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Abstract. Accurately assessing learner engagement in e-learning envi-
ronments is crucial for enhancing educational outcomes and optimizing
personalized learning experiences. This study presents a machine learn-
ing (ML) framework for electroencephalogram (EEG)�based engagement
prediction, leveraging multi-channel EEG recordings to capture cogni-
tive responses during learning sessions. A well-de�ned methodology was
implemented, including EEG signals preprocessing, feature extraction
based on Power Spectral Density (PSD), and three techniques for fea-
ture ranking and selection to identify the most relevant neural features
for engagement classi�cation. By evaluating several ML models, includ-
ing Logistic Regression (LR), Support Vector Machines (SVM), Ran-
dom Forest (RF), Gradient Boosting Machines (GBM), Neural Networks
(NNs), Convolutional NNs (CNNs), and Hybrid Ensemble approach, we
demonstrate that feature selection signi�cantly enhances classi�cation
performance. The Hybrid Ensemble model achieved the highest accu-
racy (92.7%) and the area under the ROC curve (AUC) (95.1%) when
trained on a highly re�ned set of 14 features, improving interpretability
while reducing computational complexity. The selected features, primar-
ily from temporal, occipital, and parietal EEG channels, align with es-
tablished neural mechanisms underlying memory processing, sensory in-
tegration, and attentional regulation. The results reinforce the potential
of EEG-based analytics for real-time engagement monitoring, supporting
adaptive e-learning systems that personalize content based on cognitive
states.
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1 INTRODUCTION

The advent of e-learning has signi�cantly transformed the educational landscape,
o�ering unprecedented opportunities for �exible and accessible learning experi-
ences. However, this paradigm shift has brought about new challenges, especially
in maintaining learner concentration on a task. Engagement is a critical factor
in educational success, in�uencing both the retention of information and the
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overall learning experience. Traditional methods of assessing engagement, such
as questionnaires, self-reports and behavioural observations, are often subjective
and prone to biases. They constitute a simple method to collect initial infor-
mation about a subject, but the acquired model about the learner's pro�le isn't
dynamically updated/adapted using feedback from the objects in the interaction
environment. Consequently, there is a growing interest in leveraging objective
physiological measures to gain deeper insights into learner engagement [15, 21].

In Human-Computer Interaction (HCI), there has been a rising tendency
to design systems able to detect internal physiological changes, process the ac-
quired raw data, and recognize and respond to users' cognitive states. The term
�cognitive state� indicates the human cognitive processes and resources such as
perception, attention, cognitive e�ort, engagement, working memory, arousal,
stress and fatigue. A major goal in interaction design is to decrease the cognitive
load for users [13]. In recent years, the scienti�c community has been increasing
their e�orts for the joint application of advanced signal processing, machine/deep
learning (DL) and cognitive computing techniques to develop reliable systems
predicting human cognition status [16].

In this context, EEG, a neuroimaging technique that records human brain ac-
tivity, has emerged as a promising tool. EEG can provide real-time knowledge of
cognitive and emotional states by capturing brainwave patterns across di�erent
frequency bands. These patterns can indicate various cognitive and mental states
[32, 20], including attention, relaxation, and cognitive load, which are all rele-
vant to engagement in learning activities. By analyzing EEG data, researchers
can obtain a more accurate and dynamic understanding of how learners interact
with online materials [6, 36].

Recent advancements in EEG technology combined with ML have signi�-
cantly improved the interpretation of cognitive and physiological states. EEG
signals have been e�ectively utilized in diverse areas, such as eye-state classi�-
cation for clinical diagnostics, neuroscience research, and brain-computer inter-
faces (BCIs). Additionally, ML techniques like ensemble algorithms, often cou-
pled with class imbalance handling methods such as Synthetic Minority Over-
sampling Technique (SMOTE), have consistently improved the accuracy and
robustness of EEG-based models [33, 34].

In educational contexts, EEG-based ML methods o�er promising approaches
to accurately detect and enhance learner engagement, leveraging adaptive learn-
ing and immersive technologies, including Augmented Reality and Virtual Real-
ity. However, practical implementation poses challenges such as addressing the
digital divide, ensuring data privacy, and creating scalable, equitable solutions.
Consequently, robust methodological frameworks are required to maximize the
educational bene�ts of EEG analytics in adaptive e-learning environments [9,
35].

Engagement is a fundamental factor in e-learning, directly impacting learn-
ing retention, comprehension, and overall academic performance. EEG-based
engagement prediction o�ers a more objective and responsive approach by cap-
turing neural activity associated with cognitive states during learning. However,
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e�ectively leveraging EEG data requires advanced preprocessing, feature selec-
tion, and ML techniques to enhance accuracy while minimizing computational
complexity.

At this point, it should be noted that the current study represents an ex-
tended version of [10] detailing and further enhancing the methodology and
�ndings presented in the original study. More speci�cally, the key contributions
of this work are four-fold:

� A structured methodology consisting of EEG signals collection, preprocess-
ing, feature extraction and selection, and ML models training and testing
for engagement classi�cation.

� Feature extraction was performed through power spectrum analysis, focusing
on speci�c frequency bands, including alpha, low and high beta, theta, and
gamma.

� Estimated Pearson Correlation Coe�cients (CCs), Information Gain (IG),
and Gain Ratio (GR) to identify the most relevant EEG features, improving
classi�cation accuracy and interpretability.

� Evaluated multiple ML models (LR, SVM, RF, GBM, NN, CNN, and Hy-
brid Ensemble), demonstrating that feature selection enhances predictive
performance.

The rest of this paper is organized as follows. Section 2 presents related works
for the subject under consideration. In Section 3, the methodological framework
for EEG-based engagement prediction is outlined, while Section 4 provides data
analysis. Next, Section 5 o�ers a performance evaluation of the engagement
models. Finally, Section 6, summarizes the �ndings of this study.

2 Related Works

Capturing attention in educational settings has seen signi�cant advancements
with the application of EEG-based BCI systems [31]. Numerous studies have
explored various computational methods and classi�cation approaches to ef-
fectively monitor and enhance student engagement in both traditional and e-
learning environments.

Firstly, in [23], a novel approach was presented for real-time emotion classi�-
cation leveraging EEG data streams. The proposed system called the "Real-time
Emotion Classi�cation System" (RECS), employed LR and trained online with
the Stochastic Gradient Descent (SGD) algorithm. The research used the DEAP
dataset for validation, demonstrating that RECS could classify emotional states
more e�ectively in real-time compared to existing o�ine and online classi�ers,
including Hoe�ding Tree (HT), Adaptive RF (ARF), and others. The system
was designed for practical applications, particularly in e-learning environments,
where real-time emotional feedback can enhance learning. The authors in [32] in-
troduced an ML methodology by comparing various classi�ers trained and tested
on EEG data, speci�cally focusing on band power, attention, and mediation fea-
tures collected by the MindSet device. The goal was to e�ectively di�erentiate
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between "Confused" and "Not-Confused" individuals. Notably, the J48 model
emerged as the most e�ective, achieving optimal performance with accuracy,
precision, and recall rates of 99.9%, and an AUC of 1.

