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Abstract. This study investigates the application of seven supervised
machine learning (ML) models for predicting employee salaries based
on demographic, educational, and occupational attributes. The dataset
comprises both continuous and high-cardinality categorical features, for
which suitable encoding was applied to facilitate model training. Models
evaluated include Linear and Ridge Regression (LinR, RidgeR), Decision
Trees (DT), K-Nearest Neighbors (KNN), Support Vector Regression
(SVR), Gradient Boosting (GB), and Random Forest (RF). Performance
is measured using Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), and R-squared (R2) metrics. Results show that ensemble
models, particularly RF and GB, achieve the highest accuracy, with RF
reaching an R2 of 0.94. In contrast, kernel and instance-based methods
underperform due to limitations in handling categorical data. The findings
support the integration of ensemble models into human resource (HR)
analytics systems and highlight the importance of model selection based
on data structure.

Keywords: Salary Prediction · Machine Learning · Ensemble Models · Human
Resource Analytics.

1 Introduction

Predictive analytics in HR management has become increasingly vital as organi-
zations seek to optimize talent acquisition, workforce planning, and compensation
strategies. Employee salary, as a key economic and motivational factor, is influ-
enced by a complex interplay of demographic attributes, educational background,
job designation, and experience levels. Traditional compensation models often rely
on linear assumptions and industry averages, which inadequately capture nuanced
relationships across heterogeneous employee profiles. Recent advances in ML offer
powerful alternatives for modeling non-linear dependencies and high-dimensional
interactions, enabling more accurate and personalized salary estimations [21,7].

Despite the growing adoption of ML in workforce analytics, most existing stud-
ies either focus on narrow feature sets or employ a single predictive model, often
overlooking alternative algorithms’ comparative strengths and weaknesses. More-
over, high-cardinality categorical features, such as job roles, are rarely addressed
with adequate encoding strategies, potentially limiting model interpretability
and performance [18]. This research addresses these limitations by applying ML
models to a real-world salary dataset containing structured demographic data and
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high-dimensional job descriptions. The goal is to maximize predictive accuracy
and evaluate the influence of various features on salary outcomes. In conclusion,
the present work:
– Performs an exploratory analysis of feature correlations, used solely for

interpretation without modifying the feature set.
– Provides a comparative evaluation of seven supervised ML models—linear,

instance-based, kernel-based, and ensemble—for salary prediction using struc-
tured HR data.

– Illustrates how tree-based models can effectively handle high-cardinality
categorical features such as job titles using simple encoding without incurring
dimensionality overhead

– Assesses model performance using RMSE, MAE, and R2, and interprets
results in light of each model’s assumptions and behavior on mixed-type
feature space.

– Delivers actionable insights on model selection for real-world salary estimation
systems, highlighting RF and GB as robust, high-performance choices for
mixed-type tabular data.
The rest of this paper is organized as follows. Related works for the subject

under consideration are noted in Section 2. Moreover, in Section 3, the method-
ology is outlined. Section 4 discusses the experimental results. Finally, Section 5
summarizes the findings of this research work.

2 Related Works

The challenge of salary prediction has garnered attention in recent years due to
its economic and organizational significance. Various studies have explored this
task using ML paradigms, dataset structures, and model configurations.

Firstly, [6] proposed profession-specific RF models trained on 3.14 million
German payslips, achieving a mean absolute percentage error (MAPE) of 17.06%.
Their ensemble-of-ensembles strategy outperformed global models by capturing
intra-profession salary patterns. Key predictive features included company size,
federal state, and age, while gender had a minimal impact. They emphasized
outlier removal, feature grouping, and ethical considerations in salary prediction
systems.

The author in [10] applied RF, GB, and LightGB models to HR management
system (HRMS) data, achieving up to 99% accuracy after tuning. They empha-
sized feature engineering, exploratory data analysis (EDA), and the inclusion of
employee performance and job-level features. LightGB delivered the best perfor-
mance after hyperparameter tuning, outperforming traditional models. The work
supports ML integration in HR systems to improve salary fairness and prediction
transparency.

Moreover, [16] used a dataset of 1,300 job postings to predict data science
salaries based on skill profiles and HR analytics. They implemented Hodrick-
Prescott (HP) Regression, HP Tree, and an ensemble model, achieving a best
average standard error (ASE) of 0.138 with the ensemble. Key predictors included
location, job level, academic qualifications (especially PhD), and programming
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skills like C++. The study combined HR dashboards with predictive modeling
to support targeted job placement and salary benchmarking.

