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Abstract: The growing number of educational technologies presents possibilities and chal- 9 

lenges for personalized instruction. This paper presents a learner-centered decision sup- 10 

port system for selecting adaptive instructional strategies, that embeds the Technique for 11 

Order Preference by Similarity to Ideal Solution (TOPSIS) in a real-time learning environ- 12 

ment. The system uses multi-dimensional learner performance data, such as error rate, 13 

time-on-task, mastery level, and motivation, to dynamically analyze and recommend the 14 

best pedagogical intervention from a pool of strategies, which includes hints, code exam- 15 

ples, reflection prompts, and targeted scaffolding. In developing the system, we chose to 16 

employ it in a one off postgraduate Java programming course, as it represents a defined 17 

cognitive load structure and samples a spectrum of learners. A robust evaluation was con- 18 

ducted with 100 students and an adaptive system compared to a static/no adaptive control 19 

condition. The adaptive system with TOPSIS yielded statistically higher learning out- 20 

comes (normalized gain g = 0.49), behavioral engagement (28.3% increase in tasks at- 21 

tempted), and learner satisfaction. 85.3% of the expert evaluators agreed with the system 22 

decisions compared to the lecturer’s preferred teaching response towards the prescribed 23 

problems and behaviors. In comparison to rule-based approach, it was clear that the TOP- 24 

SIS framework provided a more granular and effective adaptation. The findings validate 25 

the use of multi-criteria decision-making for real-time instructional support and under- 26 

score the transparency, flexibility, and educational potential of the proposed system 27 

across broader learning domains. 28 

Keywords: Adaptive Learning Systems; Multi-Criteria Decision Making; MCDM; Educa- 29 

tional Decision Support; TOPSIS; Learner-Centered Design  30 

 31 

1. Introduction 32 

The rise of educational software across multiple learning environments has funda- 33 

mentally modified the manner in which knowledge is delivered, accessed, and measured. 34 

Educational software creates automated feedback, self-regulated learning, and interac- 35 

tions that can accommodate a vast array of learners and subjects [1]. As these systems 36 

continue to be used more in both formal and informal learning contexts, researchers and 37 

software developers are less concerned with whether learners can access these educa- 38 

tional technologies and are more concerned with how they can be tailored to suit the 39 

changing needs, aims, and behaviors of individual learners [2].  40 
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Today's classrooms, either in-person or online, are comprised of ever-growing heter- 41 

ogeneous groups of learners [3]. Learners join the classroom with a variety of social and 42 

cultural backgrounds, previous knowledge, cognitive styles, motivations, and learning 43 

preferences. Thus, a universal approach to instructional design is often not sufficient. Per- 44 

sonalization has now become a priority in educational systems design [4], which aims to 45 

tailor content and learner support strategies to the individual learner's profile and needs 46 

at a specific moment. 47 

Personalization in educational contexts is not solely about content sequencing or rec- 48 

ommendation [5]. It is also important to personalized adaptations in instructional strategy 49 

- choice of how to respond to a learner's action online, in real time [6]. For instance, should 50 

the system provide a hint, give an explicit code example, prompt to self-reflect, or advance 51 

the learner? The determination of the most helpful instructional strategy at the right mo- 52 

ment may influence the learner's level of engagement, understanding, and retention of 53 

material. 54 

There are a number of approaches that have proposed methods for making these 55 

types of adaptive instructional decisions [7]. There are rule-based systems, Bayesian net- 56 

works, fuzzy logic, reinforcement learning, case-based reasoning, and others. Each meth- 57 

odology has its own advantages and drawbacks. However, one family of methods Multi- 58 

Criteria Decision Making (MCDM) methods are of particular interest to education because 59 

instructors are often attempting to balance many different factors related to the learner 60 

[8]. One MCDM method is the Technique for Order Preference by Similarity to the Ideal 61 

Solution (TOPSIS). 62 

TOPSIS is a widely used MCDM method that was introduced by Hwang and Yoon 63 

in 1981 [9]. TOPSIS finds the best solution alternative from a finite set of possible option 64 

alternatives by comparing the distance of each alternative to an ideal solution (the best 65 

case) and an anti-ideal solution (the worst case). The learner options are assessed with 66 

various criteria, with weights assigned, and the option that is closest to the ideal solution 67 

and furthest from the anti-ideal situation is selected. The method is intuitive, computa- 68 

tionally simple, and appropriate for real-time usage, which makes it a very good injective 69 

for learner-centered instructional systems [10]. We used TOPSIS for this work because it 70 

can accommodate multiple, often competing, metrics of learners (performance, effort, en- 71 

gagement, etc.) in a mathematically principled and interpretable manner. 72 

This paper presents a decision support system for learner-centered instructional 73 

strategy adaptation in personalized learning. The system collects real-time performance 74 

data from students and applies a decision support model based on the TOPSIS algorithm 75 

to determine the most pedagogically relevant instructional strategy among a collection of 76 

strategies (i.e., contextual hints, examples with annotations, reflection prompts, and scaf- 77 

folding activities). This research is novel in that we are layering real-time multi-criteria 78 

decision-making model into an adaptive instructional engine, allowing interventions 79 

based on learner state rather than content order. As a testbed for our research, we applied 80 

this framework to a Java programming learning environment, which provided a well- 81 

structured and cognitively demanding context to validate adaptive instructional strate- 82 

gies. Java was selected as the instructional domain due to its structured syntax, object- 83 

oriented paradigm, and its widespread use in programming education—factors that make 84 

it ideal for evaluating the effectiveness of real-time adaptive instructional interventions 85 

[11-12]. The work describes the architecture of the system, decision-making model, and 86 

implementation; we provide a goal assessment regarding the system with cognitive, be- 87 

havioral, and usability performance. The model is an open, extensible and empirically- 88 

based method of personalization founded on MCDM theory that be applied to many ed- 89 

ucational contexts. Summarizing, the contribution of this work is the integration of the 90 

TOPSIS multi-criteria decision-making algorithm into a real-time adaptive instructional 91 
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decision-support system for personalized learning interventions. Unlike traditional sys- 92 

tems focusing primarily on content sequencing, this approach dynamically selects instruc- 93 

tional strategies tailored specifically to individual learner states. 94 

The remainder of the paper is structured as follows. Section 2 discusses related work; 95 

Section 3 outlines the system architecture. Section 4 details the TOPSIS-based decision 96 

framework. Section 5 presents the instructional strategy adaptation and implementation. 97 