Moreover, [4] proposed a BCI system to enhance the quality of distance edu-
cation by using EEG signals to detect students' attention during online classes.
The study extracted PSD features from a public dataset and calculated various
attention indexes using the fast Fourier transform (FFT). K-nearest neighbours
(KNN), SVM, and RF models were employed to assess their performance in
recognizing students' attentive states. The results showed that the RF classi�er
achieved the highest accuracy of 96%, indicating its e�ectiveness in distinguish-
ing attention states in online learning environments.

In [27], a novel solution that employed real-time EEG data collected from
individuals wearing EEG headsets during online courses was presented. This
method focuses on a CNN model, which e�ciently classi�es these EEG sig-
nals with an accuracy rate of 70%. The performance highlighted the speed of
processing and accuracy of the developed models, o�ering a promising solution
to current e-learning validation challenges. Research work [26] introduced DL
model to address the limitations of existing ones in ML, which rely on man-
ual feature extraction and training with limited data. Real-time e-learning data
was gathered from students wearing EEG headsets during online classes. This
approach overcame the challenges associated with traditional ML models and
historical data. The proposed CNN model classi�ed students into di�erent grade
levels, aiding in the creation of an automated system to monitor student learning
progress and provide recommendations to enhance e-learning course materials.

Also, [8] presented a novel approach utilizing Probability-Based Features
(PBF) derived from RF and GBM models to enhance the performance of ML
classi�ers for detecting confusion in students during online learning sessions.
The study evaluated various classi�ers, including RF, GBM, LR, SVC, and Ex-
tra Trees Classi�er (ETC), achieving an accuracy, precision, recall, and f1-score
of 100%, with the proposed PBF approach. Additionally, the approach was vali-
dated using a separate EEG dataset, demonstrating superior performance com-
pared to existing methodologies. The best-performing model numerically was
the proposed PBF using RF and GBM features, achieving consistent top scores
across all evaluation metrics. Moreover, [29] proposes an e-learning system that
enhances learning by adapting content based on users' emotional states detected
through EEG signals. Using the Neurosky Brainwave detector and the RF clas-
si�cation method, the study demonstrates how brainwave analysis can predict
learners' attention levels and trigger personalized content adjustments. The sys-
tem provides alerts for low concentration and recommends suitable videos, ulti-
mately aiming to improve knowledge retention and engagement.

Finally, [2] evaluated learners' attention levels in MOOC (Massive Open
Online Courses) environments and compared them with traditional classroom
settings using brain signals. The proposed approach involved capturing EEG
frequency bands from various subjects during short lectures in both e-learning
and classroom environments. An SVM model was employed to classify students'
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mental states as either attentive or non-attentive. Additionally, [18] develops a
classi�cation system based on EEG signals to detect mental e�ort in MOOCs.
Using di�erent normalization techniques and supervised learning algorithms,
the study shows that EEG data can be processed e�ectively to classify cognitive
load levels with high accuracy, precision, and recall. This approach facilitates
self-awareness of mental e�ort among learners and enables automated feedback
mechanisms to enhance learning experiences in online education.

Unlike previous studies summarized in Table 1 that primarily relied on either
raw EEG signals or spectral features, the present work integrates both spatial
(electrode-based) and spectral (PSD) features, ensuring a comprehensive repre-
sentation of engagement-related neural activity. In contrast to approaches that
employ large, un�ltered feature sets, our study applies a rigorous feature selec-
tion process using Pearson CCs, IG, and GR, re�ning the feature space to retain
only the most relevant 14 features. This targeted selection not only enhances
interpretability but also improves classi�cation accuracy and computational ef-
�ciency. Additionally, while prior research has often focused on individual ML
models, this work conducts an extensive comparative evaluation of various clas-
si�ers, including LR, SVM, RF, GBM, Neural NNs, CNN, and a Hybrid Ensem-
ble model, demonstrating that feature selection improves predictive performance
across all models. Furthermore, our �ndings align with established neuroscien-
ti�c evidence by emphasizing engagement-related cortical regions, particularly
in the temporal, occipital, and frontal lobes, reinforcing the validity of EEG-
based engagement monitoring. By systematically optimizing feature selection
and evaluating model performance, this study advances the �eld by providing
a structured, scalable, and interpretable framework for EEG-based engagement
prediction in e-learning environments.

3 Methodological Framework for EEG-based Engagement

Prediction

The EEG-based learner engagement prediction framework follows a structured,
multi-stage approach designed to capture, process, and analyze neural responses
during e-learning sessions. EEG data are initially collected using wearable EEG
devices in controlled learning environments, allowing for real-time monitoring of
cognitive activity while learners engage with digital educational content.

To ensure signal integrity, the raw EEG recordings undergo rigorous prepro-
cessing, including noise reduction, artifact removal, and normalization, thereby
mitigating inter-individual variability. Subsequently, a comprehensive feature ex-
traction process is applied to derive meaningful characteristics that serve as addi-
tional indicators of learner engagement. The methodological framework consists
of �ve key stages

� Data Acquisition and Preprocessing � Capturing EEG signals and en-
suring data quality through �ltering, artifact removal, and normalization.

� Feature Extraction � Computing spectral features (besides raw data) to
quantify engagement levels.
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Table 1. Summary of EEG-Based Learning Related Works.

Ref. Objective Method Best Performance

[23] Real-time emotion classi-
�cation using EEG

LR, DEAP dataset valida-
tion

Accuracy = 99.9%,
AUC=1

[32] Distinguish 'Confused'
vs. 'Not-Confused' using
EEG features

J48 Decision Tree model,
EEG band power features

Accuracy = 99.9%,
AUC=1

[4] Detect attention in dis-
tance learning using EEG

KNN, SVM, RF applied to
EEG spectral features

RF achieved highest
accuracy of 96%

[27] Use CNN for EEG classi-
�cation in e-learning

CNN for EEG signals CNN classi�cation
accuracy = 70%

[26] DL model to classify stu-
dent engagement

DL-based classi�cation of
engagement levels

CNN model ef-
fectively classi�ed
student levels

[8] Enhance ML classi�ers
for confusion detection in
students

RF, GBM, LR, SVC, ETC Accuracy = 100% us-
ing PBF with RF and
GBM

[29] Adapt learning content
using EEG-based emo-
tion detection

Neurosky Brainwave detec-
tor with RF

Personalized atten-
tion tracking using
EEG

[2] Analyze learner attention
in MOOCs vs. classrooms

SVM for EEG frequency
bands

SVM e�ectively clas-
si�ed attentive vs.
non-attentive states

[18] Detect cognitive load and
mental e�ort in MOOCs

Supervised learning algo-
rithms with normalization
techniques

High accuracy in de-
tecting cognitive load
levels

� Feature Selection and Dimensionality Reduction � Identifying the
most relevant features while reducing complexity and improving computa-
tional e�ciency.

