and provide a structured
framework for the learning experience. This process builds upon the output of the Fuzzy
Memory Module, which delivers a prioritized set of high-weighted memories based on
their time-decayed relevance. In this manner, using these prioritized memories, the Schema
Manager maximizes the interactions of higher interest, grouping them in the thematic coher-
ent clusters embodying the relationships and context among related pieces of knowledge.
Organization in this manner enables the system to return responses not only relevant to the
immediate question but also grounded in a more profound contextual understanding.

Schema formation begins with the retrieval of the top N memories from the Fuzzy
Memory Module. These pre-fuzzy-weighted memories are the input to the Schema Man-
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ager’s organization process. To identify relationships among the retrieved memories, the
system calculates pairwise similarities using cosine similarity. This is a standard metric in
natural language processing that measures the semantic closeness of two vectors. For two
memory embeddings vi and vj, cosine similarity is calculated as

Sij =
vi·vj

||vi||
∣∣∣∣vj
∣∣∣∣

where Sij represents the similarity score, and vi and vj are the embedding vectors represent-
ing the semantic content of memories i and j [50]. A high similarity score of two memories
will thus reflect that these are sharing either contextual or thematic overlap.

With these similarity scores, the system clusters memories into schemas by applying a
preset likeness threshold. For example, if Sij > 0.8, the memories i and j are contextually
similar, so they are akin to being grouped within the same schema. This threshold limits
the number of nearly related memories into a single group but keeps the thematic integrity
within each schema. For example, interactions involving “for-loops”, “while-loops”, and
“arrays” lead to a “Control Structures Schema”, which is a coherent group of programming
concepts. This type of clustering provides the learners with more detailed and contextually
appropriate answers since it allows the system to answer not only the query but also the
wider thematic associations surrounding the query.

The connection between the Fuzzy Memory Module and the Schema Manager is
integral to the system’s adaptive capabilities. The Fuzzy Memory Module ensures that the
most relevant interactions are prioritized, reflecting the learner’s recent activities and needs.
The Schema Manager builds on this foundation by structuring these prioritized memories
into logical groups, enabling a deeper understanding of the relationships between various
interactions. This collaborative process of the system must ensure that such a system
stays adaptable to what is immediately being needed while holding a robust framework
for contextual learning. With regard to memory retention and thematic organization,
the system allows for the rendition of personalized and precise responses that include
contextual enrichment.

In the system, thematic schemas are created on the fly based on semantic similarity
and hierarchical clustering, so that related interactions are more likely to be grouped into
coherent knowledge structures. Although it first provides a similarity score to evaluate
how semantically close two interactions are to each other (measured with cosine similarity),
schema boundaries are ultimately defined through agglomerative hierarchical clustering
that merges interactions into schemas using a constantly shifting similarity threshold.
It is important to note that this threshold is adaptive: whether or not a new schema is
formed is based on user interaction that does not have predetermined category boundaries.
Schema names, like the Control Structures Schema, are not assigned manually; this is a
hybrid automated generation process. First, clusters are assigned a label according to the
most common keywords within the interactions in the cluster. The deep-learning based
topic modeling labels are then optimized with embedding-based topic modeling so as to
represent broad pedagogical resonances. Crucially, the system is not built upon injected
seed schemas; rather, global thematic structures arise iteratively over time as interactions
build up. Such a formation of specific schemata remains adaptive to distributed, scalable,
and generalizable systems that together form capabilities beyond any pre-specified domain
of action. We can also consider improvements in the future, such as reinforcement learning
and user feedback systems, to enhance both schema clustering and boundary definitions.
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3.3. Response Generator

The Response Generator is the final system module and is tasked with integrating
inputs from both the Schema Manager and the Fuzzy Memory Module to produce contex-
tually rich and personalized responses. Its main role is to transform structured data into
coherent, pedagogically effective outputs tailored to the user’s query. This process involves
integrating prioritized memories, thematic clusters, and explicit guidance to ChatGPT,
ensuring the responses are accurate and consistent with the user’s learning history.

The Response Generator begins by gathering the relevant inputs:

• The Fuzzy Memory Module provides a ranked list of memories with fuzzy weights,
representing their relevance and recency. Each memory mi is associated with a fuzzy
weight M(mi,t), which is computed using membership functions for Recent, Interme-
diate, and Forgotten states.

• The Schema Manager delivers the thematic context by organizing these memories
into a selected Schema, Sj, which encodes related interactions and broader knowl-
edge structures.

To ensure the response is thematically aligned, the query is first matched to the most
relevant schema. This involves calculating the semantic similarity between the query
embedding Q and the centroid embedding Sj of each schema. The similarity is calculated
using cosine similarity:

Similarity
(
Q, Sj

)
=

Q·Sj

||Q||
∣∣∣∣Sj

∣∣∣∣
where Q is the query vector, and Sj is the centroid vector representing the average em-
bedding of the memories within schema Sj [51]. A predetermined threshold τ (τ = 0.8)
determines whether a schema is relevant. The choice for τ = 0.8 balances precision and
recall, ensuring that only highly relevant schemas are selected while excluding irrelevant
or weakly related ones. Only schemas with similarity scores exceeding this threshold
are considered.

Once the most relevant schema is identified, the Response Generator retrieves indi-
vidual memories within that schema, prioritizing those with higher fuzzy weights. The
relevance of a memory mi is calculated by combining its fuzzy weight M(mi,t) with its
semantic similarity to the query:

Relevance Score(mi) = α·M(mi, t) + β·Similarity(Q, mi)

where the following apply:

• α and β are scaling factors that balance the influence of the fuzzy weight and similarity.
• Similarity(Q,mi) is the cosine similarity between the query embedding Q and the

memory embedding mi.