Section 6 covers the system evaluation. Section 7 discusses the findings, and Section 8 98 

provides the conclusions and future directions. 99 

 100 

2. Related Work 101 

Adaptive learning systems in computer science education have progressed tremen- 102 

dously in programming pedagogy [13-19]. Adaptive learning systems typically seek to 103 

individualize the educational experience by quickly acting upon data from the learners’ 104 

direct experience. When the context is Java programming and other technical subjects, 105 

customization often relates mostly to content difficulty, recommendations, and pacing [20, 106 

21]. Some intelligent tutoring systems, such as [22, 23], analyze the learners' submissions 107 

for context-aware feedback. Other systems base activity selection or explanations upon a 108 

learner profile of learning style or prior knowledge. Generally, while these systems may 109 

adapt what is presented, addressing how to pedagogically intervene through adaptive 110 

instructional strategies in consideration of learner states is less common. 111 

To aid with this kind of instructional decision-making, a number of learner modeling 112 

methods have been implemented [24]. The most straightforward learner models are the 113 

Rule-based systems that have straightforward development and maintenance and achieve 114 

a high level of transparency; however, they lack scalability and flexibility [25-27]. The 115 

more sophisticated probabilistic learner models include Bayesian networks, which model 116 

the probabilistic relationships between different learner variables [28-30]; these also in- 117 

clude fuzzy logic systems, which use fuzzy membership functions to model uncertainty 118 

in learner variable interpretation [31-33]. Then there are Reinforcement learning methods 119 

that optimize instructional policies through trial and error, and case-based reasoning sys- 120 

tems define new learners based on similar previous learner profiles and the successful 121 

instructional interventions [34-36]. There are advantages to all of these models, but they 122 

all share an issue of fairly high complexity, data dependency, or low interpretability, es- 123 

pecially as they are deployed in real-time systems, which require immediate action. 124 

In recent years, the MCDM approaches, particularly the Technique for Order Prefer- 125 

ence by Similarity to the Ideal Solution (TOPSIS), have begun to gain more attention and 126 

use in educational research [10, 37-46]. TOPSIS has been used in a variety of contexts in 127 

education, including, for example, evaluating learning management systems, recom- 128 

mending learning resources, and matching course recommendations with learner objec- 129 

tives and goals. Each of these scenarios demonstrates the use of TOPSIS in situations re- 130 

quiring consideration of several, often competing, criteria. The TOPSIS method lends itself 131 

to this problem and provides an approach that has mathematical rigor and is also trans- 132 

parent for educators and learners to understand. However, use of TOPSIS has remained 133 

primarily in offline analysis or generating generalized recommendations, and has not 134 

been integrated into real-time adaptive systems [47]. 135 

Several prominent MCDM methods have been proposed in literature, such as Ana- 136 

lytic Hierarchy Process (AHP), ELECTRE, PROMETHEE, and VIKOR [48-51]. AHP is 137 

powerful for criteria weighting but can become computationally intensive in real-time 138 

contexts [52]. ELECTRE and PROMETHEE are useful in handling qualitative preferences, 139 

yet their complexity makes rapid decision-making challenging [53]. VIKOR is effective in 140 

compromise ranking but can be sensitive to criteria weights [54]. We selected the TOPSIS 141 
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method due to its simplicity, computational efficiency, clear interpretability, and effec- 142 

tiveness in handling conflicting criteria. These attributes make TOPSIS particularly well- 143 

suited for the real-time adaptive instructional scenarios central to our study. 144 

In this paper, we demonstrated a new paradigm for using TOPSIS by applying it in 145 

a learner-centered pedagogical framework for Java programming. Previous studies had 146 

used TOPSIS to make static assessments or recommendations of content, while our system 147 

was able to assess interactions in real time and determine the ranking of potential peda- 148 

gogies post-learning task. This is a shift from adaptation of content to adaptation of ped- 149 

agogy, and in doing so, provided additional dimensions of personalization- that is the 150 

tactical adaptation of how support is provided rather than what support is provided. Our 151 

work fills an important niche in describing and operationalizing a multi-criteria pedagog- 152 

ical decision-making process that is interpretable and dynamic, within the constraints pro- 153 

gramming education presents. 154 

 155 

3. System Architecture 156 

The proposed learning system is a web-based personalized learning ecosystem that 157 

facilitates Java programming instruction through real-time, data-driven adaptations to 158 

teaching strategies. The learner interface was developed as a web-based environment us- 159 

ing standard front-end technologies suitable for interactive educational applications. This 160 

design enables real-time feedback, responsiveness, and seamless integration with the 161 

adaptive decision engine. The design of the system is based on pedagogy and computa- 162 

tional decision support, ensuring that all learners receive timely and effective interven- 163 

tions based on their real-time performance and behavioral traces. All of the decisions with 164 

instructional design are based on the steps in TOPSIS, which sequentially aggregates and 165 

prioritizes multiple learner-centered criteria to identify the best instructional strategy the 166 

learner could be provided with at any learning step. The system is grounded in three core 167 

functional components: Learner Performance Monitoring, Decision Support Engine, and 168 

Instructional Content Delivery. The three components work within a feedback loop ena- 169 

bling real-time personalization. 170 

The Learner Performance Monitoring component is responsible for collecting and 171 

keeping up-to-date a range of data about the learner's performance while interacting with 172 

Java programming tasks. While engaged with other components of the system, the envi- 173 

ronment provides learners with an integrated code editor, a submission console and as- 174 

sessments modules. This component collects all sorts of overt behaviors and performance 175 

measures of the learner including the number of syntax and semantic errors, total time in 176 

completing tasks, hint request frequency, the number of compilations before submission, 177 

quiz scores, and so on. These raw data points are converted to normalized learner features 178 

to be used by the Decision Support Engine. In addition, the system captures a time series 179 

of the learning events so that future iterations will be able to use this time series data to 180 

make adaptations based on trends in behavior. 181 

With the learner profile updated, the Decision Support Engine is activated. The De- 182 

cision Support Engine then deploys the TOPSIS algorithm to evaluate a number of prede- 183 

termined instructional strategies against the individual characteristics of the learner, 184 

through demonstrating selected criteria. Each strategy is scored based on its estimated 185 

effectiveness given the learners recent performance. The characteristics and criteria for 186 

scoring the strategies are of a cognitive dimension (e.g., concept acquisition, overall error 187 

rate) and behavioral dimension (e.g., amount of time on task, motivational proxies) and 188 

these each may have different weights of importance pedagogically. 189 

The Instructional Content Delivery component implements the chosen strategy in an 190 

efficient, unobtrusive manner. Due to circumstance and level of engagement, the system 191 
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will either provide an interactive hint, or draw attention to a part of a past submission, or 192 

provide a marked-up code example, or prompt for reflection on performance. The plat- 193 

form is designed to provide instructional strategies with minimal disruption to instruc- 194 

tion, while adapting to user instruction seamlessly. The Instructional Content Delivery 195 

logs all instructional activity for subsequent analysis and use by the system and also for 196 

research in pedagogy. 197 

The entire system was developed to use a data flow and interaction cycle in real time. 198 