� Classi�cation � Applying advanced ML models, including DL architec-
tures, to predict engagement state.

� Evaluation � Assessing model performance using strati�ed cross-validation
and statistical metrics to ensure robustness and reliability.

Figure 1 illustrates the EEG-based data acquisition framework using the
EMOTIV Epoc-X headset, detailing the entire processing pipeline, from raw
EEG signal collection to engagement classi�cation. The �gure highlights the
placement of the 14 EEG electrodes strategically positioned to capture cognitive,
sensory, and motor-related brain activity. It also outlines the sequential data
processing steps, including noise �ltering, artifact removal, and normalization,
followed by feature extraction and selection to re�ne the most informative EEG
characteristics. The extracted features serve as inputs for ML models, enabling
the classi�cation of learner engagement [37]. The structured approach depicted
in Figure 1 ensures a robust methodology for interpreting cognitive states in
e-learning environments while maintaining data reliability and model accuracy.
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Fig. 1. EEG-based processing pipeline in multi-channel Emotiv Epoc-X device [10]

3.1 Data Acquisition

The EEG data acquisition process employs the EMOTIV Epoc-X [7], a high-
resolution, wireless 14-channel EEG headset designed for real-time cognitive
monitoring in controlled e-learning environments. This non-invasive device cap-
tures neural activity, providing valuable insights into learner engagement, cog-
nitive workload, and attentional focus.

Following the 10-20 international electrode placement system, the Emotiv
Epoc-X ensures comprehensive brain region coverage. The frontal electrodes
(AF3, AF4, F3, F4, F7, F8) monitor cognitive processing and attention reg-
ulation, while T7 and T8, positioned over the temporal lobes, capture activ-
ity related to memory formation and language comprehension. Electrodes in
the parietal region (P7, P8) track spatial processing and sensory integration,
whereas O1 and O2, located in the occipital lobe, record visual perception and
processing. Additionally, FC5 and FC6, near the prefrontal cortex, play a key
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role in executive functions, motor planning, and decision-making. The letters
in the electrode names indicate the lobe locations: F (frontal), P (parietal), T
(temporal), O (occipital), and C (central). Odd numbers correspond to the right
hemisphere, and even numbers correspond to the left hemisphere.

Table 2 outlines the functional signi�cance of each EEG channel, detailing the
speci�c brain activity recorded and its corresponding brain region. The precise
placement of these electrodes facilitates a comprehensive assessment of learner
engagement, allowing for targeted analysis of cognitive states, attentional �uc-
tuations, and neural responses during e-learning sessions [30].

Table 2. Description of EEG Channels in Emotiv Epoc-X.

Channel Activity Captured Brain Lobe/Region

AF3 Attention, executive functions, working memory Frontal Cortex (Left)

AF4 Attention, executive functions, working memory Frontal Cortex (Right)

F3 Logical processing, decision making, cognitive workload Frontal Lobe (Left)

F4 Logical processing, decision making, cognitive workload Frontal Lobe (Right)

F7 Verbal expression, language processing, analytical tasks Frontal/Temporal Lobe (Left)

F8 Emotional expression, social interaction, creative tasks Frontal/Temporal Lobe (Right)

FC5 Verbal �uency, speech production, cognitive control Frontal/Central Region (Left)

FC6 Emotional regulation, attentional control Frontal/Central Region (Right)

T7 Auditory processing, language comprehension, memory retrieval Temporal Lobe (Left)

T8 Auditory processing, emotional memory, sensory integration Temporal Lobe (Right)

P7 Visual-spatial processing, object recognition Parietal/Occipital Lobe (Left)

P8 Visual-spatial processing, facial and emotional recognition Parietal/Occipital Lobe (Right)

O1 Primary visual processing, visual perception Occipital Lobe (Left)

O2 Primary visual processing, visual perception Occipital Lobe (Right)

The EEG signals are recorded at a sampling rate of 128 Hz with a 16-bit
resolution, ensuring high temporal precision suitable for cognitive state anal-
ysis. Bluetooth low-energy connectivity facilitates seamless data transmission,
enabling real-time monitoring without restricting participant mobility. The hy-
drophilic polymer sensors use a saline-based gel, ensuring optimal impedance
levels for high-quality signal acquisition while maintaining participant comfort.
A built-in signal quality indicator continuously monitors electrode connectivity,
ensuring data reliability throughout the recording session.

During e-learning sessions, EEG signals are continuously recorded while par-
ticipants engage with digital learning materials. The data collection process is
synchronized with instructional content, capturing �uctuations in cognitive en-
gagement levels as learners interact with the educational material. After data
recording, engagement levels are annotated using self-reported questionnaires
and behavioral markers, enabling the creation of labeled datasets for training
predictive models.

In the following paragraphs, we will focus on the collected signals preprocess-
ing (noise removal), feature extraction, and selection to enhance interpretability
before being used for ML-based engagement prediction.
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3.2 Preprocessing

E�ective preprocessing of EEG data is crucial for ensuring accurate and reliable
analysis. Raw EEG signals often contain noise and artifacts that obscure the
underlying neural activity associated with engagement. To address these chal-
lenges, a multi-step preprocessing pipeline is employed to enhance signal quality
and optimize the data for ML analysis.

The Emotiv Epoc-X incorporates dedicated digital �ltering mechanisms to
preprocess raw EEG signals. Band-pass �ltering is �rst applied to retain frequen-
cies between 0.2 and 45 Hz, which encompass the key spectral components rele-
vant to cognitive and emotional state analysis. This step e�ectively removes low-
frequency drifts and high-frequency noise, preserving only the frequencies that
contribute to engagement detection. Additionally, the device integrates built-in
digital notch �lters at 50 Hz and 60 Hz, eliminating power line interference that
could otherwise distort the signal and impact the accuracy of PSD calculations.
In EEG-based ML models, unwanted power line noise could introduce false cor-
relations in feature selection. Hence, notch �ltering ensures that only meaningful
neural activity is used for engagement prediction. A 5th-order Sinc �lter is also
utilized, providing a sharp cuto� to suppress high-frequency noise and aliasing
artifacts, further re�ning the EEG data for analysis.