Memories are then ranked based on their relevance scores with the highest-ranked
memories selected for the response. To ensure diversity and avoid redundancy, the system
applies a penalty to memories with high pairwise similarity:

Penalty
(
mi, mj

)
= max

(
0, Similarity

(
mi, mj

)
− δ
)

where δ is a threshold (δ = 0.9) to ensure content diversity. We apply δ = 0.9, because that
can actually diversify the contents while penalizing only the memories that have a very
high pairwise similarity.
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After selecting the relevant memories and thematic context, the Response Generator
structures the inputs into a formatted prompt for the generative AI model. The prompt
typically includes the following:

• The user’s query, explicitly stated.
• Annotated memories, such as

“Related memory: Using for-loops with arrays.”
“Related memory: Nested loops in Java.”

• Thematic insights from the matched schema, framing the response within the
broader context.

• Explicit instructions for the AI model in terms of level of analysis of the related memory.

For example, if the query is “How do I iterate over an array in Java?”, the input to the AI
would be the query, memories about loops, and thematic content on control structures with
an instruction to focus on for-loops and provide a concrete example.

The hyperparameters τ, α, β, and δ were set by means of empirical tuning and
ablation studies, while grid search optimization was applied for balancing memorization,
schematization, retrieval accuracy and computational efficiency, respectively. Regarding
memory decay factor (τ), a parameter for balancing the effect of old interactions where lower
values keep information for a longer time, τ = 0.85 was chosen to focus on more relevant
interactions without focusing too much on old data. Now based on value of α (schema
similarity threshold), the thematic clusters could be slight or too specific; the best tradeoff
between specificity and coverage is for α = 0.7, limiting excess fragmentation and schemas
being too broad at the same time. The response weighting factor β balances between the
old knowledge and the recent user demands with β = 0.6 being the optimal setting that
maintains coherence whilst not emphasizing old responses too much. Here, δ (retrieval
pruning threshold) filters low-relevance interactions, maintaining δ = 0.5 for a limiting
task time complexity with enough meaningful data content. All parameter ranges were
based on previous work performed on contextual retrieval models and iteratively refined
by testing alternative values (τ = {0.7, 0.85, 0.95}, α = {0.6, 0.7, 0.8} as functions of precision,
coherence, and schema stability). Although the present system provides hyperparameters
that are fixed and tuned to maximize performance, future work could also implement
adaptive tuning mechanisms, in which a dynamic adjustment of hyperparameters that are
most effective for real-time interaction patterns can enhance flexibility and personalization
even further.

As follows, the combined operation of the three modules is presented in a pseudocode
(Algorithm 1) that shows how a user query will be processed through the Fuzzy Memory
Module, Schema Manager, and Response Generator. Such details are going to define the
overall process involved in the retrieval of pertinent memories, their organization into
thematic schemas, and creation of enriched input to be used by ChatGPT for producing
pertinent, contextually relevant responses.

Suppose a user asks “How do I iterate over an array in Java”? The query is matched
to the “Control Structures Schema” with a similarity score of 0.85, exceeding the thresh-
old τ. The Response Generator retrieves the top memories within this Schema, such as
the following:

• Memory m1: “Using for-loops with arrays” (M(m1,t) = 0.8).
• Memory m2: “Difference between for-loops and while-loops” (M(m2,t) = 0.5). These

memories are combined with thematic content from the schema and passed to the
generative AI model, which produces a response like the following: “To iterate over an
array in Java, you can use a for-loop. Here’s an example: for (int i = 0; i < array.length;
i++) {System.out.println(array[i]);}. This builds on what we discussed earlier about
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for-loops and arrays.”

Algorithm 1. GenerateResponse(UserQueryContent UQC)

1. Retrieve relevant memories:
- For each memory in MemoryRepository:

- Compute FuzzyWeight based on memory timestamp
- Compute SimilarityScore between memory and UQC
- Compute RelevanceScore using weighted combination of FuzzyWeight and

SimilarityScore
- If RelevanceScore exceeds threshold:

-Add memory to RelevantMemories
2. Apply redundancy penalty:

- For each memory pair (Mi, Mj) in RelevantMemories:
- If similarity between Mi and Mj exceeds DiversityThreshold:

- Reduce relevance score of Mj by a penalty factor
- Rank memories by final relevance score

3. Organize ranked memories into thematic schemas:
- For each memory in RankedMemories:

- Assign it to the most relevant Schema
4. Select top N schemas:

- Compute SchemaRelevance for each schema based on UQC
- Select the top N schemas with the highest relevance scores

5. Construct structured input for ChatGPT:
- Initialize InputToChatGPT with user query
- For each selected schema:

- Append schema name and relevant memories
- Determine AnalysisLevel (Detailed or Brief) for each memory
- If Detailed, append full memory content
- If Brief, append summarized memory content

6. Generate final response:
- Call ChatGPT with structured input
- Return generated response

4. Results
This section presents the evaluation of the presented system, focusing on its per-

formance in memory retrieval, schema relevance, and response quality. The evaluation
employs quantitative metrics, qualitative assessments, and comparisons with baseline
systems for confirming the proposed method’s effectiveness. The study involved 120 un-
dergraduate students interacting with the system over a four-week period, generating
extensive data for analysis.

4.1. Evaluation Metrics

In this subsection, the evaluation metrics [52,53] that have been used are presented.

4.1.1. Memory Retrieval Accuracy

The Fuzzy Memory Module was assessed based on its ability to retrieve relevant
memories efficiently. Two metrics were employed:

• Precision@N: This evaluates the proportion of relevant memories among the top-N
retrieved. For instance, Precision@5 computes the fraction of relevant memories in
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the top five results. An improved Precision@5 measure indicates that the system is
ranking relevant memories first.