Also, [13] compared RF, XGBoost, Neural Networks, and SVR for predicting
salaries in the data science industry using 3-year data. Neural networks and SVR
achieved the lowest RMSE and MAE, while XGBoost was the fastest in training
and prediction. Workplace location and experience were identified as the most
influential features in salary outcomes. The paper advocates deeper model tuning
and broader feature inclusion to enhance accuracy and explainability.

Furthermore, [19] applied ensemble learning (XGBoost, RF, GB) on a Kaggle
dataset to predict and classify data science salaries. XGBoost achieved top
accuracy (91.4%), outperforming other models in precision, recall, and F1-score.
Experience and location emerged as dominant salary predictors; job title and
company size were less significant. The framework offers actionable benchmarks
for HR planning, salary negotiation, and workforce strategy in data-driven roles.

Besides, [5] applied Logistic regression (LR), DT, and RF to predict employee
salaries based on academic and experiential data. They integrated advanced
feature selection techniques, including Recursive Feature Elimination (RFE),
Extra Trees and Mutual Information, to optimize model input. The system
achieved 95.33% accuracy on test data, indicating strong generalization.

Finally, the authors in [2] developed a principal component analysis deep
neural network (PCA-DNN) model to classify salaries using a high-dimensional
demographic dataset. Their deep model achieved superior performance with
92.5% accuracy and an MAE of 5.1%, outperforming DT and RF baselines. PCA
improved generalization by reducing noise and redundancy, retaining only the
top four impactful features.

The present study contributes by integrating regression models and system-
atically evaluating them under unified preprocessing conditions. Unlike prior
works (see Table 1), it applies a multi-metric evaluation (RMSE, MAE, R2) and
compares models using identical feature sets and cross-validated optimization
pipelines. Furthermore, the results are benchmarked on a publicly available salary
dataset with complete transparency in environmental and training setups.

3 Methodology

As shown in Figure 1, a structured methodological pipeline was adopted to
investigate the effectiveness of various ML techniques in salary prediction. This
section outlines the dataset structure, data preprocessing strategy, modeling
framework, and evaluation metrics applied. Although an exploratory analysis
was conducted, the pipeline focuses on the essential steps involved in training
and evaluating models. Emphasis is placed on ensuring consistent experimental
conditions across all models to facilitate robust comparative analysis.

3.1 Dataset Description

The dataset employed in this study contains 372 employee records, each represent-
ing a unique individual with associated demographic, educational, occupational,
and financial information. The data schema consists of six attributes: age, gender,
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Table 1. Comparative Summary of Related Works in Salary Prediction.

Study Models Used Key Contributions Performance Highlights
[2] PCA + DNN Dimensionality reduction

with PCA; deep classifica-
tion on salary groups

Accuracy: 92.5%, MAE:
5.1%

[5] LR, DT, RF Feature selection with RFE,
Mutual Information, Extra-
Trees; modular salary predic-
tion interface

Accuracy: 95.33%, strong
generalization

[6] Profession-specific
RF

3M German payslips; MAPE
optimization; permutation-
based feature importance

MAPE: 17.06%; superior per-
profession modeling

[10] RF, GB, LightGB HRMS integration; focus on
fairness and performance-
based features

Accuracy: up to 99% post-
tuning

[13] RF, XGBoost, Neu-
ral Networks, SVR

Comparative model study
in data science salary
trends; emphasized loca-
tion/experience

Neural Networks and SVR:
lowest RMSE; XGBoost:
fastest

[16] HP Tree, HP Re-
gression, Ensemble

Job-skill-based HR analyt-
ics; ensemble achieved lowest
error in Statistical Analysis
System Miner

ASE: 0.138 (ensemble); key
features: PhD, C++, loca-
tion

[19] XGBoost, RF, GB,
DT

Salary classification and pre-
diction for Data Scientists
roles; emphasis on location
and experience

Accuracy: 91.4%; F1-score:
91.4%

This
Work

LinR, RidgeR, DT,
KNN, SVR, GB, RF

Comparative ML framework
with unified pipeline; multi-
metric analysis on structured
salary data

Best R2 = 0.9415 (RF); ro-
bust to categorical feature
sparsity

education level, job title, years of experience (YoE), and salary. These features
span categorical and continuous types, collectively forming a multidimensional
representation suitable for ML-based salary prediction tasks.

