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Abstract. The convergence of machine learning (ML) and big data tech-
nologies redefines the landscape of data-driven systems, enabling adaptive,
scalable, and intelligent solutions across diverse domains. This survey sys-
tematically explores the integration of ML techniques in database systems
and big data frameworks, highlighting advances in query optimization,
data quality assurance, feature engineering, and real-time stream process-
ing. Furthermore, it analyzes real-world applications, including predictive
maintenance, recommendation systems, fraud detection, and healthcare
analytics, demonstrating the operational value of ML in data-intensive
environments. Finally, the survey concludes by identifying key challenges
in scalability, interpretability, and privacy-preserving learning, outlining
promising research directions to foster the next generation of robust and
trustworthy big data analytics.
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1 Introduction

The rapid growth of data generated by digital systems, sensors, and online
platforms has driven the evolution of traditional data management systems into
large-scale, complex ecosystems. In parallel, ML has emerged as a transformative
paradigm for extracting value from this data, offering intelligent capabilities for
decision support, pattern recognition, and predictive modelling. The intersection
of ML with big data infrastructures has become central to modern analytics,
enabling scalable, adaptive, and context-aware systems [31].

As big data platforms evolve, they increasingly integrate ML models not only
for analytics but also as operational components of database management, stream
processing, and application-level intelligence. However, this integration introduces
a new set of technical, architectural, and ethical challenges, ranging from real-time
inference at scale to the need for explainable and privacy-respecting solutions
[12].

Despite the substantial advances in both ML and big data systems, their
convergence is not straightforward. ML models must be tailored to function effec-
tively in environments characterised by distributed architectures, heterogeneous
data formats, and continuous data flows. Furthermore, production-level applica-
tions demand not only scalability and accuracy but also transparency, fairness,
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and strict data privacy compliance. Understanding how ML is operationalised
within big data ecosystems is crucial for designing intelligent, high-impact, and
trustworthy data-driven systems [14].

To address this gap, the present survey offers a structured and in-depth
analysis of the current landscape. Its key contributions are as follows:

– Comprehensive overview of ML integration in both database systems and
large-scale big data frameworks, including techniques for query optimisation,
anomaly detection, and streaming analytics.

– Detailed use case analysis covering four high-impact domains: predictive
maintenance, personalised recommendations, financial fraud detection, and
healthcare analytics.

– Structured taxonomy of challenges, highlighting technical barriers in scala-
bility, interpretability, and privacy, alongside current solutions and future
research directions.

The rest of this paper is organised as follows. ML techniques in databases
are noted in Section 2. Moreover, in Section 3, ML in big data frameworks is
outlined. Section 4 discusses applications and use cases. Next, Section 5 provides
challenges and future directions. Finally, Section 6 concludes the present survey.

2 Machine Learning Techniques in Databases

The integration of ML into core database components marks a shift from static,
rule-based mechanisms to adaptive, data-driven optimisation. This section ex-
amines how ML models improve query planning, indexing strategies, and data
quality assurance in modern database systems.

2.1 Query Optimization and Learned Indexes

Query optimization in relational databases has traditionally relied on heuristics
and static cost models, which often struggle with dynamic workloads and data
skew. Recent developments use reinforcement learning (RL) to model query
planning as a sequential decision process, enabling adaptive execution strategies
based on observed query patterns and latency feedback [32,35].

Simultaneously, learned index structures have emerged as a data-driven
alternative to traditional indexing. Neural models, such as piecewise linear
regression and recursive indexes, approximate the cumulative distribution function
of keys, enabling faster lookups and improved performance in skewed or clustered
datasets without requiring manual tuning [34,40].

2.2 Data Quality and Anomaly Detection

Data anomalies, such as out-of-distribution values, incomplete records, and
semantic inconsistencies, undermine the reliability of downstream analytics. ML-
based methods like autoencoders enable proactive detection by reconstructing
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input tuples and identifying corrupted entries, particularly in high-dimensional
or partially labelled datasets [23].