Independent Component Analysis (ICA) is applied to remove physiological
artifacts, isolating and eliminating noise sources such as eye blinks, muscle move-
ments (EMG), and cardiac activity (ECG), thereby preserving the integrity of
engagement-related neural signals. Following artifact removal, Z-score normal-
ization is performed on each EEG channel to reduce inter-subject variability and
prevent features with larger magnitudes from dominating the learning process.
This transformation standardizes the data to have a zero mean and unit variance,
ensuring that extracted features remain comparable across participants and im-
proving the robustness of ML models. The Z-score normalization is computed
as

X ′ =
X − µ

σ
, (1)

where X represents the original feature value, µ is the mean of the feature, and
σ is its standard deviation. This transformation enhances model stability and
improves the e�ectiveness of ML algorithms in engagement classi�cation.

By implementing this structured preprocessing approach, the EEG data are
e�ectively denoised, standardized, and optimized for subsequent feature extrac-
tion and classi�cation, ensuring a reliable foundation for engagement prediction
[11].

3.3 Feature Extraction

Following normalization, band-pass �ltering was applied to isolate relevant fre-
quency components of the EEG signals, ensuring accurate estimation of PSD.
The PSD serves as the primary feature extraction method, quantifying the distri-
bution of signal power across di�erent frequency bands. These bands are closely
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linked to cognitive processes, including attention, relaxation, and cognitive load,
making them essential for engagement assessment.

The PSD was computed using the Fast Fourier Transformation (FFT), which
decomposes the EEG signal into its constituent frequencies. The PSD at fre-
quency f is estimated as

PSD(f) =
1

N

N∑
n=1

|X(n, f)|2, (2)

where X(n, f) represents the Discrete Fourier Transform (DFT) of the EEG
signal at frequency f , and N is the total number of frequency components.
This method provides a spectral representation of neural activity, enabling the
identi�cation of engagement-related patterns in di�erent frequency bands.

By analyzing the PSD across established EEG frequency bands, including θ
(4-8Hz), α (8-12Hz), low β (13 - 20Hz), high β (20-30 Hz), γ (30 - 45 Hz), mean-
ingful neural signatures associated with cognitive engagement are extracted.
These spectral features serve as inputs for subsequent classi�cation, forming
the basis of EEG-based engagement prediction [3].

3.4 Feature Ranking and Selection

To enhance model interpretability and reduce computational complexity, feature
selection is applied using three key ranking methods: Pearson CCs, IG, and
GR. These techniques identify the most relevant EEG features for engagement
prediction by assessing their relationship with the target variable.

Pearson CCs measures the linear relationship between feature X and target
variable Y . It is computed as

rX,Y =

∑N
i=1(Xi − X̄)(Yi − Ȳ )√∑N

i=1(Xi − X̄)2
√∑N

i=1(Yi − Ȳ )2
, (3)

where X̄ and Ȳ are the mean values of feature X and Y , respectively, and N is
the number of samples. Xi, Yi are the values of two speci�c features for the i-th
sample in the dataset. A higher absolute correlation value (|rX,Y |) indicates a
stronger linear dependency between the feature and engagement level [38].

IG evaluates the reduction in uncertainty about the target variable Y when
knowing a feature X. It is de�ned as

IG(X) = H(Y )−H(Y |X), (4)

where H(Y ) is the entropy of Y , given by H(Y ) = −
∑2

i=1 P (Yi) log2 P (Yi)

and H(Y |X) = −
∑m

j=1 P (Xj)
∑2

i=1 P (Yi|Xj) log2 P (Yi|Xj) is the conditional
entropy with P (Yi) being the probability of class Yi, and P (Yi|Xj) is the con-
ditional probability of Yi given feature value Xj . A higher IG value indicates a
more informative feature [24].
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GR is an extension of IG that normalizes the feature importance by considering
its intrinsic entropy, thereby mitigating bias toward attributes with many unique
values. It is given by

GR(X) =
IG(X)

H(X)
, (5)

where H(X) = −
∑m

j=1 P (Xj) log2 P (Xj) is the intrinsic entropy of feature X.
A higher GR indicates a feature that provides high discriminative power while
maintaining generalization.

After ranking the EEG features using the three aforementioned methods, the
most informative subset is selected based on their scores. Features exhibiting
strong correlation, high IG, or a high GR are retained for classi�cation. This
ensures that the feature set maximally contributes to engagement prediction
while reducing redundancy and improving model e�ciency [17].

3.5 Machine Learning Models

We assume a training set consisting of M EEG data instances and a test set
comprising N instances, each labelled with a categorical variable Y , represent-
ing learner engagement. Under the de�ned problem, this class variable is binary
taking two possible values: Y = �Engaged� (denoted as �1�) or Y = �Not En-
gaged� (denoted as �0�). Each EEG instance i is represented by a feature vector
fi = (fi1, fi2, . . . , fiF ) of size F , containing multiple extracted features capturing
distinct EEG signal characteristics relevant to cognitive states.

Subsequently, the selected EEG features serve as inputs for training classical
and advanced supervised ML models. The selection of appropriate ML models is
critical to successfully predicting e-learning engagement using EEG data. This
study investigated several ML models with distinct strengths and capabilities,
to determine the most e�ective approach for this task. The models evaluated
include LR, SVM, RF, GBM, NNs, CNN, and a hybrid ensemble model.

The primary goal is to achieve high predictive accuracy and reliability, speci�-
cally emphasizing recall or sensitivity (correct identi�cation of engaged learners)
and the AUC, to ensure accurate (real-time) identi�cation of learner engage-
ment. All models are rigorously validated using strati�ed k-fold cross-validation,
which preserves class proportions in training and testing datasets, ensuring rep-
resentative evaluation, robust predictive generalization, and minimized selection
bias. The following analysis provides a detailed description of each model and
the rationale behind their selection.

LR [19] model is based on the logistic function (a special case of sigmoid
function), which maps any real-valued number to a value between 0 and 1. This
function is particularly useful for binary classi�cation tasks. The LR equation
can be expressed as follows: P (y = 1 | X) = σ(z) = 1

1+e−z , where P (y = 1 | X)
is the probability that the output y is 1 (engaged) given the input features
X. Also, z is de�ned as z = β0 + β1X1 + β2X2 + . . . + βnXn, where σ(z) is
the logistic function, (β0, β1, β2, . . . , βn) are the coe�cients of the model and
(X1, X2, . . . , Xn) are the input features. Putting it all together, the LR model
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can be written as P (y = 1 | X) = 1
1+e−(β0+β1X1+β2X2+...+βnXn) . This equation

calculates the probability that the input X belongs to class 1 �engaged�. The
predicted class label can be determined by applying a threshold (typically 0.5)
to this probability.

SVM [28] with a radial basis function (RBF) kernel, mainly aims to �nd the
optimal hyperplane that separates the classes with the maximum margin. The
mathematical formulation involves solving a quadratic optimization problem.
The decision function for SVM is given by: f(X) = sign (

∑n
i=1 αiyiK(Xi, X) + b),

where αi are the Lagrange multipliers, yi are the class labels, K(Xi, X) is the
kernel function and b is the bias term.