Numerical attributes include age, YoE, and salary. The age of employees
ranges from 23 to 53 years, with a mean of approximately 37.45 years and a
standard deviation of 7.07, capturing a workforce distributed across early to
mid-career stages. YoE spans from 0 to 25 years, averaging around 10.07 years
and a standard deviation of 6.53, thus encompassing both entry-level and veteran
professionals. The salary is the target variable, expressed in US dollars, and
ranges from 30, 000$ to 250, 000$, with a mean of approximately 100, 847$ and a
standard deviation of 48, 023$.

The categorical variables include gender (male, female), education level (Bach-
elor’s, Master’s, PhD), and job title. Figure 2 presents the distribution of par-
ticipants across gender and education levels revealing a relatively balanced
representation among genders (male 193, female 179) and a higher concentration
of individuals with a Bachelor’s degree. Job title introduces significant complexity
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Data Preprocessing
Categorical Encoding

(Label Mapping) 

Data Splitting
The dataset was split into

training and testing subsets
with an 80:20 ratio

Model Training
LinR, RidgeR, DT, KNN, SVR

GM, RF

Model Evaluation
Metrics: RMSE, MAE, R²

Fig. 1. Overview of the data processing and modeling pipeline.

due to its high cardinality of 174 unique values. The roles span technical, man-
agerial, administrative, and creative functions and implicitly encode professional
seniority, functional specialization, and domain-specific compensation norms.
Such high granularity provides a rich model learning substrate and imposes
encoding and generalisation challenges.
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Fig. 2. Number of participants per Gender and Education Level.

Together, the diversity of the feature set and the broad distribution of salaries
make this dataset an appropriate benchmark for evaluating ML models in com-
pensation prediction.

3.2 Data Preprocessing

Categorical features such as gender, education level, and job title were transformed
using label encoding, converting them into numerical representations suitable for
model input. Integer mappings were chosen to maintain compact dimensionality,
particularly important for models that are sensitive to high-dimensional input
spaces. Numerical features, including age and YoE were retained in their original
scales. This decision was guided by theoretical considerations: tree-based models,
such as RF and GB, are inherently scale-invariant due to their threshold-based
splitting mechanisms. While feature scaling is typically beneficial for distance-
and kernel-based models like KNN and SVR, numerical features were retained
in their original scales to preserve simplicity, interpretability, and consistency
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without sacrificing model accuracy. The impact of this design choice on model
performance is analyzed in Section 4.

3.3 Features Correlation Analysis

We conducted a detailed correlation analysis to understand the interdependencies
among employee attributes and their influence on salary outcomes. This analysis
aims to reveal the strength and nature of relationships between both numerical
and categorical variables in the dataset, as well as their direct association with
the target variable, salary.

We considered multiple correlation metrics [1,12], each tailored to the type
of variables involved: Pearson’s correlation coefficient is applied to assess lin-
ear relationships between continuous numerical variables. It assumes normally
distributed data and is sensitive to outliers, making it suitable for evaluating
associations such as that between age, YoE, and salary. To capture broader
monotonic trends—including non-linear dependencies—we also include Spear-
man’s rank correlation and Kendall’s tau. Both are non-parametric, rank-based
measures; Spearman’s assesses monotonic relationships using ranked data, while
Kendall’s tau compares concordant and discordant pairs and is generally more
robust in smaller samples. For associations between categorical variables, we
employ Cramér’s V, which quantifies the strength of relationship based on the
chi-squared statistic, ranging from 0 (no association) to 1 (perfect association).
By employing this multifaceted approach, we ensure a rigorous and nuanced
understanding of feature interactions, which is critical for interpreting model
behavior and improving predictive accuracy in salary estimation tasks.

Table 2. Correlation summary of all feature pairs using Pearson, Spearman, Kendall,
and Cramér’s V coefficients.

Feature Pair Pearson (r) Spearman (ρ) Kendall (τ) Cramér’s V
age ↔ salary 0.923 0.932 0.801 –
YoE ↔ salary 0.930 0.940 0.825 –
age ↔ YoE 0.979 0.983 0.916 –
gender ↔ salary – 0.067 0.056 –
education level ↔ salary – 0.671 0.542 –
job title ↔ salary – 0.195 0.149 –
gender ↔ education level – – – 0.047
gender ↔ job title – – – 0.775
education level ↔ job title – – – 0.893

The correlation analysis is summarized in Table 2 revealing insightful rela-
tionships among the features in the employee salary dataset. Among the numer-
ical variables, YoE shows the strongest correlation with salary, with Pearson
(r = 0.930), Spearman (ρ = 0.940), and Kendall (τ = 0.825) coefficients confirm-
ing a consistent and strong monotonic relationship. This suggests that experience
plays a critical role in compensation modeling. Similarly, age is also highly corre-
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lated with salary (Pearson: 0.923), though slightly less than experience, likely
due to the indirect relationship of age with income via work history.