Probabilistic and generative models, including variational autoencoders
(VAEs) and Gaussian mixture models (GMMs), capture attribute dependen-
cies and reveal inconsistencies often missed by rule-based systems. In temporal
databases, recurrent models (e.g., Long short-term memory (LSTM)) are used to
detect delayed updates or irregular patterns, crucial in domains like finance and
the Internet of Things [24,10].

These techniques can be embedded within the database engine to operate dur-
ing data ingestion, supporting real-time anomaly-aware processing and scalable,
automated data quality assurance [39].

Table 1 summarizes the key differences between ML-based query optimiza-
tion and data quality enhancement techniques in databases. It highlights their
objectives, underlying ML models, integration points, and deployment modes.
The comparison highlights how each approach makes a distinct contribution to
performance and reliability within data management systems.

Table 1. ML Techniques in Database Optimization and Data Quality.

Aspect Query Optimization & Learned
Indexes

Data Quality & Anomaly De-
tection

Objective Speed up query execution and data
access

Detect and correct data anomalies

ML
Techniques

RL, Regression Models Autoencoders, VAEs, GMMs,
LSTMs

Target
Component

Query planner, index structures Data validation, ingestion pipeline

Adaptability Adapts to workload shifts and data
distributions

Adapts to structural, semantic, and
temporal anomalies

Deployment
Mode

Embedded in execution engine Inline or batch validation during in-
gestion

Key Benefit Reduced latency and smarter index-
ing

Improved data integrity and reliabil-
ity

3 Machine Learning in Big Data Frameworks

The application of ML in big data ecosystems requires careful integration with
distributed computing infrastructures and data-intensive processing workflows.
This section examines how ML models are scaled, engineered, and adapted within
large-scale batch and streaming environments.

3.1 Integration with Distributed Architectures

Modern big data frameworks like Apache Spark, Hadoop YARN, and Flink enable
distributed computation essential for large-scale ML training. Built-in libraries
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(e.g., Spark MLlib) and scalable wrappers (e.g., Horovod, TensorFlow on Spark)
support co-located data processing and model computation, thereby reducing
I/O overhead and duplication. These platforms use in-memory data sharing and
resilient distributed datasets to parallelise preprocessing and iterative training
[25,30,13].

Efficient integration depends on optimizing task scheduling, fault tolerance,
and model checkpointing across nodes. Graphics processing unit (GPU) accel-
eration and container orchestration (e.g., Kubernetes) further enhance training
efficiency in resource-intensive scenarios [51].

3.2 Feature Engineering at Scale

The effectiveness of ML models depends heavily on the quality and discriminative
power of their input features. In large-scale environments, feature engineering
is challenged by data volume, dimensionality, and heterogeneity. To address
this, distributed transformations, such as joins, normalization, and encoding, are
applied using functional programming and lazy evaluation [22].

Techniques like distributed principal component analysis (PCA), feature
hashing, and statistical aggregations support dimensionality reduction and con-
textual enrichment. Automated platforms further leverage meta-learning and
Bayesian optimization to generate feature sets efficiently, enabling scalable and
reproducible pipelines suited for real-time processing [18,42].

3.3 Online Learning for Streaming Data

Big data systems increasingly process continuous data streams from sensors,
applications, and user interactions, rendering static batch learning ineffective.
Online learning algorithms, such as Hoeffding trees, online passive-aggressive
models, and incremental stochastic gradient descent, enable real-time model
updates without retraining from scratch [27,9].

Frameworks like Apache Flink, Kafka Streams, and Spark Structured Stream-
ing provide essential support for temporal consistency through windowing, water-
marking, and event-time processing. These systems enable stateful learning with
low latency and memory efficiency. The focus lies on deploying stable, stream-
compatible models capable of handling concept drift and integrating seamlessly
with real-time ingestion pipelines [29,4].

Table 2 provides a comparative summary of ML integration across three
key areas in big data frameworks. It highlights their distinct goals, supporting
platforms, core methods, and performance priorities. The table illustrates how
each approach contributes to scalability, adaptability, and efficiency in large-scale
ML workflows.

4 Applications and Use Cases

The integration of ML with big data platforms has given rise to intelligent
applications across diverse domains. By exploiting large-scale, heterogeneous data
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Table 2. ML Techniques in Big Data Frameworks.