Each learner action (e.g., submission of code, request for help, submission of quiz re- 199 

sponse) becomes a data acquisition point. The performance monitoring module takes in 200 

the information, processes it and encodes it for use by the decision support engine. The 201 

Decision Support Engine analyzes the learner state in near real-time using a TOPSIS eval- 202 

uation process and determines the most appropriate response from an instructional con- 203 

text. This creates a continuous cycle that allows the system to be responsive to changes in 204 

learner engagement and performance throughout a session. 205 

To further illustrate the process, let's focus on a learner struggling with nested loops 206 

in Java. She has made several attempts, spent a long period attempting the task, and asked 207 

for several hints. All are indications of cognitive overload and low task mastery. The 208 

Learner Performance Monitoring captures these metrics, and the Decision Support Engine 209 

evaluates various strategies. Among the options—providing another hint, suggesting a 210 

simpler exercise, or showing a complete worked example—the Decision Support Engine 211 

determines, based on weighted learner criteria, that the most appropriate action is to dis- 212 

play an annotated example. The Instructional Content Delivery will present this example 213 

as her focus will be on the structure and logic of nested loops. Following a review of this, 214 

she will complete the task again, and then the adaptive cycle continues. 215 

The architecture support responsive instruction, while retaining semblance of inter- 216 

pretability, accountability, and pedagogically sound practices. Whereas, a black-box 217 

model would be opaque to the learner, the use of TOPSIS allows the learner to see 218 

prompts, hints, and other strategies being considered, allowing the instructor and design- 219 

ers the benefit of participating in the decision, and to refine and improve the choice of 220 

strategies. This enables the system to be built out further, with dynamic weighing, di- 221 

versely pooling strategies, or even linkage to richer learner models. 222 

A high-level outline of the system architecture is shown in Fig. 1, which encapsulates 223 

the major processing stages and their relationships in the real-time personalization loop 224 

while highlighting the modular and extensible architecture of the platform. 225 

 226 

Figure 1. Workflow of the Decision Support Engine based on the TOPSIS method. 227 
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 228 

4. Multi-Criteria Decision Framework Using TOPSIS 229 

At the heart of the instructional adaptation system is the Decision Support Engine, 230 

which utilizes the Technique for Order Preference by Similarity to the Ideal Solution 231 

(TOPSIS). Through the Decision Support Engine, real-time instructional personalization 232 

becomes possible in our emergent system, by choosing the most advantageous pedagog- 233 

ical action, given the multi-dimensional representation of the learner's cognitive and be- 234 

havioral state. The procedures implemented by TOPSIS for educational decision making 235 

are dynamic, as opposed to traditional dynamic adaptation systems, which still mostly 236 

take the reactive approach of looking only at the learner's data to select a learning method. 237 

TOPSIS allows for the comparison of each instructional strategy as it respond to current 238 

data while drawing upon a structured reasoning approach based in education principles. 239 

After every learner interaction, the system executes a comparison of a predetermined 240 

set of six instructional alternatives: (1) provide a contextual hint; (2) show an annotated 241 

code example; (3) assign an easier related task; (4) provide a reflection prompt; (5) permit 242 

the learner to proceed to the next concept; and (6) elicit a micro-quiz. These instructional 243 

alternatives were defined in collaboration with a group of programming educators and 244 

instructional designers. The instructional alternatives reflect different pedagogical intents, 245 

such as scaffolding, consolidation, remediation, motivation, and progression. This set was 246 

refined during iterative design sessions with educators who identified common instruc- 247 

tional moves relevant to Java programming instruction. 248 

The process of decision making is based on six pedagogically relevant criteria: Error 249 

Rate, Time on Task, Mastery, Motivation Score, Hint Usage Frequency (or the influence 250 

on learner independence or dependence), and Speed of Progress. These indicators were 251 

informed by literature review on learner analytics and validated through interviews with 252 

educators who experienced adaptive learning environments. Each criterion relates to a 253 

specific dimension of learner behavior and progress. For example, Error Rate indicates 254 

ongoing task performance; Time on Task indicates cognitive load; Mastery is inferred 255 

from performance on formative assessments; Motivation Score is related to persistence 256 

through tasks, voluntary resource access use and patterns of engagement with the plat- 257 

form; Hint Usage Frequency informs the indication of learner independence or depend- 258 

ency; and Speed of Progress indicates potential pacing and engagement. These six criteria 259 

are summarized in Table 1, which outlines their descriptions and pedagogical relevance 260 

within the adaptive decision-making process. 261 

 262 

Table 1. Pedagogically Relevant Criteria Used in the Decision-Making Process. 263 

Criterion Description Pedagogical Role 

Error Rate 
Frequency of syntax or logic errors 

during task completion 
Indicates ongoing task performance 

Time on Task 
Total time spent working on a spe-

cific task 
Reflects cognitive load or struggle 

Mastery 
Inferred from quiz scores and task 

outcomes 
Represents understanding of core concepts 

Motivation Score 
Derived from platform engage-

ment, retries, and voluntary actions 
Suggests learner persistence and engagement 

Hint Usage Frequency Number of hints requested Indicates learner independence or dependency 

Speed of Progress 
Rate of advancement through the 

learning sequence 

Reflects learner pacing and consistency 

 