When examining the categorical features, education level stands out with a
moderate positive correlation to salary (Spearman: 0.671, Kendall: 0.542), indi-
cating that higher educational qualifications are generally associated with higher
salaries. Interestingly, job title, despite its high-cardinality, has a relatively weak
rank-based correlation with salary (Spearman: 0.195), suggesting either broad
salary distributions within titles or the need for more granular title embeddings.
Gender, as a categorical feature, shows negligible correlation with Salary across
all coefficients, supporting findings in some HR literature that gender, when
isolated from other variables, may have limited direct predictive power in salary
estimation. Further, Cramér’s V coefficients among categorical variables revealed
a strong association between education level and job title (0.893) and between
gender and job title (0.775), hinting at occupational clustering patterns by gender
and educational attainment. However, gender and education level are largely
independent (Cramér’s V = 0.047), implying equitable access to educational
levels across genders in the dataset.

These findings underscore the value of combining numerical and categorical
predictors—properly encoded and supported by suitable models such as tree-based
ensembles—to capture salary dynamics. The correlation analysis was exploratory
only; no feature selection was performed, and all features were retained to preserve
the dataset’s full informational content.

3.4 Machine Learning Models and Evaluation Metrics

This study employs various regression algorithms for modeling the relationship
between employee attributes and salary. The models encompass linear, non-linear,
and ensemble-based methods, each defined by distinct loss functions, optimization
strategies, and representational assumptions.

Let Dtrain = {(xi, yi)}ntrain
i=1 be the training dataset, where xi ∈ Rp denotes

the feature vector and yi ∈ R the corresponding salary. Similarly, Dtest =
{(xj , yj)}ntest

j=1 denotes the test set, with predicted values ŷj = f(xj), and let
ȳ = 1

ntest

∑ntest
j=1 yj be the empirical mean of the true test target values. The goal

is to learn a predictive function f : Rp → R that generalizes well to unseen data,
namely f(xj) ≈ yj for the instances in Dtest. Based on this formulation, a variety
of ML models are trained to approximate the mapping function f , and their
predictive performance is assessed using standard regression metrics.

LinR [11] models the response variable as a linear combination of input
features ŷ = x⊤β + β0. The parameters β are estimated by minimizing the
residual sum of squares L(β) = 1

n

∑n
i=1

(
yi − x⊤

i β − β0

)2
. This yields a closed-

form solution under full-rank design matrices.
RidgeR [14] introduces L2 regularization to the linear model Lridge(β) =

1
n

∑n
i=1

(
yi − x⊤

i β
)2

+ λ∥β∥22, where λ ≥ 0 controls the regularization strength,
shrinking coefficient magnitudes to improve generalization.

DTs [4] partition the input space into M disjoint regions {Rm}Mm=1. The
prediction in each region is the mean target value f(x) =

∑M
m=1 cm · I(x ∈
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Rm), cm = 1
|Rm|

∑
xi∈Rm

yi. Splits are selected to minimize within-node vari-
ance, yielding an interpretable but high-variance model.

KNN [8] is a non-parametric model that predicts the response by averaging
the k nearest neighbors ŷ = 1

k

∑
(xi,yi)∈Nk(x)

yi, where Nk(x) is the set of the
k closest training samples to x. While flexible, its performance deteriorates in
high-dimensional settings.

SVR [20] seeks a function f(x) = ⟨w, ϕ(x)⟩ + b that
fits the data within an ε-insensitive margin. The optimiza-
tion problem is minw,b,ξ,ξ∗ 1

2∥w∥2 + C
∑n

i=1(ξi + ξ∗i ) subject to
yi − ⟨w, ϕ(xi)⟩ − b ≤ ε+ ξi, ⟨w, ϕ(xi)⟩+ b− yi ≤ ε+ ξ∗i , ξi, ξ

∗
i ≥ 0,

where ϕ(·) maps inputs to a high-dimensional kernel space, and C balances
margin width and error tolerance.

GB [15] constructs an additive model of the form fM (x) =
∑M

m=1 ρmhm(x),
where each hm is a weak learner trained to approximate the negative gradient of
the loss function r

(m)
i = − ∂ℓ(yi,f(xi))

∂f(xi)

∣∣∣
f=fm−1

, fm(x) = fm−1(x) + η · hm(x),

with learning rate η ∈ (0, 1]. The approach approximates functional gradient
descent in function space.