Aspect Distributed Integra-
tion

Feature Engineer-
ing

Online Learning

Goal Parallel training and
data locality

Scalable feature trans-
formation

Real-time model adap-
tation

Frameworks Spark, Flink, Tensor-
FlowOnSpark

Spark MLlib, Feature-
tools

Flink, Kafka Streams,
Spark Streaming

Key Methods Task scheduling, GPU
use, checkpointing

PCA, feature hashing,
meta-learning

Incremental models,
concept drift detection

Output Accelerated train-
ing/inference

Compact, informative
features

Continuously updated
models

Optimization
Focus

Resource efficiency,
fault tolerance

Dimensionality and ex-
ecution time

Latency, memory us-
age, adaptation speed

and real-time analytics, these systems achieve impactful outcomes. This section
highlights representative use cases that demonstrate their operational value and
architectural significance.

4.1 Predictive Maintenance

Predictive maintenance utilises time-series data and event logs from industrial
systems to anticipate equipment failures before they occur. Traditional threshold-
based approaches often yield high false positives and lack adaptability. In contrast,
supervised ML models, such as random forests (RFs), support vector machines
(SVMs), and recurrent neural networks (RNNs), learn complex degradation
patterns by combining historical records with real-time sensor data [49,6].

Big data platforms ingest multi-source telemetry (e.g., vibration, temperature,
cycles) and process it using distributed systems like Apache Kafka and Flink
to enable real-time anomaly detection and health scoring. Graph-based models
further enhance diagnostics through root-cause analysis across interconnected
components [37,47].

Deployment challenges include ensuring low-latency inference at the edge,
particularly in environments with constrained connectivity. Federated learning
(FL) and compact deep learning models offer practical solutions by enabling
on-device training with periodic global updates [50].

4.2 Personalized Recommendations

Personalized recommendation systems are essential to e-commerce, media stream-
ing, and online education platforms. They leverage user behavior data—such as
browsing history and interaction logs—to suggest relevant items, using models
like collaborative filtering, matrix factorization, and deep neural networks (DNNs)
[36,21].

To handle the scale and sparsity of interaction data, these systems rely on
NoSQL (Structured Query Language) databases (e.g., Cassandra, MongoDB)
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and real-time inference pipelines built with Spark Structured Streaming or Flink,
which enable fast updates to feature stores [43,46].

RL methods, including contextual bandits and deep Q-networks, are increas-
ingly employed to optimize recommendation strategies based on user feedback,
effectively balancing exploration and exploitation to enhance engagement [17].

4.3 Financial Risk and Fraud Detection

The financial sector is increasingly leveraging ML for risk assessment, credit
scoring, and fraud detection, thereby surpassing the limitations of traditional
rule-based systems. Advanced models like gradient boosting, anomaly ensembles,
and graph neural networks detect complex, evolving fraud patterns by learning
subtle behavioral correlations across accounts and transactions [44,33].

Big data platforms process high-velocity streams from automated teller ma-
chines, point-of-sale devices, and online systems using tools like Apache Kafka
and Samza, enabling real-time pattern analysis with sliding-window features and
temporal embeddings. Hybrid pipelines combining supervised and unsupervised
models enhance the detection of both known and novel threats [20].

Graph analytics is central to uncovering fraud rings and synthetic identities,
with graph convolutional networks (GCNs) identifying suspicious links in het-
erogeneous graphs. Privacy and compliance concerns further drive the use of FL
and encryption-based training methods [8].

4.4 Healthcare Data Analytics

Healthcare analytics is a highly sensitive and impactful domain for ML and big
data. Patient records, diagnostic images, lab results, and clinical notes, often
stored in heterogeneous systems, are analyzed using models such as decision trees,
support vector machines, convolutional neural networks (CNNs), and LSTMs to
predict disease onset, assess patient risk, and guide personalized treatments [3].

Big data platforms integrate Electronic Health Records (EHRs), imaging
data, and genomics for multi-modal analysis, supported by scalable storage
systems like Hadoop distributed file system (HSFS) and cloud services. Real-time
frameworks enable early warning systems for critical conditions, while neuro-
linguistic programming (NLP) techniques extract structured insights from clinical
narratives to enhance the usability of data [11,16].