 264 
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To allow for comparison among these heterogeneous dimensions a min-max normal- 265 

ization was used to normalize all input values to a [0,1] scale. Once data was normalized, 266 

at each decision point a decision matrix was created that has a row for each instructional 267 

strategy and a column for the six criteria. Importantly, the entries of the decision matrix 268 

are not the learner's raw values but effect estimates of each strategy on each criterion given 269 

the learner's current stage of development. These estimates are based on expert-informed 270 

heuristics, pilot trial information, and directly observing previous uses of the system. For 271 

example, past patterns indicate that an easier task tends to improve perceived success and 272 

decrease frustration (lower error rate and time), and that a reflection prompt tends to im- 273 

prove motivation but may increase time on task. 274 

Weight assignment is an integral part of TOPSIS; it defines how much each criterion 275 

contributes to the final ranking in the analysis. The weights used in this developmental 276 

study were W = [0.25, 0.15, 0.20, 0.15, 0.10, 0.15] and they were agreed upon using the 277 

Delphi method with five experts in computer science education, adaptive learning, and 278 

pedagogical experiences. Three iterative rounds for the experts to rank the criterion to 279 

what extent it supports student learning along with justifications for scores. The weight 280 

agreements in Criterion weights reflect the best identified priorities where Error Rate and 281 

Mastery (the right answer and understanding) were strongly regarded, followed by crite- 282 

rion relating to Effort, Motivation, and Pace indicators moderately weighted. 283 

With the matrix fully populated and weighted, the system calculates both the ideal 284 

solution vector, made from the best values of each criterion ( eg. error rate, mastery, speed) 285 

and the anti-ideal solution vector made from worst-case values. Each learning alternative 286 

for the particular educational context, was treated with an Euclidean distance formula, 287 

measuring calculated distance from the ideal and anti-ideal. The resultant closeness coef- 288 

ficient Ci was computed for each particular alternative: 289 

𝐶𝑖 =
𝑆𝑖
−

𝑆𝑖
+ + 𝑆𝑖

− 290 

where 𝑆𝑖
+ and 𝑆𝑖

− represent the distances to the ideal and anti-ideal solutions re- 291 

spectively. The strategy with the highest is selected for delivery. 292 

To provide a tangible example, suppose we are considering three strategies—Hint, 293 

Code Example, and Micro-Quiz—with three simplified criteria. The normalized and 294 

weighted scores are shown in Table 2. 295 

Table 2. Normalized and weighted decision matrix. 296 

Strategy Error Rate Time on Task Mastery Weighted Score 

Hint 0.8 0.6 0.3 0.54 

Code Example 0.6 0.5 0.6 0.58 

Quiz 0.3 0.4 0.9 0.60 

 297 

Given ideal and anti-ideal vectors defined as [0.3, 0.4, 0.9] and [0.8, 0.6, 0.3], respec- 298 

tively, we calculate the Euclidean distances, which enables us to calculate the for each 299 

strategy. Notably, if the Quiz alternative has the highest closeness coefficient (Ci), it is 300 

chosen and implemented without delay. If two alternatives have almost identical values, 301 

the system employs a second rule (e.g., selection of the strategy that has not been used 302 

with the learner recently) to break ties and provide differentiated variability in pedagogy. 303 

The benefit of this decision model lies in its flexibility, but also in its accountability. 304 

Instructors may retrace the decision path, examine the weightings, and follow the contrib- 305 

uting factors towards a given adaptation. An additional benefit is that not only is the cur- 306 

rent model flexible, but it is also modular. With some restructuring, we would be able to 307 

add additional criteria (i.e., affective states from facial movement or typing patterns), or 308 

update mappings of strategies over time as we explore observable learner outcomes. 309 
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In conclusion, the TOPSIS-based Decision Support Engine provides an evidence- 310 

based, transparent, and scalable way of adapting instructional strategy in real-time. 311 

Providing a personalized pedagogical decision-making process built on multiple learner 312 

metrics, expert knowledge, and structured evaluation logic, it demonstrates a new level 313 

of personalization in pedagogical decision-making in the context of programming educa- 314 

tion. To visually summarize the full decision-making process, the overall workflow of the 315 

Decision Support Engine which is based on the TOPSIS method is shown in Fig. 2. 316 

 317 

Figure 2. Workflow of the Decision Support Engine based on the TOPSIS method. 318 

This quantitative scoring is then used to trigger the corresponding pedagogical action 319 

within the learning platform interface, as explained in Section 5. 320 

5. Instructional Strategy Adaptation and System Implementation 321 

The instructional strategies for instructional strategy adaptation implemented into 322 

the proposed learning system are a facilitated implementation of cognitive load theory 323 

principles relating to learner-centric responsiveness, scaffolding, and formative assess- 324 

ment. The strategies included in the learning system are designed for various types of 325 

learning difficulties, promote reflective thinking, developed motivation, and promote un- 326 

derstanding of the appropriate concept. Additionally, each strategy serves a clear instruc- 327 

tional goal. For instance, hints serve as a targeted form of scaffolding to assist learners 328 

who are experiencing temporary misunderstanding; whereas an annotated code example 329 

is used as scaffolding to assist with tacit understanding by learners who consistently fail 330 

to apply a programming construct. Moreover, the reflective prompts are intended to sup- 331 

port learner metacognition, while micro-quizzes serve to support retention and provide 332 

evidence of residual misunderstanding. 333 

The selection process is initiated by the system's perception of how the learner is 334 

transitioning through the learning state. The learner's state is expressed through a multi- 335 

dimensional profile from the constantly updated record of their patterns of interaction. 336 

Indicators like frequent compilation errors, excessive time spent on tasks, multiple hints, 337 
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and no observable improvement indicate a potential bottleneck for learning. The data are 338 

represented by way of six pedagogically meaningful parameters, and these serve to struc- 339 

ture the decisions of instructional options stemming from the principles of TOPSIS, one 340 

of the multi-criteria decision-making methods. Our specification of the probable effects 341 

for any instructional method – that is, the effect of each instructional method was defined 342 

in terms of the six pedagogical parameters - was obtained through some combination of 343 

heuristics informed by expert knowledge and pre-experimental data stemming from pre- 344 

vious pilots with the system. For instance, it was noticed that learners who had been pro- 345 

vided schema with annotated code examples in the previous months sporadically re- 346 

turned to the course learning with lower rates of errors and improved mastery, while 347 

those with reflection prompts tended to spend more time on assessment items than those 348 

who did not receive that instructional suggestion, but also displayed elevated engagement 349 

scores in post-task surveys. These patterns formed the basis of the values used in the esti- 350 

mates for impact for each of the instructional approaches in the decision matrix. It's im- 351 

portant to know that the mappings were not arbitrary: we based them on accepted edu- 352 

cational notions of learning behaviours and performance assessment, and the empirical 353 