RF [17] average predictions from T decorrelated DTs, each trained on boot-
strap samples and random feature subsets ŷ = 1

T

∑T
t=1 f

(t)(x). This method
reduces variance, enhances generalization, and is well-suited for high-dimensional
tabular data.

To quantitatively assess the performance of regression models on the salary
prediction task, we employ three standard metrics: RMSE, MAE, and the R2.

MAE [9] quantifies the expected absolute deviation between predicted and
actual values as 1

n

∑n
i=1 |yi − ŷi|. It is a linear and scale-dependent metric that

penalizes all errors equally. In practice, MAE reflects the typical magnitude of
error in real-world units (e.g., USD in salary prediction) and is less sensitive to
extreme values compared to RMSE.

RMSE computes the square root of the average squared residuals based on√
1
n

∑n
i=1 (yi − ŷi)

2. By squaring residuals before averaging, RMSE imposes a
quadratic penalty on larger errors, thereby emphasizing models that are more
sensitive to high-magnitude mispredictions. This makes RMSE especially suitable
in settings where large deviations are costly.

R2 [3] score measures the fraction of variance in the target variable that
the predictive model explains assuming the formula 1−

∑n
i=1(yi−ŷi)

2∑n
i=1(yi−ȳ)2 . This ratio

compares the residual sum of squares to the total sum of squares. An R2 value
of 1 indicates perfect prediction, while R2 = 0 corresponds to the mean baseline
predictor. Negative values signify that the model performs worse than the naive
mean predictor.

These metrics reflect complementary aspects of model performance: MAE
captures the average predictive error, RMSE emphasizes larger deviations through
squared penalties, and R2quantifies the proportion of variance in the target
explained by the model. Together, they support both absolute and relative
comparisons of predictive accuracy and model robustness.
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3.5 Model Training and Optimization

All algorithms were trained using a standardised experimental pipeline to ensure
reliable and generalizable performance across the selected ML models. The dataset
was split into training and testing subsets using an 80:20 ratio through random
sampling. Although stratification by job title was considered to ensure balanced
representation of roles across both subsets, it was not applied due to a dataset
limitation: a large portion of job titles appear only once. Stratified sampling
requires at least two instances per category to distribute them between training
and test sets. In this case, the high cardinality and sparsity of the job title feature
made stratification infeasible without compromising data integrity. Among the
categorical variables, job title was the focus for potential stratification due to its
high cardinality and the need to avoid unintentional exclusion of rare roles. In
contrast, features such as Gender and Education Level are low-cardinality and
relatively well-balanced, making stratification unnecessary. Therefore, random
splitting was adopted to preserve the full diversity of the dataset while maintaining
methodological simplicity.

Model training was conducted using scikit-learn 1.4.1, with all experiments
executed on a workstation configured with an Intel Core i7 CPU, 32 GB RAM.
To identify the optimal hyperparameter settings for each model, a grid search
strategy was employed using 3-fold cross-validation. The grid search procedure
systematically explored predefined parameter ranges to minimize the mean
squared error on the validation sets. The final selected models were retrained on
the full training set using the optimal configuration and subsequently evaluated
on the hold-out test set. The hyperparameter space explored for each model and
the best configuration discovered are summarized in Table 3.

Table 3. Optimal Hyperparameters for the ML Models.

Model Optimal Hyperparameters
LinR Applied without regularization
RidgeR alpha = 10.0
DT max_depth = 10, min_samples_split = 2
KNN n_neighbors = 5, weights = ’distance’
SVR C = 1, epsilon = 0.2, kernel = ’rbf’
GB n_estimators = 100, learning_rate = 0.1, max_depth = 3
RF n_estimators = 200, max_depth = None, min_samples_split = 2

4 Results and Discussion

This section presents the comparative results of the trained regression models
on the salary prediction task, using the hold-out test set for evaluation. The
analysis is guided by 3 complementary metrics, namely RMSE, MAE, and the R2.
These metrics allow for an integrated assessment of average predictive accuracy,
penalization of large deviations, and the explanatory strength of each model.
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4.1 Quantitative Performance Evaluation

Table 4 summarizes the performance of all seven ML models. The RF regressor
achieves the highest predictive accuracy, with an RMSE of $12,202.78, an MAE
of $8,348.80, and an R2 of 0.9415, indicating that over 94% of the variance in
salary outcomes is accounted for by the model. The success of this ensemble
can be attributed to its ability to capture non-linear relationships and complex
feature interactions through aggregation of diverse decision paths.