Ensuring model interpretability and fairness remains a major challenge. Tools
like Local Interpretable Model-agnostic Explanations (LIME) and Shapley Addi-
tive exPlanations (SHAP) facilitate the explanation of predictions to clinicians,
thereby supporting trust and regulatory compliance. Furthermore, privacy regu-
lations such as the Health Insurance Portability and Accountability Act (HIPAA)
and the General Data Protection Regulation (GDPR) drive the adoption of FL,
enabling the development of collaborative models that do not require the sharing
of sensitive patient data [2].

Table 3 summarizes ML applications across key sectors, highlighting the
interplay between data modalities, learning methods, infrastructure demands,
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and domain-specific constraints. This multidimensional view clarifies how ML
models are tailored to meet distinct operational goals under the architectural
and regulatory pressures of each application context.

Table 3. Overview of ML-Driven Applications in Big Data Environments.

Domain Primary
Data
Sources

Core ML
Techniques

Big Data In-
frastructure
Needs

Unique
Challenges

ML Objec-
tives

Predictive
Maintenance

Sensor teleme-
try, equipment
logs

Time-series
models,
RNNs, RFs,
SVMs

Kafka, Flink,
edge comput-
ing support

Latency at
the edge, root-
cause tracing

Failure fore-
casting,
degradation
scoring

Personalized
Recommenda-
tions

User behavior
logs, interac-
tion histories,
metadata

Matrix factor-
ization, DNNs,
RL

NoSQL stores,
Spark Stream-
ing, real-time
feature stores

Sparse data,
cold-start
problem, feed-
back loops

Real-time con-
tent/product
personaliza-
tion

Financial
Fraud Detec-
tion

Transactional
streams, user
profiles, entity
graphs

Boosting mod-
els, GNNs,
anomaly en-
sembles

Kafka
Streams,
graph en-
gines, sliding-
window
analytics

Detection
latency, class
imbalance,
adversarial
behavior

Fraud iden-
tification,
risk scoring,
behavior pro-
filing

Healthcare
Analytics

EHRs, medi-
cal imaging,
clinical text,
genomics

CNNs,
LSTMs,
Decision
Trees, NLP
models

HDFS, cloud-
native analyt-
ics, FL

Privacy com-
pliance, data
heterogeneity,
interpretabil-
ity

Disease pre-
diction, risk
stratification,
treatment
support

5 Challenges and Future Directions

While ML continues to advance big data systems, challenges in scalability, inter-
pretability, and privacy remain significant. Addressing these issues is essential to
ensure robust, adaptive, and trustworthy ML solutions. This section highlights
key obstacles and outlines future research directions for real-world, data-intensive
integration.

5.1 Scalability vs. Model Complexity Trade-offs

As data volumes grow and application domains diversify, the need for more
expressive ML models increases. However, greater model complexity, through
deeper architectures or rich feature interactions, often hinders computational
scalability. High-capacity models like DNNs and ensembles demand significant
memory, processing power, and training time, making them challenging to deploy
in large-scale, real-time settings [48,19].
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To maintain low-latency responses in big data environments, solutions such as
distributed training, approximate inference, and model compression techniques
like quantization and distillation are employed. Still, the dynamic adjustment of
model granularity based on workload and resource constraints remains a largely
unexplored yet critical research direction [26].

Future directions include the development of self-adaptive model architectures,
where computational depth or resolution is adjusted on-the-fly, and model-parallel
learning frameworks that can distribute components of a single large model across
multiple compute nodes in an efficient, synchronized manner [38].

5.2 Interpretability and Trust in ML-Integrated Systems

While ML models achieve high predictive accuracy, their integration into decision-
support systems presents challenges in terms of transparency and user trust,
particularly in critical domains such as healthcare, finance, and law. Stakeholders
require not just accurate outputs but also understandable justifications, which
black-box models often fail to provide [45].