evidence we witnessed in earlier versions of the platform. 354 

The incorporation of the TOPSIS-based Decision Support Engine into the larger 355 

learning context was a complicated synchronization of the front-end interaction compo- 356 

nents with the back-end decision logic. The learning object was designed with a client- 357 

server architecture. The front-end interface of the learning context, designed with JavaS- 358 

cript and React, supports the interactive Java programming tasks in the learning object, 359 

provides personalized feedback to the learner, and gathers the learner's inputs. The back- 360 

end of the learning context, designed with Python, includes the TOPSIS engine, data nor- 361 

malization and scoring classifier routine, and the instructional response controller. The 362 

data viewing and processing components for the interactions are loosely coupled and 363 

communicate through the RESTful API, allowing data transfers to occur asynchronously 364 

and for each component to be updated in low-latency time. When a learner interacts with 365 

the learning context, an API call is created from the front-end interface. This call sends 366 

interaction movement data to the server, where the decision engine uses the data to per- 367 

form the decision analysis of what is the optimal instructional strategy. 368 

The adaptation mechanism must utilize a lightweight session-based learner model 369 

that is updated in real time to support the active adaptation process. The learner model 370 

doesn't try to predict the long term level of success but it does try to respond meaningfully 371 

to where the learner is currently at in their activity. Each time the learner submits work or 372 

requests help, the system retrieves performance metrics, and re-evaluates the instructional 373 

context to put the chosen strategy for a learner into the interface in a coherent manner. 374 

Once TOPSIS identifies the optimal instructional strategy, the system will instantiate and 375 

personalize the recommended strategy dynamically, by taking assets with associated 376 

metadata tags of pedagogical value from a library of pedagogical resources. Each resource 377 

wise asset (hint, code example, reasoning with the author... etc.) is indexed by topic, diffi- 378 

culty and a set of common misconceptions. Moreover, for example, if the student is work- 379 

ing on a loop structure and the TOPSIS engine recommends 'hint' and recognizes repeated 380 

off-by-one errors, the system retrieves the hint “Consider whether your loop condition 381 

includes or excludes the endpoint value” from its database. The hint is contextually in- 382 

serted within the learner's code editor so that only an adaptation to the UI is made, with- 383 

out requiring a page refresh or manual request. In a different case, if a code example is 384 

selected, the system produces an annotated example, in a highlighter, consistent with the 385 

learner's current concept (e.g., array iterating), formatted liberally with a small explana- 386 

tion box. Each pedagogical strategy is bracketed with the specific delivery situation: hints 387 

in-line, examples in expandable panels, reflection prompts in modals and so on—such 388 
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that the envisioned interventions feel snugly situated in that workflow. With the immedi- 389 

acy of guttural nesting guided by the pedagogical rationale, adaptive support is not only 390 

algorithmically instantiated but also meaningfully experienced by the learner.  391 

To maximize experimentation and development, the application was designed with 392 

modularity and extensibility in mind. The TOPSIS engine, data-processing pipeline, and 393 

instructional strategy modules are encapsulated as discrete services, updateable and re- 394 

placeable without needing to rewrite the main application. Each decision and decision 395 

made by a learner is logged in a systematic way that will allow them to be analyzed and 396 

make continuous improvements to the adaptation logic. The system therefore demon- 397 

strates both theoretical rigor in its pedagogical underpinning and technical rigor in its 398 

implementation. It joins data-informed decision making with real-world instructional de- 399 

livery and exemplifies that real-time personalization can be accomplished in program- 400 

ming education. 401 

 402 

6. Evaluation 403 

To thoroughly test the pedagogical effectiveness, behavioral incidence, and technical 404 

feasibility of the proposed TOPSIS-based adaptation system, we conducted a longitudinal 405 

mixed-method study with 100 postgraduate students in a conversion master’s program in 406 

computer science at a Greek university. The cohort included students from non-STEM 407 

(Science, Technology, Engineering, and Mathematics) fields such as humanities, law, ed- 408 

ucation, and psychology, representing a diverse range of learner profiles. Most partici- 409 

pants had low baseline programming skills but highly variable motivation and prior ex- 410 

perience—an ideal context in which to evaluate adaptive instructional technologies. The 411 

participants’ ages ranged from 23 to 38 years old (M = 27.4, SD = 3.2), and the sample 412 

included 58 females and 42 males. This diversity in academic background, prior exposure 413 

to computing, and learner demographics provided a robust and realistic setting for as- 414 

sessing the system’s capacity to personalize instruction effectively. 415 

Participants were randomly assigned to a control group (n = 50), using a traditional 416 

static e-learning platform, and an experimental group (n = 50), using our adaptive plat- 417 

form and TOPSIS-based instructional strategic engine. Both groups covered the same 418 

four-week curriculum in Java fundamentals delivered by the same instructors. The only 419 

difference between the two was the personalization for the experimental group. 420 

We assessed system effectiveness through a comprehensive evaluation framework 421 

combining quantitative and qualitative methods across four dimensions: (1) Learning out- 422 

comes, (2) Behavioral engagement, (3) Instructional strategy effectiveness, and (4) System 423 

responsiveness and usability. 424 

6.1. Learning Outcomes 425 

For the purpose of measuring conceptual development, we created a pre-test and 426 

post-test aligned with the course objectives and subsequently validated by expert review. 427 

In the pre-test/post-test, we ensured a near equal balance of 25 questions that addressed 428 

Java syntax, control structures, object-oriented design and code tracing. Our results are 429 

shown in Table 3. These data were given to us based on measure pre/post assessments 430 

that were rigorously scored from pre/post assessments and the average was taken for all 431 

students in each group. Normalized gain (g) was calculated with the Hake formula, with 432 

experimental students achieving an average normalized gain of 0.49, or Hake's gain, and 433 

the control group achieving an average normalized gain of 0.31. We calculated a two- 434 

tailed Welch’s t-test (Welch = 1938) and determined statistical significance with t(94.3) = 435 

4.72, p < .0001. We calculated an effect size following Cohen’s d, where we arrived at an 436 
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effect size of d = 0.82, which has a large educational impact based on established bench- 437 

marks. 438 

Table 3. Comparison of pre/post test scores and normalized learning gains. 439 

Group Pre-Test Mean (%) Post-Test Mean (%) Normalized Gain (g) 