Our focus here is on the RBF kernel whose functionK is de�ned as:K(Xi, X) =
exp

(
−γ∥Xi −X∥2

)
, where γ is a parameter that determines the spread of the

kernel. Summarizing these together, the decision function with the RBF kernel
is f(X) = sign

(∑n
i=1 αiyi exp

(
−γ∥Xi −X∥2

)
+ b
)
.

RF [12] is an ensemble learning method that combines multiple decision trees
to improve the robustness and generalizability of the model. The overall predic-
tion of the RF model is obtained by aggregating the predictions of individual
trees, often by taking the mode (majority vote) in classi�cation tasks. Here's the
mathematical formulation for RFs:

1. Individual Decision Tree Prediction-Let hm(X) be the prediction of
the m-th decision tree in the forest for input X.

2. RF Prediction-The �nal prediction H(X) of the RF is obtained by taking
the majority vote of all M trees' predictions:

H(X) = mode{h1(X), h2(X), . . . , hM (X)}

GBM [5] is an ensemble learning technique that builds models sequentially,
with each new model correcting errors made by the previous ones. The goal is
to optimize the overall prediction by minimizing the loss function. Here's the
mathematical formulation for GBMs:

1. Model Initialization F0(X) = argminγ
∑n

i=1 L(yi, γ), where L is the loss
function, and yi are the actual target values.

2. Additive Model-The model is built in a stage-wise manner. At each stage
m, a new model hm(X) is added to minimize the loss: Fm(X) = Fm−1(X)+
ηhm(X), where η is the learning rate, and hm(X) is the new model �tted to
the residuals of the previous model.

3. Residual Calculation - For each stage m, compute the residuals rim =

− ∂L(yi,F (Xi))
∂F (Xi)

∣∣∣
F (Xi)=Fm−1(Xi)

4. Fit New Model hm(X) to the residuals:

hm(X) = argmin
h

n∑
i=1

(rim − h(Xi))
2

5. Update the Model with the new �tted model Fm(X) = Fm−1(X) +
ηhm(X).
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NNs [14] are DL models that use multiple layers of neurons to capture intri-
cate patterns in data. In a feedforward neural network, the data �ows from the
input layer through multiple hidden layers to the output layer. Each neuron com-
putes a weighted sum of its inputs, applies an activation function, and passes the
result to the next layer. The training process involves backpropagation to adjust
the weights. The mathematical formulation for a feedforward neural network is
as follows:

1. Weighted Sum and Activation for a Single Neuron-For each neuron in

layer l, the output a
(l)
i is computed as: z

(l)
i =

∑n(l−1)

j=1 w
(l)
ij a

(l−1)
j + b

(l)
i , a

(l)
i =

σ(z
(l)
i ), where z

(l)
i is the weighted sum of inputs to the i-th neuron in layer

l, w
(l)
ij are the weights from neuron j in layer l− 1 to neuron i in layer l, b

(l)
i

is the bias term for the i-th neuron in layer l, σ is the activation function

(e.g., ReLU, sigmoid, tanh), and a
(l−1)
j is the activation of the j-th neuron

in the previous layer.

2. Output Layer, the process is similar: z
(L)
k =

∑n(L−1)

j=1 w
(L)
jk a

(L−1)
j +b

(L)
k , ŷk =

σ(z
(L)
k ), where L is the �nal layer, and ŷk is the predicted output.

3. Loss Function L measures the di�erence between the predicted outputs
ŷ and the true targets y. For example, using Mean Squared Error (MSE)

L = 1
N

∑N
i=1(yi − ŷi)

2, where N is the number of training examples.
4. Backpropagation: During this step, gradients of the loss with respect to

the weights and biases are computed and used to update the parameters.

For weights w
(l)
ij : w

(l)
ij ← w

(l)
ij − η ∂L

∂w
(l)
ij

, where η is the learning rate.

CNNs [25] are DL architectures particularly e�ective at modeling data that
exhibit spatial-temporal relationships. EEG signals inherently contain both spa-
tial information (due to electrode positions) and temporal dynamics (signal vari-
ations over time), making CNNs highly suitable for EEG-based predictive tasks.
In this study, EEG data were reshaped into spatial-temporal feature maps, en-
abling convolutional �lters to learn discriminative patterns related to learner
engagement. Each convolutional layer applied multiple �lters (kernels) across
EEG signals, capturing localized spatial-temporal features indicative of engage-
ment. Convolution operations are mathematically represented as

X(l)
conv = σ

(
conv(X(l−1),W (l)) + b(l)

)
,

where X(l−1) denotes the input from the previous layer, W (l) represents con-
volutional kernel weights, b(l) is the bias vector, and σ is the Recti�ed Linear
Unit (ReLU) activation function. Following convolutional layers, pooling layers
reduced feature-map dimensionality and computational complexity by summa-
rizing feature representations. Extracted features were then �attened and passed
to dense layers, culminating in a sigmoid activation function for binary classi�-
cation

ŷ = σ

(
m∑
i=1

wiai + b

)
.
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The CNN was trained using the Adam optimizer to minimize binary cross-
entropy loss, ensuring e�cient convergence and robust predictive accuracy.

Hybrid Ensemble Model combines multiple individual classi�ers to en-
hance predictive accuracy by leveraging the strengths of diverse modeling ap-
proaches. In this research, the hybrid ensemble integrates three powerful al-
gorithms: GBM, RF, and NNs, combined through stacking. In this stacking
approach, each base model independently predicts probabilities of learner en-
gagement. These predictions serve as inputs�meta-features�for a LR meta-
classi�er, which makes the �nal prediction. Mathematically, the base-model pre-
dictions PGBM (X), PRF (X), and PNN (X) are combined into a �nal prediction
given by the LR meta-model:

ŷensemble = σ (β0 + β1PGBM (X) + β2PRF (X) + β3PNN (X)) .

The GBM model contributes iterative error minimization, the RF model adds
robustness through ensemble-based decision-making, and the NN captures com-
plex nonlinear EEG data patterns.

3.6 Evaluation Metrics

Several metrics were used to evaluate the performance of the ML models, accu-
racy, precision, recall, F1-score, and AUC [22]. These metrics provide insights
into models' performance, ensuring a robust assessment of their predictive ca-
pabilities. It should be noted that the ultimate value in each metric was derived
by averaging the outcomes of both classes from all folds. The de�nition of these
metrics is based on the confusion matrix consisting of the elements true-positive
(Tp), true-negative (Tn), false-positive (Fp) and false-negative (Fn). Below is a
brief description of each metric:

� Accuracy is the proportion of correctly predicted instances out of the total
instances. It is a straightforward metric indicating the overall correctness of
the model. Accuracy = Tp+Tn

Total Instances
.

� Precision is the ratio of correctly predicted positive observations to the
total predicted positives. It re�ects the accuracy of the positive predictions
made by the model. Precision = Tp

Tp+Fp
.