Interpretability tools such as SHAP, LIME, and counterfactual reasoning offer
post-hoc explanations but may be fragile under model drift or adversarial inputs.
Beyond individual predictions, ensuring system-wide auditability and traceability
remains a major concern [5].

Future trustworthy ML will depend on intrinsically interpretable models,
formal verification methods, and adaptive explanation interfaces tailored to
different user roles. Bridging these capabilities with human-centered design and
ethical principles is essential for widespread and responsible adoption [41].

5.3 Privacy-Preserving Learning and Edge Intelligence

The convergence of distributed data sources, edge computing, and privacy regu-
lations presents significant challenges for training and deploying ML models. In
many cases, especially involving sensitive data, centralized training is not viable
due to legal or ethical constraints. Consequently, privacy-preserving paradigms,
such as FL, have emerged as critical solutions [15,7].

While FL allows decentralized model training without sharing raw data, it
introduces challenges in communication efficiency, convergence, and handling non-
identically distributed data distributions. Techniques such as differential privacy,
secure multiparty computation, and homomorphic encryption offer stronger
guarantees but add computational and latency overheads [1].

Future research should develop hybrid frameworks that strike a balance
between accuracy, privacy, and efficiency, while incorporating adaptive strategies
for participant selection and communication. Embedding edge intelligence into
model pipelines will be key to achieving scalable, privacy-compliant learning in
modern distributed environments [28].

Table 4 outlines the primary challenges facing ML integration in big data
environments. It contrasts current mitigation strategies with emerging research
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directions, highlighting their systemic impact on scalability, trustworthiness, and
privacy-aware intelligence.

Table 4. Key Challenges and Future Directions in ML for Big Data.

Challenge
Theme

Core Technical
Barriers

Current Ap-
proaches

Open Research
Directions

Impact on ML
Systems

Scalability
vs. Model
Complexity

Resource-
intensive training,
latency bottle-
necks, deployment
constraints

Model prun-
ing, dis-
tillation,
distributed
training

Self-adaptive
architectures,
model-parallel
learning

Balances perfor-
mance with re-
source constraints
at scale

Interpretability
and Trust

Opaque model de-
cisions, limited ex-
planation robust-
ness

SHAP, LIME,
counterfac-
tual reasoning

Intrinsically inter-
pretable models,
role-based expla-
nation interfaces

Enhances trans-
parency, user
trust, and regula-
tory compliance

Privacy-
Preserving
Learning and
Edge Intelli-
gence

Data decen-
tralization,
heterogeneity,
communication
overhead

FL, differen-
tial privacy,
encryption-
based learn-
ing

Adaptive feder-
ated schemes,
hybrid privacy
frameworks

Enables secure,
scalable learning
across distributed
and sensitive
environments

6 Conclusion

The integration of ML with big data technologies marks a significant step toward
building intelligent, adaptive, and large-scale data systems. This survey examined
how ML techniques are applied across various layers of the data stack—from
query optimization and feature engineering to real-time analytics and anomaly
detection—highlighting both architectural advances and domain-specific imple-
mentations.

Through the analysis of representative use cases, the survey demonstrated the
transformative impact of ML in key sectors such as manufacturing, e-commerce,
finance, and healthcare. At the same time, it identified pressing challenges related
to model scalability, interpretability, and privacy—factors that increasingly define
the feasibility and societal acceptance of data-driven solutions.

As big data ecosystems continue to evolve, future research must focus on
developing more efficient, transparent, and privacy-preserving ML models that
can operate across decentralized, heterogeneous environments. By bridging the
gap between algorithmic innovation and real-world deployment, these efforts
will play a central role in shaping the next generation of robust and responsible
intelligent systems.