Control (n=50) 47.8 63.1 0.31 

Experimental (n=50) 48.2 72.0 0.49 

 440 

 441 

6.2. Behavioral Engagement 442 

We measured student engagement using rich interaction analytics, including system 443 

logs, timestamps for task completion, and utilization of various features. We combined 444 

these metrics to look at persistence, motivation, and depth of interactivity. As provided in 445 

Table 4, learners in the experimental condition engaged with the interventions almost 20% 446 

longer than those in the control condition on average (Experimental M = 38.1 minutes, SD 447 

= 6.2; Control M = 32.1 minutes, SD = 5.4). Furthermore, with respect to learning effort, the 448 

experimental group engaged with an average of 19.2 problems during a week, compared 449 

to 15.0 problems in the control group (28.3% increase). The definitions of "voluntary re- 450 

tries" (i.e., when learners attempt a problem again without being directed to do so) proved 451 

to be also revealing. The experimental condition maintained a rate of 63.5% for voluntary 452 

retries, while the control maintained a much lower rate of 41.0%. Voluntary retry behav- 453 

iors demonstrate learner resiliency and intrinsic motivation (research that has looked at 454 

our earlier projects and freshman engineering students has provided various context 455 

about trying to convey resilience; but clearly we were impressed). 456 

In addition to looking at frequency-based outcomes, we also gleaned qualitative data 457 

about some of the other use of interventions. One of the positive outcomes for us is that 458 

87.6% of students in the experimental condition interacted with four or more types of in- 459 

structional interventions (e.g., hints, annotated examples, reflective prompts, or micro- 460 

quizzes). This type of interaction provides us with some evidence of effective scaffolding 461 

and that students were using a personalized path through the content. Students used the 462 

adaptive elements that would change their behaviors based on performance activity to 463 

attempt many alternatives to use different types of strategies to address different types of 464 

learning needs. Together, these findings demonstrate that the adaptive system promoted 465 

more sustained, diverse, and reflective learner engagement compared to a static instruc- 466 

tional environment. 467 

Table 4. Behavioral engagement metrics comparing control and experimental. 468 

Metric Control Group Experimental Group % Difference 

Avg. Session Time (min) 32.1 38.1 +18.7% 

Problems Attempted 15.0 19.2 +28.0% 

Voluntary Retry Rate (%) 41.0 63.5 +55.0% 

 469 

6.3. Instructional Strategy Effectiveness 470 

In order to evaluate the pedagogical quality, as well as learner perceived value of the 471 

instructional strategies selected by the TOPSIS-BP system, we followed a triangulation 472 

process comprised of an expert review, student review and statistical correlation. First, 473 

we conducted an expert validation with three skilled programming instructors having all 474 

taught programming to postgraduate learners for over seven years. We extracted a 475 
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stratified random sample of 300 selections of instructional strategies made by the system 476 

over the duration of the study in order to capture learners of different profiles and con- 477 

texts. Each expert independently reviewed each selection by looking at the learner's data 478 

snapshot in question, and the action made by the system. They rated each action on a 479 

three-point scale: 'appropriate', 'sub-optimal but acceptable', or 'not appropriate'. Across 480 

all 300 cases, the system's action was rated 'appropriate' in 85.3% of cases. Disagreement 481 

seemed to be due to interpretative differences related to escalating to a challenge (e.g., 482 

quiz) vs. providing support (e.g., example), deploying acceptable pedagogical variability, 483 

rather than outright failures. 484 

Secondly, we embedded a real-time, strategic level satisfaction survey into the plat- 485 

form. After every adaptive instructional action (e.g., showing a hint or code example), 486 

learners rated the usefulness of the instructional action, using ratings on a five-point Lik- 487 

ert scale. When we aggregated the ratings related to the strategy applications, 78.4% of 488 

those sampled were rated as 'very helpful' or 'helpful'. More in-depth qualitative data was 489 

obtained through written comments recorded in the open text boxes. Many learners men- 490 

tioned that they found the annotated code examples and/or reflections prompt especially 491 

helpful for cementing their understanding of syntax structure and for building debugging 492 

skills. Learners frequently mentioned using the prompts helped them to stop, think and 493 

reframe their position—rather than simply moving on.  494 

A correlation analysis between number of times an instructional strategy was used 495 

and individual student learning gains—measured using normalized test scores—revealed 496 

a moderate positive correlation (r = 0.41, p < 0.01). Higher engagement with adaptive strat- 497 

egies was positively correlated with more learning improvements—empirical support for 498 

the instructional value of such system-selected interventions. 499 

In addition to Likert-scale ratings, learners provided open-ended feedback through 500 

free-text boxes embedded after each intervention. Common themes included appreciation 501 

for clarity, contextual relevance, and metacognitive prompting. For example, one learner 502 

noted, “The annotated code example helped me understand what I was doing wrong in a 503 

way that made sense to me.”. Another mentioned: “The reflection prompt made me stop 504 

and think instead of rushing through the task.”. These responses suggest that the system’s 505 

interventions not only guided performance but also encouraged deeper learning engage- 506 

ment. The qualitative feedback complements the quantitative findings, reinforcing the 507 

pedagogical value of the adaptive strategies. 508 

 509 

6.4. Comparative Baseline: Rule-Based Engine 510 

To evaluate the additional value of the decision mechanism based on TOPSIS, we 511 

undertook a comparative simulation study of the TOPSIS system against the rule-based 512 

system we implemented previously. During that implementation, the rule based engine 513 

used fixed thresholds such as an error rate > 60%, to trigger predefined instructional ac- 514 

tions, without the clear prioritization of learners on various characteristics. For example, 515 

93 learners' anonymized historical data from the previous year was utilized to simulate 516 

decision processes for both systems based on identical learner sets. The research team re- 517 

calculated the mastery scores relative to the specific systems' instructional actions, and 518 

normalized them to provide a mastery improvement index. The results (Table 5) indicated 519 

that learners who received instructional support from the TOPSIS engine improved their 520 

mastering by 16.2% more, and completed exercises with a total of 24.7% fewer fixes (i.e., 521 

total mistakes). These results represent better performance for learners who were pro- 522 

vided context-sensitive multi-criteria instruction compared to fixed thresholds. In addi- 523 

tion to these parameters for effectiveness, feedback was gathered on usability using the 524 
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System Usability Scale (SUS), which was completed by 40 students (20 per condition) fol- 525 

lowing a live demonstration of both interfaces. The students who used the TOPSIS-based 526 

system reported a SUS of 84.2 as compared to a SUS of 73.5 for the rule-based system. 527 