• Mean Reciprocal Rank (MRR): It measures how high the first relevant memory ranks
in the ranked retrieval list. For a given query, if the first relevant memory is at rank k,
the reciprocal rank is 1

k . The MRR is the average reciprocal rank across all the queries,
which reflects the ability of the system to retrieve relevant information at an early rank.

4.1.2. Schema Relevance

The Schema Manager was evaluated on its ability to organize and retrieve thematically
related clusters. Two metrics were used:

• Cluster Purity: This metric evaluates how homogeneous memories are within a
schema. Purity is greater if memories within a schema pertain closely to the identical
theme, signifying correct clustering.

• Query–Schema Match Precision: This measures the accuracy with which the system
selects the most relevant schema for a query. It is determined by comparing the
system’s selected schema with a manually annotated gold standard.

4.1.3. Response Relevance and Quality

The Response Generator was tested on its ability to produce personalized, contextually
rich responses:

• BLEU Score: It measures the overlap between the system-generated responses and
predefined reference answers. Improved BLEU scores indicate greater adherence to
the ground truth.

• Human Evaluation: Relevance, clarity, and personalization of system responses were
rated on a scale of 1 (poor) to 5 (excellent) on a Likert scale by a panel of evaluators.

4.2. Experimental Setup

The study involved 120 second-year undergraduate students (75 males, 45 females)
enrolled in a Java programming course at a public university in a capital city of the country.
The course included basic topics like loops, arrays, and object-oriented programming. The
students who were selected represented heterogeneous academic and demographic profiles.

Students used the system over four weeks in sessions designed to reflect real educa-
tional contexts, including the following:

• Concept Reinforcement: Students asked questions to revisit previously taught material.
• Exploration of New Topics: Queries were designed to extend knowledge, introducing

new material related to past concepts.
• Feedback and Review: The system provided explanations, feedback on assignments,

and guidance for further study.

The students received an average of 20 sessions, containing an average of 10 questions
per session, for a total of 2000 interactions that were recorded.

The dataset used for the evaluation was designed to align with the Java programming
curriculum and included the following:

• 1500 unique questions covering Java subjects such as loops, arrays, and object-
oriented principles.

• 3000 interaction logs recording varied student inquiries, extending from basic syntax
to conceptual rationale and code bits.

• Annotations: All sessions were annotated with timestamps, query details, and thematic
labels to evaluate memory retention and schema construction.
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To balance the dataset, half of the queries were directed toward reinforcing previously
taught material, while the other half explored new concepts connected to earlier concepts.
Semantic embeddings for queries and memories were precomputed using a transformer-
based model to facilitate similarity calculations.

The system was compared against two baseline approaches:

• Baseline 1 (Keyword-Based Retrieval): A simple retrieval system that matches queries
to stored memories based on keyword overlap without considering fuzzy weights or
thematic clustering.

• Baseline 2 (ChatGPT-Only): ChatGPT that generates responses based solely on the
user query, without leveraging memory prioritization or schema organization.

Forty students (25 males and 15 females) interacted with each one of the three systems
(presented system, Baseline 1 and Baseline 2).

4.3. Results Analysis
4.3.1. Results for Memory Retrieval Accuracy

The performance of the Fuzzy Memory Module was quantified using Precision@5 and
MRR. The results are presented in Table 1.

Table 1. Precision@5 and MRR results.

Metric Presented System Baseline 1 (Keyword-Based) Baseline 2 (Chat-GPT)

Precision@5 88% 63% 71%
Mean Reciprocal Rank (MRR) 0.81 0.58 0.66

The Precision@5 value was calculated by taking the proportion of relevant memories
retrieved within the top 5 ranked results for each query. To accomplish this, we manually
labeled the relevance of memories in the dataset based on their overall correspondence to
the user query and overall context. For a particular query, if five memories were retrieved
and four of them were relevant, the Precision@5 score for that query was 4

5 = 0.8. The final
Precision@5 value of 88% for the proposed system is the average across all queries, which
was calculated as

Precision@5 =
1
|Q|

|Q|

∑
i=1

Number o f relevant memories in Top 5
5

where |Q| is the total number of queries evaluated.
The MRR measures how early in the ranked list the first relevant memory appears. For

each query, if the first relevant memory is at rank k, the reciprocal rank is 1
k . For example, if

the first relevant memory for a query appears at rank 2, the reciprocal rank is 1
2 = 0.5. The

final MRR value of 0.81 was calculated by averaging the reciprocal ranks across all queries:

MRR =
1
|Q|

|Q|

∑
i=1

1
ki

where ki is the rank of the first relevant memory for query i.
The proposed system outperformed both baselines significantly. The Precision@5 score

of 88% indicates that nearly nine out of ten retrieved memories were relevant, reflecting
the effectiveness of fuzzy weights in prioritizing recent and contextually appropriate
interactions. The MRR score of 0.81 further highlights the system’s ability to rank relevant
memories near the top of the list.
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Baseline 1 could not retrieve relevant memories since it relied on exact keyword
matches and overlooked semantic nuances. Baseline 2 performed better, but without fuzzy
weights, it was less effective in prioritizing recent interactions, which resulted in lower
precision and MRR.

The high Precision@5 and MRR values indicate that the Fuzzy Memory Module effec-
tively prioritizes recent and contextually relevant interactions, outperforming the baselines.
Baseline 1 performed poorly in Precision@5 and MRR since it relied on exact keyword
matching, which often failed to capture semantic nuances. Baseline 2 performed moderately
better but lacked the prioritization provided by fuzzy weights, thus scoring lower.