10 No Author Given

References

1. Ardiç, E., Genç, Y.: Enhanced privacy and communication efficiency in non-iid
federated learning with adaptive quantization and differential privacy. IEEE Access
(2025)

2. Ashwani, S.: Advancing explainable ai in healthcare methods, applications, and
ethical implications. In: Federated Learning for Neural Disorders in Healthcare 6.0,
pp. 61–95. CRC Press (2025)

3. Beam, A.L., Kohane, I.S.: Big data and machine learning in health care. Jama
319(13), 1317–1318 (2018)

4. Bhatt, N., Thakkar, A.: An efficient approach for low latency processing in stream
data. PeerJ Computer Science 7, e426 (2021)

5. Bhattacharya, A.: Applied Machine Learning Explainability Techniques: Make ML
models explainable and trustworthy for practical applications using LIME, SHAP,
and more. Packt Publishing Ltd (2022)

6. Bonnevay, S., Cugliari, J., Granger, V.: Predictive maintenance from event logs using
wavelet-based features: an industrial application. In: 14th International Conference
on Soft Computing Models in Industrial and Environmental Applications (SOCO
2019) Seville, Spain, May 13–15, 2019, Proceedings 14. pp. 132–141. Springer (2020)

7. Boussis, D., Dritsas, E., Kanavos, A., Sioutas, S., Tzimas, G., Verykios, V.S.:
Mapreduce implementations for privacy preserving record linkage. In: Proceedings
of the 10th Hellenic Conference on Artificial Intelligence. pp. 1–4 (2018)

8. Chen, J., Huang, G., Zheng, H., Yu, S., Jiang, W., Cui, C.: Graph-fraudster:
Adversarial attacks on graph neural network-based vertical federated learning.
IEEE Transactions on Computational Social Systems 10(2), 492–506 (2022)

9. Chen, R., Dai, T., Zhang, Y., Zhu, Y., Liu, X., Zhao, E.: Gbdt-il: Incremental
learning of gradient boosting decision trees to detect botnets in internet of things.
Sensors 24(7), 2083 (2024)

10. Cook, A.A., Mısırlı, G., Fan, Z.: Anomaly detection for iot time-series data: A
survey. IEEE Internet of Things Journal 7(7), 6481–6494 (2019)

11. Dhayne, H., Haque, R., Kilany, R., Taher, Y.: In search of big medical data
integration solutions-a comprehensive survey. IEEE Access 7, 91265–91290 (2019)

12. Dritsas, E.: Efficient algorithms for big data management. Ph.D. thesis, University
of Patras, Greece (2020)

13. Dritsas, E., Trigka, M.: Applying machine learning on big data with apache spark.
IEEE Access (2025)

14. Dritsas, E., Trigka, M.: Exploring the intersection of machine learning and big data:
A survey. Machine Learning and Knowledge Extraction 7(1), 13 (2025)

15. Dritsas, E., Trigka, M.: Federated learning for iot: A survey of techniques, challenges,
and applications. Journal of Sensor and Actuator Networks 14(1), 9 (2025)

16. Dritsas, E., Trigka, M.: A survey on the applications of cloud computing in the
industrial internet of things. Big Data and Cognitive Computing 9(2), 44 (2025)

17. El Mimouni, I., Avrachenkov, K.: Deep q-learning with whittle index for contextual
restless bandits: Application to email recommender systems. In: Northern Lights
Deep Learning Conference 2025 (2025)

18. Garouani, M., Ahmad, A., Bouneffa, M., Hamlich, M., Bourguin, G., Lewandowski,
A.: Using meta-learning for automated algorithms selection and configuration: an
experimental framework for industrial big data. Journal of Big Data 9(1), 57 (2022)

19. Gzar, D.A., Mahmood, A.M., Abbas, M.K.: A comparative study of regression ma-
chine learning algorithms: Tradeoff between accuracy and computational complexity.
Mathematical Modelling of Engineering Problems 9(5) (2022)



Machine Learning Applications in Databases and Big Data Analytics 11

20. Habeeb, R.A.A.: Real-Time Anomaly Detection Using Clustering in Big Data
Technologies. Ph.D. thesis, University of Malaya (Malaysia) (2019)

21. Lara-Cabrera, R., González-Prieto, Á., Ortega, F.: Deep matrix factorization ap-
proach for collaborative filtering recommender systems. Applied Sciences 10(14),
4926 (2020)

22. Las-Casas, P., Papakerashvili, G., Anand, V., Mace, J.: Sifter: Scalable sampling
for distributed traces, without feature engineering. In: Proceedings of the ACM
Symposium on Cloud Computing. pp. 312–324 (2019)