Overall, there was perceived higher levels of coherence, ease of use and perceived instruc- 528 

tional quality from the players in the TOPSIS condition. On average, the TOPSIS system 529 

was rated 84.2 while the rule-based version was rated at 73.5. 530 

Table 5. Comparison of post-test mastery improvement and SUS scores between the TOPSIS-based 531 

and rule-based systems. 532 

Metric Rule-based System TOPSIS-based System 

Mastery Improvement Index 1.00 1.162 

SUS 73.5 84.2 

 533 

6.5. System Responsiveness and Usability 534 

The technical capacity of the system was assessed through a three-pronged approach 535 

using system logs, some backend analytics, and student feedback on system performance. 536 

During the body of the study, the platform logged elements of over 2,200 student sessions 537 

across a range of contexts of use. System response latency averaged 1.08s (sd = 0.14) based 538 

on a delay measure from the time the learner submitted their actions to the time learners 539 

saw the instructional strategy in the system. This latency adheres to the earlier definitions 540 

of real-time interaction in intelligent tutoring systems presented in the HCI literature. 541 

System uptime was monitored through automated health tests every minute result- 542 

ing in scheduled uptime and sessions for study. In total the platform averaged 99.8% sys- 543 

tem availability during the entire study length, with zero critical failure and two instances 544 

of temporary service degradation (each lasting less than 5 minutes). 545 

To support the technical logs with user-based insights, we completed semi-struc- 546 

tured usability interviews with 16 students in the experimental group. Students were in- 547 

tentionally selected based on their interaction diversity (i.e., frequent user vs. less frequent 548 

user). Overall feedback was extremely positive. Students mentioned repeatedly that adap- 549 

tive interventions were unobtrusive, and provided praise for the seamless way feedback, 550 

hints and examples were integrated within the coding interface. Moreover, learners stated 551 

that the adaptive strategies “felt like a natural extension of the learning process” and 552 

“guided without displacing focus”. Overall these findings suggest that the system both 553 

reliably works under realistic load conditions and meets usability standards for personal- 554 

ized instructional technology. To further structure the qualitative findings, Table 6 sum- 555 

marizes the most frequently mentioned usability themes during the interviews, along 556 

with illustrative student comments. 557 

 558 

Table 6. Summary of Themes from Usability Interviews (n= 16). 559 

Theme Frequency (out of 16) Representative Comment 

Adaptive feedback was non-

intrusive 
12 

“The hints and examples just 

appeared when I needed 

them–without breaking my 

flow.” 

Interface was intuitive and 

responsive  
11 

“I never had to reload or 

click around to figure out 

what to do next.” 

Feedback supported deeper 

understanding  
10 

“The examples made me re-

alize what I misunderstood 

in the code.” 
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Interventions felt natural and 

well-integrated  
9 

“It felt like a natural exten-

sion of the learning process.” 

Occasional uncertainty in 

navigation  
3 

“Sometimes I wasn’t sure 

where to find the next step af-

ter completing a quiz.” 

 560 

In short, our multi-faceted evaluation demonstrates that the proposed system 561 

showed statistically important learning gains while maintain high levels of engagement, 562 

mapping well to the pedagogical expectations of engagement, and outperformed tradi- 563 

tional adaptive methods. Together, these findings present strong evidence for the adop- 564 

tion of TOPSIS-focused personalized learning into actual programming education envi- 565 

ronments. The research was ethically approved by the university's institutional review 566 

board (IRB), and all participants provided informed consent prior to data collection. 567 

 568 

7. Discussion 569 

The evaluation results provide strong evidence for the utility of the TOPSIS-based 570 

instructional strategy adaptation framework in enhancing both cognitive and behavioral 571 

dimensions of learner engagement within a Java programming context. In this section, we 572 

interpret these findings through the lens of personalized learning, adaptive system de- 573 

sign, pedagogical significance, and the scalability of the proposed approach. 574 

From a pedagogical standpoint, the observed improvements in learning outcomes 575 

suggest that the system’s adaptive strategies were well-aligned with learner needs and 576 

delivered support at critical points in the learning process. This alignment likely helped 577 

reduce cognitive overload during challenging tasks and offered timely scaffolding when 578 

learners were ready to engage with more complex material. Such timing is essential in 579 

promoting deep learning—particularly for novice programmers facing conceptual and 580 

syntactic difficulties. 581 

The behavioral engagement patterns—reflected in increased time-on-task, problem 582 

attempts, and voluntary retries—point to the motivational benefits of real-time personal- 583 

ization. Learners did not passively consume instructional content but actively interacted 584 

with varied forms of support. This suggests that the system may have encouraged self- 585 

regulated learning behaviors, helping students to recognize and act upon their changing 586 

needs. 587 

The consistency between expert evaluations, learner satisfaction, and system-se- 588 

lected strategies further reinforces the interpretability and instructional coherence of the 589 

TOPSIS framework. The system’s decisions were rated pedagogically acceptable by in- 590 

structors in the vast majority of cases, supporting the claim that the selected criteria and 591 

weights mirror expert instructional reasoning. Where discrepancies occurred, they re- 592 

flected differences in teaching style rather than system misjudgment—highlighting the 593 

model’s flexibility and contextual sensitivity. 594 

Qualitative feedback from learners further corroborated the value of the adaptive in- 595 

terventions. Students emphasized that hints, prompts, and examples were not only help- 596 

ful but also well-integrated into their learning experience. This supports the notion of the 597 

system functioning as a learning companion rather than a directive tutor—aligning with 598 

contemporary theories that prioritize metacognition, scaffolding, and learner autonomy. 599 

The comparative results against a traditional rule-based adaptive engine underscore 600 

the added pedagogical value of using a multi-criteria decision-making method. Unlike 601 

fixed-threshold systems, the TOPSIS framework enabled nuanced, context-sensitive 602 
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decisions that better reflected the complexity of individual learner states. This adaptability 603 

proved to be a key differentiator in both learning outcomes and perceived usability. 604 

Additionally, the positive correlation between the use of adaptive strategies and 605 

learning gains—while not causal—suggests a dose-response relationship worth exploring 606 

further. This opens future research avenues in longitudinal modeling to understand how 607 

adaptive interventions shape learning trajectories over time. 608 

In comparison to the existing literature on educational adaptive systems, the result- 609 

ing contribution from this study contributes a more nuanced, and analytically supported 610 

model of personalization. Current work has typically concentrated on content sequencing 611 