4.3.2. Results for Schema Relevance

The Schema Manager’s performance in clustering and selecting thematic groups was
evaluated using cluster purity and query–schema match precision. Table 2 summarizes
the results.

Table 2. Cluster purity and query–schema match precision results.

Metric Presented System Baseline 1 (Keyword-Based) Baseline 2 (Chat-GPT)

Cluster Purity 0.91 0.68 0.75
Query–Schema Match Precision 85% 57% 70%

The cluster purity metric measures the thematic coherence of memories within each
schema. For each cluster, purity was calculated as the fraction of memories that belong to
the dominant theme within that cluster. For example, if a schema contained 10 memories
and eight of them were correctly labeled as “Control Structures”, the cluster purity for
that schema would be 8

10 = 0.8. The overall purity score of 0.91 for the proposed system
represents the weighted average of purity scores across all schemas, which was calculated as

Cluster Purity =
∑
|S|
j=1 nj·Purity o f Schema Sj

∑
|S|
j=1 nj

where |S| is the total number of schemas, and nj is the number of memories in Schema Sj.
The query–schema match precision evaluates how often the Schema Manager selected

the most relevant schema for a query. Relevance was determined by comparing the selected
schema against a manually labeled ground truth. For example, if a query like “How do
I use nested loops?” was matched to the “Control Structures Schema”, and this schema
was labeled as correct, it contributed to the precision. The overall precision of 85% was
calculated as

Query − Schema Match Precision =
Number o f Correctly Matched Schemas

Total Queries

The proposed system demonstrated strong clustering capabilities, achieving a cluster
purity score of 0.91. This indicates that the memories grouped within each schema were
highly thematically coherent. The query–schema match precision of 85% reflects the sys-
tem’s ability to accurately match queries to the most relevant schema, enabling contextually
enriched responses.

Baseline 1 failed to organize memories into meaningful clusters due to its lack of
semantic understanding, resulting in poor cluster purity and match precision. Baseline
2 performed moderately well but lacked the structured thematic grouping provided by the
Schema Manager.
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The results demonstrate the Schema Manager’s superior clustering and matching
capabilities. Baseline 1 performed poorly due to its inability to group memories thematically,
while Baseline 2 achieved moderate performance but lacked the structured organization
provided by schemas.

4.3.3. Results for Response Relevance and Quality

The responses generated by the system were evaluated using BLEU scores and human
ratings. Table 3 presents the results.

Table 3. BLEU scores and human ratings.

Metric Presented System Baseline 1 (Keyword-Based) Baseline 2 (ChatGPT)

BLEU Score 0.79 0.53 0.67
Relevance (Human Score) 4.6/5 3.8/5 4.2/5

Clarity (Human Score) 4.5/5 3.7/5 4.0/5
Personalization (Human-Score) 4.4/5 3.5/5 3.9/5

The BLEU score measures the n-gram overlap between system-generated responses and
reference responses. For each response, BLEU was computed using the following formula:

BLEU = BP·exp

(
N

∑
n=1

wnlogpn

)

where BP is the brevity penalty, wn is the weight for n-grams, and pn is the precision for
n-grams of size n. The BLEU score of 0.79 for the proposed system reflects a high level of
similarity between generated responses and ground-truth answers. The lower BLEU scores
for the baselines indicate that their responses were less aligned with the reference answers.

Human evaluation involved ten independent evaluators, all of whom are professors
in the field of AI in education with over 25 years of experience. They rated responses on
relevance, clarity, and personalization using a 5-point Likert scale. The evaluators have the
user query, the response generated, and the context of the interaction to ensure a complete
and expert assessment of the output by the system.

Ratings for relevance judged the level at which the response was able to address the
query, whereas clarity referred to ease of understanding. Personalization evaluated to what
extent a response was similar to what had been generated in the user’s past learning history.
The proposed system consistently obtained top ratings, since fuzzy weights and thematic
clustering together generated responses fitting a user’s context.

The proposed system achieved the highest BLEU score (0.79), indicating strong align-
ment with reference responses. Human evaluators praised the system’s ability to incor-
porate prior context and tailor responses to the user’s learning history, awarding average
scores of 4.6/5 for relevance, 4.5/5 for clarity, and 4.4/5 for personalization.

Baseline 1 produced generic responses that lacked coherence and contextual depth,
while Baseline 2 delivered more relevant answers but failed to personalize them effectively
due to its reliance on query-only input. That means that Baseline 1 performed poorly across
all metrics due to its generic and often irrelevant responses. Baseline 2 achieved moderate
performance but failed to deliver personalized outputs, as it relied solely on the user query
without considering prior interactions or thematic context.

5. Discussion
Through the evaluation of the proposed system, it will be able to prove that the latter

has major contributions to personalized education technology. Apart from showing that
it can generate responses which are relevant and tailor-made for the students’ needs, the
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result can also confirm its design features, combining fuzzy weights with memory retention
and thematic clustering in order to understand the context better. Further discussions on
the implication of the results compared to existing results will provide knowledge about the
deficit of the proposed system and would provide good avenues for future improvements.

The comparison results shown in Tables 1–3 prove the helpfulness of our system
compared to generative AI models, especially ChatGPT-only tutoring (Baseline 2). Al-
though generative AI generates fluent and syntactically correct responses, it lacks context
remembering, personalized feedback and the structured retrieval of knowledge. In Table 1,
we observe that the ChatGPT-only model achieves a Precision@5 of only 71%, which is
much lower than our system (88%), indicating the limitations of LLMs as relevance rankers.
In a similar vein, the MRR of 0.66 for the ChatGPT-centric tutoring indicates that the model
struggled to retrieve the best prior interactions early in the ranking, in contrast with our
system’s 0.81 MRR, which profited from fuzzy memory ranking.