� Recall is the ratio of correctly predicted positive observations to all the
observations in the actual class. It measures the model's ability to capture
all relevant instances. Recall = Tp

Tp+Fn
.

� F1-score is the harmonic mean of Precision and Recall. It provides a sin-
gle metric that balances the trade-o� between Precision and Recall, es-
pecially useful when the class distribution is imbalanced: F1-Score = 2 ×
Precision×Recall
Precision+Recall

.
� AUC measures the ability of the model to distinguish between classes. It
represents the degree of separability achieved by the model. An AUC of 1
indicates a perfect model, while an AUC of 0.5 suggests no discriminative
power.
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These metrics provided a comprehensive view of the model performance, en-
abling the identi�cation of the most e�ective model for predicting e-learning
engagement based on EEG data.

4 Data Analysis

The dataset used in this study comprised EEG recordings collected from par-
ticipants engaged in an e-learning activity. More speci�cally, 8 students, with
varying levels of education (High school, Middle school, Undergraduate) were
invited to watch 11 online video lectures (e.g., Quantum Physics, Statistics,
String Theory, Photosynthesis, Linear Algebra, Biology, Numbers and Oper-
ations, Computational Geometry, Mythology). During these lectures, the stu-
dents' EEG brain waves were recorded using the Emotiv Epoc X 14-channel
headset, a multi-channel EEG system.

The dataset contained preprocessed data from the channels AF3, F7, F3,
FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4, as shown in Figure 1. The
target class captures whether a student understood the lecture or not. In total,
the dataset consists of 85 features, 54370 samples in class �Engaged� and 14461
samples in class �Not-Engaged�.

4.1 Statistical Measures

An exploratory data analysis was conducted to gain a deeper understanding
of the dataset. Figure 2 summarizes, across all participants, the statistical mea-
sures of PSD, namely, mean, minimum, maximum and standard deviation values
across di�erent frequency bands per engagement class, allowing for easy com-
parison.
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Fig. 2. Statistics of PSD per frequency band and engagement state [10]
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In the following, such an analysis is presented.

1. Theta band: In the engaged group, theta activity remains relatively low, in-
dicating e�cient cognitive processing with minimal unnecessary e�ort. Con-
versely, the non-engaged group exhibits elevated theta activity, which may
suggest increased cognitive e�ort without e�ective comprehension, poten-
tially re�ecting mind-wandering or cognitive overload.

2. Alpha band: Engaged learners demonstrate lower alpha activity, which
aligns with focused attention and active information processing. In con-
trast, the non-engaged group shows higher alpha power, often associated
with inattentiveness or relaxation, suggesting that these individuals may be
disengaged from the learning process.

3. Low Beta band: Engaged learners display moderate beta activity, which
corresponds to active cognitive engagement and problem-solving. However,
the non-engaged group shows excessively high beta activity, indicating cog-
nitive e�ort without e�ective learning, possibly re�ecting stress or ine�cient
cognitive strategies.

4. High Beta band: The engaged group maintains consistent high beta ac-
tivity, which is typically linked to sustained focus and cognitive e�ort. In
contrast, the non-engaged group exhibits greater �uctuations, suggesting
unstable concentration and ine�cient mental resource allocation.

5. Gamma band: Gamma activity is associated with information processing
and integration. In the engaged group, gamma levels are regulated, re�ecting
e�ective learning and comprehension. However, in the non-engaged group,
gamma activity is elevated but inconsistent, suggesting that while some in-
formation is being processed, it may not be meaningfully integrated into
learning.

The engaged group exhibits stable, well-regulated EEG activity, correspond-
ing to focused attention, e�cient cognitive processing, and active learning. Mean-
while, the non-engaged group demonstrates excessive but unstable neural activ-
ity, indicating cognitive e�ort without e�ective comprehension, potentially due
to mind-wandering, stress, or disengagement. These �ndings highlight the im-
portance of monitoring EEG patterns to understand better and enhance learner
engagement in educational settings.

4.2 Feature Ranking and Selection

Figure 3 presents the Pearson correlation heatmap for EEG-based learner en-
gagement features. The heatmap visually represents the CCs between di�er-
ent EEG channels recorded during e-learning sessions, illustrating the degree of
linear relationship between each pair of features. Darker red colors indicate a
stronger positive correlation, whereas cooler colors (closer to light blue) signify
weaker or negative correlations. Key observations highlight that AF3 exhibits
the strongest overall associations with other channels, reinforcing its role in at-
tention regulation and cognitive workload processing in the prefrontal cortex.
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Additionally, the correlation between the �Class� variable (learner engagement)
and EEG features reveals that T8, O1, P8, T7 and O2 have the highest cor-
relations, indicating their importance in engagement classi�cation. In contrast,
AF4 and FC6 show weak or slightly negative correlations, suggesting they may
contribute less signi�cantly to engagement prediction. These �ndings underscore
the importance of selecting relevant EEG features for improving model accuracy
while minimizing redundant or weakly related signals.

Fig. 3. Pearson Correlation Matrix among the 14 EEG Channels.

Additionally, Figure 4 depicts the correlation between PSD-based features
including engagement class (engaged, non-engaged) using a heatmap. This visu-
alization helps identify which frequency bands are most closely associated with
the engagement class.

It was observed that power-based features are highly linearly dependent on
one another, but according to the Pearson CCs in the blue area of the heatmap,
their importance in improving the predictive performance of the ML models is
low. Hence, further and extensive analysis should be conducted to understand the
features' importance and apply proper selection techniques to indicate the most
important ones that raise the model's performance while reducing complexity.

Table 3 presents the ranking of EEG-based features selected for engagement
prediction using three distinct methods: Pearson CC, IG, and GR. These tech-
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Fig. 4. Correlation between PSD features and engagement class [10].

niques evaluate feature importance from di�erent perspectives, providing com-
plementary insights into the most relevant EEG features for classi�cation.

The Pearson CC, as de�ned in equation (3), assesses the linear relationship
between each EEG feature and the engagement class label. Features with higher
absolute correlation values indicate stronger associations with engagement levels.
Notably, EEG.T8, EEG.O1, and EEG.P8 exhibit the highest correlation values,
suggesting that neural activity in the temporal and occipital regions plays a
signi�cant role in engagement prediction.

In contrast, IG, computed using equation (4), quanti�es the reduction in
uncertainty about the engagement state when a given feature is known. Fea-
tures with higher IG scores provide more discriminative information for classi-
�cation. The rankings in Table 3 highlight EEG.T7, EEG.O1, and EEG.T8 as
the most informative raw EEG channels, while power spectral features such as
POW.F7.Theta and POW.FC5.Theta also achieve high scores, indicating that
spectral characteristics contribute meaningfully to engagement di�erentiation.