(e.g., [50]), learner modeling approaches with Bayesian Knowledge Tracing ([26-28], [51]), 612 

or rule-based feedback models ([23-25]; [52]). While these earlier studies have made con- 613 

tributions in their particular contexts, the usability of these models is often compromised 614 

by low adaptability, a black-box to decide content sequence, or lack of instructor visibility. 615 

For instance, rule-based systems typically use rigid heuristics that do not adapt to the 616 

diversity or subtlety of learner behavior, while probabilistic approaches like BKT, though 617 

powerful in prediction, offer little interpretability to educators aiming to understand or 618 

modify adaptation logic. 619 

Conversely, the TOPSIS-based system used in this study allows for multi-criteria rea- 620 

soning similar to human instructional decision making. The ability to clearly define the 621 

trade-offs between performance indicators and rank actions of students provide instruc- 622 

tional approaches that are both contextualized and pedagogically sound. Furthermore, 623 

the transparency of the TOPSIS framework permits administrators and designers of a sys- 624 

tem to explore decision pathways, adjust weights, and re-assess alternatives without the 625 

need to re-train a model. This interpretive quality - often lacking with deep learning or 626 

probabilistic frameworks - enhances its application in educational settings that require 627 

accountability and individualization. 628 

In addition, the architecture of the system allows for scalability and extensibility. The 629 

modularization of the TOPSIS engine, the decoupled front-end/back-end design, and the 630 

transparent decision logs allows the system to be deployed, tracked, and refined when 631 

deployed in different subject domains and learning contexts. Somewhat beyond the need 632 

for a few adaptations, comparable models could be applied in math, engineering, and 633 

even writing intensive subjects where learners frequently experience the same cognitive 634 

difficulties. The ethical mechanisms introduced in the study, in the form of institutional 635 

ethics approval and informed consent, additionally contribute to the methodological in- 636 

tegrity of the study, and its readiness for wider application. The use of semi-structured 637 

interviews, and collection of open feedback, also provides a human-centered evaluation 638 

of the system, beyond quantitative exam scores, in order to shed light on learner experi- 639 

ence and instructional quality. 640 

While many existing adaptive systems rely on static thresholds or probabilistic mod- 641 

els with limited pedagogical transparency, the approach presented in this study bridges 642 

the gap between algorithmic precision and instructional interpretability. What distin- 643 

guishes our system is not only its performance, but also its capacity to support meaningful 644 

pedagogical decisions through clear, adjustable criteria. Unlike systems that offer limited 645 

feedback on why a particular recommendation is made, our TOPSIS-based framework en- 646 

ables both educators and researchers to trace, understand, and revise the logic behind 647 

each adaptive intervention. This capacity positions the system not simply as a technical 648 

tool, but as a collaborative partner in instructional design—an important shift in the evo- 649 

lution of adaptive educational technologies. By embedding decision transparency and 650 

contextual flexibility into the core of the system, our work demonstrates how personali- 651 

zation can be both data-driven and pedagogically grounded. 652 
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To conclude, the evidence presented and discussed here supports the conclusion that 653 

the adaptive instructional system we adopted here is a strong pedagogically-grounded 654 

and technically-feasible solution for learner-centered programming education. The sys- 655 

tem operationalizes multi-criteria decision-making to enable decision-making through 656 

TOPSIS in real time, which reflects an innovative and effective way to provide intelligent 657 

support that is tailored to an individual learner. As adaptive learning continues to ad- 658 

vance, the approach used in this study represents a powerful combination of precision, 659 

versatility, and transparency—qualities essential for the next generation of educational 660 

technologies. 661 

8. Conclusions 662 

This study introduced a learner-centric adaptive instructional system that supports 663 

Java programming education through the integration of the TOPSIS multi-criteria deci- 664 

sion-making method. The system combines real-time learner data, expert-informed 665 

weighting of pedagogically relevant criteria, and targeted instructional strategies to de- 666 

liver support that dynamically adapts to each learner’s evolving needs. The approach was 667 

implemented and evaluated in a real-world educational setting with a diverse cohort of 668 

postgraduate students, resulting in statistically significant improvements in learning out- 669 

comes, engagement, and learner satisfaction. Compared to static instructional environ- 670 

ments and traditional rule-based adaptation models, the TOPSIS-based framework 671 

demonstrated greater effectiveness, transparency, and responsiveness. 672 

Importantly, the system’s modular architecture and interpretable decision engine 673 

make it highly scalable across different subject domains. Its flexibility allows for easy ad- 674 

aptation to other learning contexts—such as mathematics, engineering, and writing-inten- 675 

sive courses—where personalized support and decision traceability are critical. The trans- 676 

parent criteria-based mechanism also facilitates customization by educators without re- 677 

quiring retraining or technical expertise. These features position the system as a pedagog- 678 

ically grounded and technically feasible solution for broader deployment in personalized 679 

learning environments. The results lend strong support to the value of multi-criteria in- 680 

structional decision making as a central pillar for the next generation of adaptive educa- 681 

tional technologies. 682 

Although the system demonstrated promising results, certain limitations must be 683 

taken into account. First, the study was only done in one institutional context that yielded 684 

a fairly homogenous student sample in terms of academic level (all were postgraduate 685 

students) and course structure. Second, although we evaluated the data quantitatively 686 

and qualitatively, they were limited to short-term performance undertakings, and we did 687 

not measure long-term knowledge retention of learning or knowledge transfer situations. 688 

Third, although the expert validation procedure was rigorous, it was a small number of 689 

reviewers and could use broader consensus. Lastly, although the system was designed 690 

with extensibility in mind, its adaptation logic and criteria had been taken from program- 691 

ming education, and thus, this was not directly tested in relation to generalizability to 692 

other domains. 693 

Going forward, we will modify these limitations in an expanded longitudinal study 694 

in multiple institutions within various learner populations for generalizability and to con- 695 

duct transfer testing across domains. We will also implement long-term retention assess- 696 

ments, collect additional behavior and affective indicators, and include dynamic weight 697 

updating that will use the history of the learner. Moreover, continuous development will 698 

focus on allowing educators to configure and tune the decision model through an intuitive 699 

interface to enhance its use and empower instructors to adapt the system to context-spe- 700 

cific pedagogical environments. These directions will contribute to advancing the utility, 701 
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adaptability, and impact of intelligent instructional systems in diverse learning environ- 702 

ments. 703 
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