Schema-based thematic clustering significantly boosts the precision of query–schema
match at 85% (as also demonstrated in Table 2), while generative AI models tend to return
semantically relevant but contextually unrelated responses with only 70% match precision.
Because generative AI depends on only the current prompt context with no way to structure
longer-term memory, related concepts tend to clump less coherently together, resulting
in declining response consistency across multiple interactions. The BLU score showing
ChatGPT-only tutoring (0.67) was indeed competitive but lower than what had been
obtained by our system (0.79, Table 3), which suggests that structured memory retrieval is
advantageous in improving response relevance. In fact, human evaluation ratings show
that generative AI models yield fluent but less personalized outputs scoring lower for
clarity (4.0/5) and personalization (3.9/5), whereas their respective scores for our system
are 4.5 and 4.4.

These findings illustrate that even though generative AI has the potential to produce
very linguistically competent written outputs, it is highly unlikely to be able to dynamically
manage the memory processes of prioritization, theme-based arrangement of conversation,
and delivery of long-term contextual continuity. Through fuzzy retention and schema-
based retrieval, the system is able to partially solve these problems and thus be more
adaptive, structured, and context-aware than LLMs on their own, which increases the
chances of true AI tutoring.

One of the main cruxes under the system encompasses the Fuzzy Memory Module
through which it boasts high memory access accuracy. On coming across the precision of
88% and mean reciprocal rank score of 0.81, it clearly notified that in this module lies a
highly relevant interaction on the time-decayed relevance. These results, consistent with
some previous research on memory networks, such as [54], indicate the need for memory
mechanisms that keep contextual relevance. However, unlike static approaches relying
on either fixed weights or predefined rules, the fuzzy weights used here keep relevance
dynamic by changing the interactions stored, and hence they are more similar to human
forgetting and prioritization. This dynamic nature is particularly useful in educational
settings, where the more recent queries frequently mirror changing learning needs. In
contrast to more basic keyword-based systems or generative AI models without memory
mechanisms, this method significantly enhances both the accuracy and contextual relevance
of retrieved memories.

The Schema Manager builds on top of this foundation by structuring retrieved memo-
ries into thematic clusters and brings structure and depth to the learning process. Indeed,
this can be confirmed by the elaborate results with a cluster purity of 0.91 and a query–
schema match precision of 85%, which proves that the manager can expect effectiveness
in the way it groups related concepts. These metrics illustrate that the system excels at



Computers 2025, 14, 89 18 of 24

capturing the relationships between memories, enabling it to deliver responses that are
not only accurate but also contextually enriched. This thematic clustering is particularly
relevant in programming education, where foundational concepts like loops and arrays
are often interconnected with more advanced topics such as object-oriented programming.
In that, the system ensures that responses are relevant to both the immediate query and
its broader context by creating cohesive schemas. The approach also extends beyond the
state-of-the-art in traditional conversational agents because it generalizes to those that do
not have contextual organization mechanisms and actually strengthens findings from past
research, which underlined the need for thematic understanding in dialogue systems.

Finally, in the Response Generator module, everything above is put together by
generating custom responses based on prioritized memories and thematic context. Its
quality is reflected through a BLEU score of 0.79, which is very high, meaning that almost
all the returned responses are correctly aligned with reference responses predefined within
the system. Furthermore, human judges continuously scored the system highly regarding
relevance, clarity, and personalization, obtaining average scores of 4.6, 4.5, and 4.4 points
out of 5, respectively. These experimental results highlight the effectiveness of the system at
personalizing response generation based on prior interactions with learners and thematic
knowledge from these interactions. Compared to baseline systems, the Response Generator
produced richer outputs more indicative of its understanding about the user’s learning
trajectory. While simpler retrieval-based systems tend to produce generic or disjointed
answers, and standard generative AI models fail to properly use historical context, this
system’s structured approach guarantees that the answers are both precise and meaningful.

This study’s findings are thus in line with and extended from existing literature
about conversational agents and personalized learning systems. For instance, in [55], the
authors have pointed out that generative AI models lack coherence over long periods
without explicit memory mechanisms. The proposed system addresses the gap of this
sort with fuzzy weights on integrating dynamic memory prioritization. Similarly, in [56],
the authors analyzed the direction of thematic clustering on knowledge graphs, but the
focus of their work was static representation, whereas in this system, the Schema Manager
dynamically updates clusters with evolving user interactions, thereby creating an adaptive
and personalized framework. The findings also extend previous work [57], which showed
the significance of contextual cues in dialogue systems but did not have a mechanism for
organizing memories into thematic groups. The proposed system bridges these gaps by
combining fuzzy memory retention and schema-based clustering, offering a novel approach
to delivering personalized and contextually rich responses.

Our study makes a significant contribution to the research landscape by addressing
gaps in the existing literature and offering practical, impactful advancements. Building
upon the foundational work in [58], which explores the theoretical potential of fuzzy logic
in customizing educational content, our research extends these findings by integrating
dynamic memory retention and contextual organization. While the previous study laid the
groundwork, it did not incorporate fuzzy memory retention or contextual organization.
In contrast, our work fills this gap. The Fuzzy Memory Module dynamically prioritizes
interactions using time-decayed fuzzy weights, while the Schema Manager organizes these
interactions into thematic clusters. This enables ChatGPT to provide contextually enriched
and personalized responses. Through these practical innovations, our study not only
validates but also extends the theoretical insights of prior research, presenting a scalable
and effective solution for adaptive learning in programming education.