The GR, derived from equation (5), re�nes IG by normalizing it with the
intrinsic entropy of each feature, reducing bias toward attributes with a high
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number of unique values. The rankings in Table 3 demonstrate that spectral
features such as POW.F7.Theta, POW.F7.Alpha, and POW.FC5.Theta outper-
form some raw EEG signals, reinforcing the relevance of frequency-based features
in engagement classi�cation.

  

 

Fig. 5. Statistics for 3 feature selection techniques assuming the whole (84) feature set.

The statistics of the ranking scores are captured in Figure 5, providing an
overview of the distribution of feature importance across the three feature selec-
tion techniques: Pearson CC, IG, and GR. This visualization o�ers insight into
the variability in feature relevance depending on the selection criteria. While
Table 3 presents a subset of the most relevant features, Figure 5 ensures a com-
prehensive representation of the entire feature set, allowing for a comparative
evaluation of ranking consistency and the in�uence of speci�c EEG channels and
spectral power components. This combined approach justi�es the selection of the
�nal reduced feature set by demonstrating the statistical patterns in feature im-
portance, ensuring that only the most discriminative and informative features
are retained for engagement classi�cation.

Feature selection was performed to enhance model interpretability and im-
prove classi�cation performance by reducing redundancy while retaining the
most informative EEG features for engagement prediction. The selection pro-
cess integrated Pearson CC, IG, and GR as ranking criteria. Features were cho-
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Table 3. Feature Importance based on the score estimated by Pearson CCs, IG and
GR.

Feature CC Feature IG Feature GR

EEG.T8 0.2131 EEG.T7 0.1878 POW.F7.Theta 0.0679
EEG.O1 0.1925 EEG.O1 0.1808 POW.F7.Alpha 0.0615
EEG.P8 0.1813 EEG.T8 0.1794 POW.FC5.Theta 0.0614
EEG.P7 0.1799 POW.F7.Theta 0.1761 POW.T8.Theta 0.0578
EEG.T7 0.1670 POW.FC5.Theta 0.1733 EEG.T8 0.0554
EEG.O2 0.1575 POW.T8.Theta 0.1733 POW.T7.Theta 0.0542
EEG.AF3 0.1395 POW.T8.Alpha 0.1728 EEG.F3 0.0536
POW.F7.Theta 0.1293 POW.T7.Theta 0.1645 EEG.FC5 0.0527
EEG.F7 0.1278 EEG.F3 0.1634 POW.T8.Alpha 0.0516
POW.F8.Theta 0.1230 EEG.P8 0.1634 EEG.P8 0.0503
POW.T7.Theta 0.1136 EEG.O2 0.1550 EEG.T7 0.0484
POW.P8.Theta 0.1095 EEG.P7 0.1512 POW.P7.Theta 0.0479
POW.F3.Theta 0.1087 POW.F8.Alpha 0.1497 POW.F3.Theta 0.0479
POW.F8.Alpha 0.1083 EEG.AF3 0.1491 EEG.O1 0.0478
POW.FC5.Theta 0.0958 POW.P7.Theta 0.1481 EEG.AF4 0.0471
POW.P7.Theta 0.0911 EEG.FC5 0.1451 EEG.AF3 0.0467
EEG.FC5 0.0910 POW.T8.BetaL 0.1430 EEG.O2 0.0458
POW.F4.Theta 0.0906 EEG.F4 0.1411 POW.T8.BetaL 0.0436
POW.O2.Theta 0.0882 EEG.F7 0.1353 POW.F8.Alpha 0.0433
POW.AF3.Theta 0.0869 POW.F3.Theta 0.1312 EEG.FC6 0.0431
POW.T8.Theta 0.0858 POW.F8.BetaH 0.1232 EEG.F4 0.0419
EEG.FC6 0.0822 POW.F8.BetaL 0.1213 EEG.P7 0.0417
POW.F3.Alpha 0.0794 POW.O2.Theta 0.1162 POW.F4.Theta 0.0413

sen based on their consistently high rankings across these methods, ensuring a
balance between raw EEG electrode signals and spectral PSD features.

The �nal selection of 14 features was made by prioritizing attributes that
contributed unique and non-redundant information while discarding those with
overlapping or low-importance scores. This approach ensures that the retained
features e�ectively capture engagement-related brain activity without exces-
sive dimensionality, which could introduce noise and reduce model e�ciency.
The selected features include EEG.O1, EEG.T8, EEG.T7, EEG.AF3, EEG.FC5,
EEG.F7, EEG.F4, POW.FC5.Theta, POW.P8.Theta, POW.F3.Alpha, POW.F4
.Theta, POW.O2.Theta, POW.AF3.Theta, and POW.T8.Theta. These features
provide a comprehensive representation of frontal, temporal, and occipital lobe
activity, as well as frequency-speci�c engagement markers, ensuring an optimal
trade-o� between performance and interpretability.
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5 Performance Evaluation of Engagement Models

The ML models' evaluation was carried out using WEKA [1], a free software
suite o�ering a range of tools for data preprocessing, classi�cation, regression,
clustering, and visualization. The experiments were executed on an Apple Mac-
Book Pro with a 13.3" Retina Display, equipped with an M2 chip, 16GB of
RAM, and a 256GB SSD.

Each model was trained on the preprocessed EEG dataset using a strati�ed
10-fold cross-validation to ensure robust performance evaluation. Hyperparam-
eter tuning was performed using grid search to identify the optimal parameter
settings for each model as shown in Table 4.

Table 4. Optimal Hyperparameter Tuning for ML Models.

Traditional ML Models

Model Hyperparameter Optimal Value

LR Regularization (C) 1.0

SVM Kernel Type RBF

Kernel Coe�cient (γ) 0.01

Regularization (C) 10

RF Number of Trees 100

Maximum Depth None (unlimited)

Minimum Samples Split 2

GBM Number of Estimators 200

Learning Rate 0.1

Maximum Depth 3

NN Number of Layers 3

Neurons per Layer [64, 128, 64]

Activation Function ReLU

Learning Rate 0.001

Batch Size 32

Epochs 150

DL and Hybrid Models

Model Hyperparameter Optimal Value

CNN Convolutional Layers 3

Kernels per Layer [32, 64, 128]

Pooling Method MaxPooling

Fully Connected Layers [128, 64]

Activation Function ReLU

Optimizer Adam

Learning Rate 0.001

Batch Size 32

Epochs 150

Hybrid En-
semble

Base Learners GBM, RF, NN

GBM Estimators 200

RF Estimators 100

NN Layers [64, 128, 64]

Meta-classi�er LR (C = 1.0)

The performance results, presented in Table 5, highlight the impact of feature
selection on EEG-based engagement prediction. Our methodology follows two
distinct approaches: i) leveraging the full feature set and ii) incorporating fea-
ture selection (as analyzed in Section 4.2). Feature selection plays a crucial role in
EEG-based engagement prediction by reducing feature space dimensionality, and
enhancing model interpretability and classi�cation performance. The selected
features in this study include EEG.T8, EEG.O1, EEG.P8, EEG.T7, EEG.AF3,
EEG.FC5, EEG.F7, EEG.F4, POW.FC5.Theta, POW.P8.Theta, POW.F3 .Alpha,
POW.F4.Theta, POW.O2.Theta, and POW.AF3.Theta, and align with neuro-
scienti�c �ndings and prior research in EEG-based engagement prediction for
e-learning. It has been consistently shown that engagement-related cognitive ac-
tivity is re�ected in distinct cortical regions and frequency bands, particularly
those associated with attention, memory, sensory integration, and cognitive load
regulation.