23. Li, Y., Wang, Y., Ma, X.: Variational autoencoder-based outlier detection for
high-dimensional data. Intelligent Data Analysis 23(5), 991–1002 (2019)

24. Liao, W., Guo, Y., Chen, X., Li, P.: A unified unsupervised gaussian mixture
variational autoencoder for high dimensional outlier detection. In: 2018 IEEE
International Conference on Big Data (Big Data). pp. 1208–1217. IEEE (2018)

25. Long, A., Han, W., Huang, X., Li, J., Wang, Y., Chen, J.: Distributed deep
learning for big remote sensing data processing on apache spark: geological remote
sensing interpretation as a case study. In: Asia-Pacific Web (APWeb) and Web-Age
Information Management (WAIM) Joint International Conference on Web and Big
Data. pp. 96–110. Springer (2023)

26. Luo, P., Yu, F.R., Chen, J., Li, J., Leung, V.C.: A novel adaptive gradient compres-
sion scheme: Reducing the communication overhead for distributed deep learning in
the internet of things. IEEE Internet of Things Journal 8(14), 11476–11486 (2021)

27. Marpu, R., Manjula, B.: Streaming machine learning algorithms with streaming
big data systems. Brazilian Journal of Development 10(1), 322–339 (2024)

28. Mughal, F.R., He, J., Das, B., Dharejo, F.A., Zhu, N., Khan, S.B., Alzahrani,
S.: Adaptive federated learning for resource-constrained iot devices through edge
intelligence and multi-edge clustering. Scientific Reports 14(1), 28746 (2024)

29. Onishi, T., Michaelis, J., Kanemasa, Y.: Recovery-conscious adaptive watermark
generation for time-order event stream processing. In: 2020 IEEE/ACM Fifth
International Conference on Internet-of-Things Design and Implementation (IoTDI).
pp. 66–78. IEEE (2020)

30. Polak, A.: Scaling machine learning with Spark: distributed ML with MLlib, Ten-
sorFlow, and PyTorch. " O’Reilly Media, Inc." (2023)

31. Potla, R.T.: Scalable machine learning algorithms for big data analytics: Challenges
and opportunities. Journal of Artificial Intelligence Research 2(2), 124–141 (2022)

32. Ramadan, M., El-Kilany, A., Mokhtar, H.M., Sobh, I.: Rl_qoptimizer: a reinforce-
ment learning based query optimizer. IEEE Access 10, 70502–70515 (2022)

33. Renganathan, K.K., Karuppiah, J., Pathinathan, M., Raghuraman, S.: Credit card
fraud detection with advanced graph based machine learning techniques. Indonesian
Journal of Electrical Engineering and Computer Science 35(3), 1963–1963 (2024)

34. Setiawan, N.F., Rubinstein, B.I., Borovica-Gajic, R.: Function interpolation for
learned index structures. In: Databases Theory and Applications: 31st Australasian
Database Conference, ADC 2020, Melbourne, VIC, Australia, February 3–7, 2020,
Proceedings 31. pp. 68–80. Springer (2020)

35. Shahrivari, H., Papapetrou, O., Fletcher, G.: Workload prediction for adaptive
approximate query processing. In: 2022 IEEE international conference on big data
(big data). pp. 217–222. IEEE (2022)

36. Sharma, S., Rana, V., Kumar, V.: Deep learning based semantic personalized
recommendation system. International Journal of Information Management Data
Insights 1(2), 100028 (2021)

37. Shetty, S.: Improving processing of real-time Big Data in Smart Grids using Apache
Flink and Kafka. Ph.D. thesis, Dublin, National College of Ireland (2019)



12 No Author Given

38. Shukla, K., Xu, M., Trask, N., Karniadakis, G.E.: Scalable algorithms for physics-
informed neural and graph networks. Data-Centric Engineering 3, e24 (2022)

39. Singh, K., Kushwaha, A.S.: Advanced techniques in real-time data ingestion using
snowpipe. International Journal of Multidisciplinary Innovation and Research
Methodology, ISSN pp. 2960–2068 (2024)
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