The results of the study also focus on the capability of the system in resolving some
major problems of educational technology. It is to reinforce previously taught concepts
while teaching new material in a related context. Since recent and relevant interactions are
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the theme of the Fuzzy Memory Module, responses will reinforce prior knowledge. At
the same time, the Schema Manager promotes novelty by embedding new information
within larger thematic frameworks. If a user asks how to go through an array in Java, the
system retrieves memories of for-loops and arrays, also relating them to other topics, such
as loops inside loops. This ability to balance familiarity with novelty is key to creating
effective learning.

Another strength of the system is personalization capacity. The system attempts to
address some of the constraints of the traditional one-size-fits-all approaches that are typical
for education. For example, the interaction history of learners with the system forms the
basis of personalizing responses that are delivered. This is obvious in the results of human
evaluation, where all the responses elicited very high ratings on both relevance and clarity.
The reviewers pointed out that the system could refer back to previously taught concepts
and adapt to the user’s progress, which was a major differentiator. This is in line with the
principles of adaptive learning, which stresses the importance of delivering content that
meets learners where they are in their educational journey.

Despite these strengths, there are a number of weaknesses the system could further be
researched to overcome. The interpretation of vague queries is a big challenge. Sometimes
ambiguous queries may cause schema selection not to be optimal. For instance, “How can
I optimize my code?” is an ambiguous query, which could link to multiple schemas. Those
schemas include control structures, performance optimization, or even debugging. In such
scenarios, the system may not always pick the most relevant schema based on semantic
similarity scores. This can be addressed by including other disambiguation techniques,
such as user feedback or multi-modal inputs. Another limitation is the dependence on
predefined thresholds for similarity scores and diversity penalties. These thresholds were
empirically optimized for this study but may not generalize across all educational contexts.

In programming education, where concepts often build on one another, this system
offers a practical solution for helping learners navigate complex topics while maintaining
continuity with their prior learning. Comparisons with existing systems further underscore
the novelty and effective-ness of the proposed approach. Traditional models of conversation,
including but not limited to a MemN2N model given by [59], have fixed memory in the
sense it cannot adjust easily according to new dialogues coming while using a generation
AI like that of GPT-3 who performs wonderfully creating fluent text but may go wrong on
placing the historical context on its rightful occasions.

Recent advances in prompt engineering and in-context learning [60] have notably
increased the inferential capabilities of LLMs, so they can deduce new tasks from a lit-
tle context example without retraining prompts. However, while prompt engineering
improves the LLM’s output, our approach enhances in-context learning with structured
memory hold and schema-guided organization. This enables retrievals to create coherent or
pedagogically relevant responses rather than disjointed ones and turned out of order. The
stark contrast between the traffic signal follower LLM and our scheme is that it uses fuzzy
memory retention in time-restricted need circumstances to dynamically adjust what past
interactions are considered most important, thereby lessening its dependence on prompts
which are externally optimized. This in itself is consistent with evidence showing LLMs’
emergent reasoning capabilities and suggests that through combining structured retrieval
with optimally designed prompts, we may further improve the response consistency and
adaptability of these models in future work. Future work might take adaptive prompt gen-
eration techniques as its entrance to dynamically generate optimal instructional guidance
through real-time schema clustering and will offer users a personalized choice out of many
LLM outputs.
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Although the system proposed here personalizes based on the history of a learner,
it is actually designed to prevent stagnation by means of thematic schema expansion
and adaptive memory retrieval. While recommender systems are limited to previous
topics, since both elements are a common area of knowledge, the Fuzzy Memory Module
emphasizes experience mostly based on freshness and relevance but also adds a degree
of diversity by changing memory weights on the fly to stimulate the exploration of new
areas but still topical knowledge. In addition, the Schema Manager not only allows learners
to unpack their learning history, but it also organizes interactions into greater thematic
bundles, enabling them to follow topics that may be more advanced than the immediate
history but related in thematic context. This helps stop the reinforcement of narrow content
loops and encourages a broadening of knowledge. Future improvements could build on
this by introducing novelty-based content suggestions, promoting stability but mixing
it up in their learning journey.

The proposed system addresses these shortcomings by integrating fuzzy weights and
thematic clustering into a unified architecture, enabling it to deliver responses that are
both personalized and contextually enriched. The findings also highlight opportunities for
future development. One promising direction is the incorporation of multi-modal inputs,
such as voice queries, diagrams, or code files. This would allow the system to support a
wider range of educational scenarios and enhance its applicability across diverse learning
environments. Another area for exploration is the integration of real-time user feedback
into the memory prioritization and schema selection processes.

This would let the system dynamically adjust its weighting and clustering mecha-
nisms based on user feedback regarding whether a response was helpful or relevant. In
conclusion, the proposed system represents an important advance in personalized ed-
ucational technology. Its ability to prioritize relevant interactions, organize knowledge
into thematic schemas, and deliver personalized responses positions it as a powerful tool
for programming education and beyond. The results validate its potential to change the
learning experience by providing the right, contextual support at appropriate times and
adjusted to the user’s needs. While some of the limitations have not been mitigated, this
study provides an excellent foundation for future studies, offering the value of its insights
into the design and evaluation of adaptive learning systems.

6. Conclusions
This work introduces a new framework for personalized educational AI, integrating

fuzzy memory retention, thematic clustering, and generative AI to address important
challenges in adaptive learning. Combining the strengths of three collaborative modules—
the Fuzzy Memory Module, Schema Manager, and Response Generator—equipped with
the generative power of ChatGPT, the system offers customized, contextually accurate
responses that can dynamically adapt to the needs of each learner. It integrates fuzzy
weights to ensure that recent and relevant interactions are prioritized, while the Schema
Manager enhances contextual understanding by organizing memories into thematic clusters.
The Response Generator synthesizes these inputs to guide ChatGPT to generate responses
that reinforce prior knowledge, introduce new material, and align with the learner’s
evolving trajectory.