The temporal and occipital electrodes (e.g., EEG.T8, EEG.O1, EEG.P8)
correspond to memory retrieval and visual processing functions, which are fun-
damental to learning engagement. Also, right temporal lobe activation (EEG.T8)
has been linked to active listening and information retention, indicating its strong
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association with engagement intensity in auditory learning tasks. Similarly, oc-
cipital electrodes (EEG.O1, O2) play a critical role in visual attention and cog-
nitive load regulation, particularly in multimedia-based learning environments,
where visual engagement determines comprehension and retention.

Additionally, the parietal electrode P8, selected as a key feature, is sup-
ported by studies highlighting its role in sensorimotor integration and atten-
tional control. Sustained engagement in e-learning has been shown to corre-
late with increased parietal cortex activation, re�ecting cognitive processing,
attentional shifts, and sensory integration. The inclusion of POW.F7.Theta and
POW.FC5.Theta reinforces the neuroscienti�c basis of engagement prediction,
as theta power in frontal and fronto-central regions has been associated with
working memory load, sustained attention, and cognitive focus.

The impact of feature selection on model performance is evident in the re-
sults. By retaining only the most relevant features, classi�cation models ex-
hibited higher accuracy, precision, recall, and AUC scores compared to models
trained on all features. The Hybrid Ensemble model, integrating GBMs, RF, and
NN, achieved the highest performance, with an accuracy of 92.7% and an AUC
of 95.1% when trained on the selected 14 features. This �nding suggests that
eliminating less informative features not only reduces computational complexity
but also enhances model generalization. Similarly, the CNN model, leveraging
spatial and temporal dependencies in EEG signals, demonstrated superior clas-
si�cation performance with feature selection, indicating that a re�ned feature
set improves DL models' ability to capture engagement-related patterns.

These �ndings are consistent with prior EEG-based engagement prediction
studies, which emphasize that targeted feature selection eliminates redundant
data while preserving only the most discriminative neural signatures of engage-
ment. Research in EEG-driven learning analytics has demonstrated that opti-
mized feature sets, particularly those based on PSD and spatial cortical acti-
vations, contribute to higher classi�cation accuracy and model e�ciency. The
feature selection methodology applied in this study ensures that models are not
overwhelmed by noise or irrelevant variability, thereby improving the robustness,
interpretability, and reliability of engagement prediction.

The results also reinforce the scienti�c validity of EEG-based engagement
classi�cation in e-learning. By aligning feature selection outcomes with estab-
lished neurophysiological evidence, this study underscores the importance of
strategic feature selection in optimizing engagement prediction models for real-
world applications.

6 Conclusions

This study explored EEG-based engagement prediction in e-learning environ-
ments using ML models. By leveraging EEG signals recorded from learners dur-
ing online educational sessions, we developed a robust framework for feature
extraction, selection, and classi�cation to assess engagement levels. The results
demonstrated that integrating feature selection techniques signi�cantly enhances
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Table 5. Performance Comparison of Models with All Features vs. Selected Features

All Features (84) Selected Features (14)

Model Accuracy Precision Recall F1-Score AUC Accuracy Precision Recall F1-Score AUC

LR 78.0% 75.0% 76.0% 75.5% 80.0% 79.1% 76.5% 77.3% 76.9% 81.5%

SVM 82.0% 80.0% 81.0% 80.5% 84.0% 83.2% 81.5% 82.3% 81.9% 85.7%

RF 85.0% 83.0% 84.0% 83.5% 87.0% 86.1% 84.5% 85.2% 84.8% 88.6%

GBM 87.0% 85.0% 86.0% 85.5% 89.0% 88.0% 86.4% 87.1% 86.8% 90.5%

NN 90.0% 88.0% 89.0% 88.5% 92.0% 91.2% 89.8% 90.5% 90.1% 93.0%

CNN 89.0% 87.5% 88.2% 87.8% 91.5% 90.3% 89.0% 89.7% 89.3% 92.8%

Hybrid Ensemble 91.5% 90.2% 91.0% 90.5% 93.7% 92.7% 91.5% 92.0% 91.8% 95.1%

model interpretability and performance by reducing redundancy and preserving
the most informative neural features.

The evaluation of multiple ML-based engagement models, including tradi-
tional classi�ers (LR, SVM, RF, GBM, Hybrid Ensemble) and DL architectures
(NNs and CNNs), revealed that feature selection leads to improved classi�ca-
tion performance. The Hybrid Ensemble model achieved the highest accuracy
(92.7%) and AUC (95.1%) when trained on the selected 14 features, demonstrat-
ing the e�ectiveness of a re�ned feature set in optimizing engagement predic-
tion. Furthermore, the CNN model, designed to capture spatial and temporal
dependencies in EEG signals, also exhibited strong performance, reinforcing the
importance of DL approaches in EEG-based learning analytics.

The selected features related to EEG channels T7, T8, O1, P8, AF3, FC5,
F4, F7, the PSD of F4, AF3, FC5, P8, and O2 at θ band, and the PSD of F3 at
α band, align with neuroscienti�c evidence linking engagement-related cognitive
processes to speci�c cortical regions and frequency bands. The temporal, occipi-
tal, and parietal electrodes capture critical aspects of memory retrieval, sensory
integration, and attentional focus, while spectral power features provide insights
into cognitive load and sustained attention.

By systematically re�ning the EEG feature space, this study highlights the
advantages of targeted feature selection in improving computational e�ciency
while maintaining high classi�cation accuracy. Our �ndings support the broader
adoption of EEG-based engagement monitoring systems in adaptive e-learning
environments, enabling real-time adjustments to instructional content based on
learners' cognitive states.

Future research should explore the integration of real-time EEG-based adap-
tive learning systems that dynamically adjust content delivery based on engage-
ment levels. Additionally, expanding the study with a larger and more diverse
participant pool would further validate the generalizability of the proposed ap-
proach. The intersection of EEG analytics and ML holds immense potential
for revolutionizing personalized e-learning by providing objective, data-driven
insights into learner engagement, ultimately enhancing educational outcomes.
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