The GB closely follows, achieving an R2 of 0.9283. It exhibits a slightly higher
RMSE and MAE than RF but offers stronger bias reduction and incremental
learning via additive optimization. Both models benefit from their ability to
handle high-cardinality categorical features (such as job title) and non-parametric
flexibility, making them particularly well-suited to heterogeneous tabular datasets.

Linear models, including RidgeR and LinR, perform comparably, with R2

values around 0.913. These models deliver stable and interpretable predictions,
particularly where relationships between predictors and salary are approximately
linear. The inclusion of regularization in RidgeR aids in controlling overfitting,
although the gain is marginal in this dataset due to limited multicollinearity.

The performance of DTs and KNN is moderate, with R2 values of 0.8943 and
0.8683, respectively. DTs are highly expressive but suffer from high variance and
instability across small splits in the feature space. KNN is inherently limited in
high-dimensional settings and is sensitive to distance metrics, particularly when
handling encoded categorical variables.

The SVR performs poorly, with an R2 of -0.013 and drastically elevated
RMSE and MAE values. This suggests a fundamental mismatch between SVR’s
kernel-based modeling assumptions and the structure of the input data, which
includes unscaled, high-cardinality categorical features. Without appropriate
feature transformation or kernel engineering, SVR underperforms significantly.

Table 4. Performance Comparison of Regression Models on Salary Prediction.

Model RMSE($) MAE($) R2

RF 12,202.78 8,348.80 0.9415
GB 13,514.86 8,645.17 0.9283
RidgeR 14,825.51 9,797.95 0.9137
LinR 14,844.80 9,822.89 0.9134
DT 16,401.22 10,466.67 0.8943
KNN 18,308.83 12,226.67 0.8683
SVR 50,785.02 41,922.72 -0.0130

4.2 Interpretive Insights and Model Characteristics

The results highlight the strength of ensemble learning strategies, particularly
RF and GB, in capturing nuanced feature interactions and addressing the non-
linearity and feature sparsity inherent in real-world salary datasets. These mod-
els not only deliver superior predictive power but also support explainability



Title Suppressed Due to Excessive Length 11

techniques, such as feature importance ranking, SHAP (SHapley Additive ex-
Planations) and LIME (Local Interpretable Model-agnostic Explanations) value
analysis, making them valuable in applied HR analytics.

In contrast, the effectiveness of linear models is bounded by their inherent
assumptions. Their comparable performance to tree ensembles suggests that
the underlying relationships in the dataset possess strong linear components,
particularly through the additive effects of job title, education, and experience.
However, their inability to capture higher-order interactions or non-monotonic
effects limits their utility in more complex labor market settings. The poor
performance of SVR and the moderate outcomes for KNN and DTs further
demonstrate the importance of model alignment with the statistical geometry
of the data. Models that depend heavily on spatial proximity or smooth kernel
boundaries suffer when input features are derived from discrete categories or
exhibit sparse, high-cardinality distributions.

4.3 Practical Implications

From a practical standpoint, the findings reinforce the recommendation of RF
or GB for predictive salary modeling tasks, especially in contexts involving
high-cardinality occupational taxonomies and diverse professional profiles. These
models are robust to data imperfections, adaptable to mixed feature types, and
readily integrable into enterprise-grade analytics systems. Linear models remain
viable for transparent modeling when interpretability and computational sim-
plicity are paramount. Future deployments of non-parametric or kernel methods
should be preceded by substantial feature engineering or embedding strategies to
mitigate representational mismatch.

5 Conclusion

This study compared seven regression-based ML models for employee salary pre-
diction using a real-world dataset with numerical and high-cardinality categorical
features. The aim was to identify models that effectively capture salary patterns
driven by demographic, educational, and occupational variables.

Ensemble methods—particularly RF and GB—outperformed linear, kernel-
based, and instance-based models across all metrics, with RF explaining over 94%
of salary variance. Their strength lies in modeling non-linear interactions and
handling heterogeneous features without extensive preprocessing. While RidgeR
offered a good trade-off between accuracy and interpretability, SVR struggled
with sparse, unscaled categorical data.

These results support the use of tree-based ensembles in HR analytics, espe-
cially when dealing with complex employee profiles. Future directions include
incorporating embeddings, explainability techniques like SHAP and LIME, and
evaluating scalability on larger, more diverse workforce datasets.
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