The system was evaluated in a real-world educational context, demonstrating sig-
nificant improvements in memory retrieval accuracy, schema relevance, and response
personalization compared to traditional methods and baseline models. These results
validate the framework’s effectiveness in delivering an engaging and effective learning
experience, particularly in programming education. The combination of human-like mem-
ory retention and thematic knowledge organization sets a new standard for adaptive
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educational technologies, highlighting the potential for broader applications in diverse
learning domains.

This study shows how well the proposed system works for adaptive tutoring and the
adaptation of memory, but it has some limitations. The first limitation is that the evaluation
was conducted only in this study domain (programming education), which can restrict
generalizability across subjects with different cognitive structures. Second, even if the
system implements some fuzzy memory maintenance rules and schema clustering, its
personalization approach does not currently include long-term adaptive modifications of
learner behavior that can help adjust knowledge dissemination through diversification and
numbers. Third, although we had applied empirical tuning on parameters like α, β, and δ,
a completely automated and adaptive optimization mechanism (for example reinforcement
learning or genetic algorithms) has not been carried out.

Future work will be aimed at overcoming these limitations by scaling the system up
to larger datasets and different educational domains (e.g., mathematics, language learn-
ing) and by providing domain-specific knowledge to make the system more versatile.
Improvements will consist of adding multi-modal inputs (e.g., voice queries, diagrams)
to enhance interpretation through richer representations of learner interactions, testing
dynamic thresholding methods to stimulate the robustness of memory prioritization and
schema clustering, and building real-time feedback systems for personalization optimiza-
tion. Long-term tracking studies will be rolled out that will push the system to check how
knowledge is retained and whether the learners remain engaged for longer periods which
will eventually lead to developing an even advanced adaptive learning program.
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35. Doz, D.; Cotič, M.; Felda, D. Random Forest Regression in Predicting Students’ Achievements and Fuzzy Grades. Mathematics
2023, 11, 4129. [CrossRef]

36. Albaity, M.; Mahmood, T.; Ali, Z. Analysis and Applications of Artificial Intelligence in Digital Education Based on Complex
Fuzzy Clustering Algorithms. Mathematics 2023, 11, 3184. [CrossRef]

37. Hegazi, M.O.; Almaslukh, B.; Siddig, K. A Fuzzy Model for Reasoning and Predicting Student’s Academic Performance. Appl.
Sci. 2023, 13, 5140. [CrossRef]

38. Elfakki, A.O.; Sghaier, S.; Alotaibi, A.A. An Intelligent Tool Based on Fuzzy Logic and a 3D Virtual Learning Environment for
Disabled Student Academic Performance Assessment. Appl. Sci. 2023, 13, 4865. [CrossRef]

39. Salgado Granda, B.; Inzhivotkina, Y.; Ibáñez Apolo, M.F.; Ugarte Fajardo, J.G. Educational innovation: Exploring the Potential of
Generative Artificial Intelligence in cognitive schema building. Edutec Rev. Electron. Tecnol. Educ. 2024, 89, 44–63. [CrossRef]

40. Misra, V.P.; Mishra, P.K.; Sharma, A. Artificial Intelligence in Education—Emerging Trends, Thematic Analysis & Application in
Lifelong Learning. In Proceedings of the 2023 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE),
Nadi, Fiji, 4–6 December 2023; pp. 1–6. [CrossRef]

41. Vallayil, M.; Nand, P.; Yan, W.Q. Explainable AI through Thematic Clustering and Contextual Visualization: Advancing Macro-
Level Explainability in AFV Systems. In Proceedings of the ACIS 2024, Canberra, Australia, 5–8 December 2024; p. 101. Available
online: https://aisel.aisnet.org/acis2024/101 (accessed on 20 January 2025).

42. Jung, E.; Lim, R.; Kim, D. A Schema-Based Instructional Design Model for Self-Paced Learning Environments. Educ. Sci. 2022,
12, 271. [CrossRef]

43. Kaban, A. Artificial intelligence in education: A science mapping approach. Int. J. Educ. Math. Sci. Technol. (IJEMST) 2023, 11,
844–861. [CrossRef]

44. Delen, I.; Sen, N.; Ozudogru, F.; Biasutti, M. Understanding the Growth of Artificial Intelligence in Educational Research through
Bibliometric Analysis. Sustainability 2024, 16, 6724. [CrossRef]

45. Hou, J.; Wan, J. Theme Mining and Evolutionary Analysis of Artificial Intelligence Integration in Higher Education Research. In
Proceedings of the E-Business. New Challenges and Opportunities for Digital-Enabled Intelligent Future. WHICEB 2024, Wuhan,
China, 24–26 May 2024; Tu, Y.P., Chi, M., Eds.; Lecture Notes in Business Information Processing; Springer: Cham, Switzerland,
2024; Volume 516, pp. 108–119. [CrossRef]

46. Ishaq, K.; Alvi, A.; Haq, M.I.; Rosdi, F.; Choudhry, A.N.; Anjum, A.; Khan, F.A. Level up your coding: A systematic review
of personalized, cognitive, and gamified learning in programming education. PeerJ Comput. Sci. 2024, 10, e2310. [CrossRef]
[PubMed]

47. Varshney, A.K.; Torra, V. Literature Review of the Recent Trends and Applications in Various Fuzzy Rule-Based Systems. Int. J.
Fuzzy Syst. 2023, 25, 2163–2186. [CrossRef]

48. Murre, J.M.J.; Dros, J. Replication and Analysis of Ebbinghaus’ Forgetting Curve. PLoS ONE 2015, 10, e0120644. [CrossRef]
49. Lewis, F.L.; Campos, J.; Selmic, R. Neuro-Fuzzy Control of Industrial Systems with Actuator Nonlinearities; Society of Industrial and

Applied Mathematics Press: Philadelphia, PA, USA, 2002.
50. Apallius de Vos, I.M.; van den Boogerd, G.L.; Fennema, M.D.; Correia, A. Comparing in context: Improving cosine similarity

measures with a metric tensor. In Proceedings of the 18th International Conference on Natural Language Processing (ICON),
National Institute of Technology Silchar, Silchar, India, 16–19 December 2021; NLP Association of India (NLPAI): Goa, India, 2021;
pp. 128–138.

51. Hedtke, J.; Petrov, S. Semantic Similarity Search. 2019. Available online: https://cs229.stanford.edu/proj2019aut/data/
assignment_308832_raw/26635521.pdf?utm_source=chatgpt.com (accessed on 20 January 2025).

52. Craswell, N. Precision at n. In Encyclopedia of Database Systems; Liu, L., Özsu, M.T., Eds.; Springer: Boston, MA, USA, 2009.
[CrossRef]

https://ceur-ws.org/Vol-2853/paper4.pdf
https://doi.org/10.1088/1757-899X/434/1/012308
https://doi.org/10.2298/CSIS230130043P
https://doi.org/10.3390/app15020494
https://doi.org/10.3390/app132312956
https://doi.org/10.3390/math11194129
https://doi.org/10.3390/math11143184
https://doi.org/10.3390/app13085140
https://doi.org/10.3390/app13084865
https://doi.org/10.21556/edutec.2024.89.3251
https://doi.org/10.1109/CSDE59766.2023.10487664
https://aisel.aisnet.org/acis2024/101
https://doi.org/10.3390/educsci12040271
https://doi.org/10.46328/ijemst.3368
https://doi.org/10.3390/su16166724
https://doi.org/10.1007/978-3-031-60260-3_10
https://doi.org/10.7717/peerj-cs.2310
https://www.ncbi.nlm.nih.gov/pubmed/39650413
https://doi.org/10.1007/s40815-023-01534-w
https://doi.org/10.1371/journal.pone.0120644
https://cs229.stanford.edu/proj2019aut/data/assignment_308832_raw/26635521.pdf?utm_source=chatgpt.com
https://cs229.stanford.edu/proj2019aut/data/assignment_308832_raw/26635521.pdf?utm_source=chatgpt.com
https://doi.org/10.1007/978-0-387-39940-9_484


Computers 2025, 14, 89 24 of 24

53. Craswell, N. Mean Reciprocal Rank. In Encyclopedia of Database Systems; Liu, L., Özsu, M.T., Eds.; Springer: Boston, MA, USA, 2009.
[CrossRef]

54. Weston, J.; Chopra, S.; Bordes, A. Memory networks. In Proceedings of the 3rd International Conference on Learning Representa-
tions (ICLR 2015), San Diego, CA, USA, 7–9 May 2015.

55. Xu, J.; Szlam, A.; Weston, J. Beyond Goldfish Memory: Long-Term Open-Domain Conversation. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Dublin, Ireland, 22–27 May 2022;
Association for Computational Linguistics: Kerrville, TX, USA, 2022; pp. 5180–5197.

56. Luan, Y.; Eisenstein, J.; Toutanova, K.; Collins, M. Sparse, Dense, and Attentional Representations for Text Retrieval. Trans. Assoc.
Comput. Linguist. 2021, 9, 329–345. [CrossRef]

57. Gao, J.; Galley, M.; Li, L. Neural Approaches to Conversational AI. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics: Tutorial Abstracts, Melbourne, Australia, 15–20 July 2018; Association for Computational
Linguistics: Kerrville, TX, USA, 2018; pp. 2–7.

58. Ennouamani, S.; Mahani, Z. Towards Adaptive Learning Systems Based on Fuzzy-Logic. In Intelligent Computing. CompCom
2019; Arai, K., Bhatia, R., Kapoor, S., Eds.; Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2019;
Volume 997, pp. 625–640. [CrossRef]

59. Sukhbaatar, S.; Szlam, A.; Weston, J.; Fergus, R. End-to-end memory networks. In Proceedings of the 29th International
Conference on Neural Information Processing Systems—Volume 2 (NIPS’15), Montreal, QC, Canada, 7–12 December 2015; MIT
Press: Cambridge, MA, USA, 2015; Volume 2, pp. 2440–2448.

60. Pleshakova, E.; Osipov, A.; Gataullin, S.; Gataullin, T.; Vasilakos, A. Next gen cybersecurity paradigm towards artificial general
intelligence: Russian market challenges and future global technological trends. J. Comput. Virol. Hack. Tech. 2024, 20, 429–440.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/978-0-387-39940-9_488
https://doi.org/10.1162/tacl_a_00369
https://doi.org/10.1007/978-3-030-22871-2_42
https://doi.org/10.1007/s11416-024-00529-x

	Introduction 
	Related Work 
	System Architecture 
	Fuzzy Memory Module 
	Schema Manager 
	Response Generator 

	Results 
	Evaluation Metrics 
	Memory Retrieval Accuracy 
	Schema Relevance 
	Response Relevance and Quality 

	Experimental Setup 
	Results Analysis 
	Results for Memory Retrieval Accuracy 
	Results for Schema Relevance 
	Results for Response Relevance and Quality 


	Discussion 
	Conclusions 
	References

