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Abstract. Deep learning models achieve high accuracy in image recognition 

but often function as “black boxes”, making their decision-making processes 

difficult to interpret. Explainable AI (XAI) techniques aim to enhance transpar-

ency by providing insights into how deep neural networks reach their conclu-

sions. This study presents a comparative evaluation of prominent XAI methods 

used in convolutional neural networks (CNNs), specifically Gradient-weighted 

Class Activation Mapping (Grad-CAM) and Saliency Maps. The techniques 

were applied to image classification tasks using benchmark datasets (ImageNet 

and CIFAR-10) and evaluated based on clarity, completeness, and trustworthi-

ness. Our experimental results, conducted using VGG16 and ResNet50 archi-

tectures, demonstrate that Grad-CAM produces interpretable heatmaps that 

highlight relevant image regions, whereas Saliency Maps offer pixel-level fea-

ture importance with higher granularity but increased noise. The findings pro-

vide guidance for selecting suitable XAI methods depending on interpretability 

requirements, and we propose future research directions, including hybrid XAI 

approaches for improved transparency. 
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1 Introduction 

Deep learning has achieved significant success in image recognition applications, 

ranging from medical diagnostics to autonomous driving [1]. However, despite their 

high accuracy, convolutional neural networks (CNNs) lack transparency, making it 

challenging to understand the factors influencing their predictions. This “black-box” 

nature raises concerns in critical applications where trust, fairness, and accountability 

are necessary [2]. 

Explainable Artificial Intelligence (XAI) has emerged as a crucial research area 

aimed at improving the interpretability of deep learning models. By offering visual or 

numerical explanations, XAI techniques help users comprehend the decision-making 
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processes of neural networks. Among the most commonly used post-hoc explanation 

methods are Grad-CAM and Saliency Maps, which generate visual representations 

highlighting important features in an image [3]. 

Recent literature emphasizes the increasing demand for interpretability in AI mod-

els, particularly in domains such as healthcare, law, and finance, where explainability 

is essential for ethical and practical deployment [4][5]. Furthermore, regulatory 

frameworks such as the EU’s AI Act highlight the need for transparency and account-

ability in AI systems [6]. Researchers have developed a wide array of techniques to 

address the opacity of deep learning models, with studies showing that visual explana-

tions not only improve user trust but also help detect biases and errors in models 

[7][8]. 

Despite this progress, many existing techniques differ in their approach, perfor-

mance, and applicability to real-world scenarios. While some methods focus on fea-

ture importance or perturbation-based strategies, others employ gradient-based visual-

izations for interpretability. Among these, Grad-CAM and Saliency Maps have re-

ceived significant attention due to their visual nature and compatibility with popular 

CNN architectures [9][10]. 

This study aims to compare Grad-CAM and Saliency Maps in terms of their ability 

to provide meaningful explanations for CNN predictions. We evaluate these methods 

using standardized criteria—clarity, completeness, and trustworthiness—on two wide-

ly used architectures, VGG16 and ResNet50. By conducting experiments on bench-

mark datasets (ImageNet and CIFAR-10), we aim to offer insights into the strengths 

and weaknesses of each technique and provide recommendations for their practical 

application. 

2 Related Work 

The field of Explainable AI has grown substantially in recent years, with numerous 

techniques proposed to address the interpretability gap in deep learning models. 

Among these, Gradient-weighted Class Activation Mapping (Grad-CAM) and Salien-

cy Maps have emerged as two of the most widely used visual explanation methods. 

Grad-CAM generates class-specific localization maps by utilizing the gradients of 

target classes flowing into the final convolutional layers of CNNs, thereby producing 

coarse heatmaps that highlight regions of interest [11]. Saliency Maps, on the other 

hand, compute the gradient of the output with respect to the input image, providing 

pixel-level importance scores that can reveal fine-grained features influencing the 

model’s decision [12]. 

In addition to these gradient-based methods, model-agnostic techniques such as 

LIME (Local Interpretable Model-agnostic Explanations) and SHAP (SHapley Addi-

tive exPlanations) have also gained popularity. LIME approximates a complex model 

locally by fitting an interpretable model around the prediction, allowing insight into 

the influence of input features [13]. SHAP applies concepts from cooperative game 

theory to assign importance values to individual features, providing both global and 
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local interpretability [14]. While powerful, these methods often require extensive 

computation and may introduce instability due to their reliance on perturbations. 

Recent comparative studies have highlighted the trade-offs among these tech-

niques. For example, Grad-CAM has been shown to offer high clarity and intuitive 

visualization, especially in applications such as medical imaging [17], whereas Sali-

ency Maps, although more detailed, tend to produce noisier outputs that can be harder 

to interpret [18]. LIME and SHAP have demonstrated flexibility across model types 

but face limitations in terms of reproducibility and scalability in high-dimensional 

image data [19][20]. 

More recent research from 2020 onwards has explored hybrid approaches, combin-

ing multiple XAI methods to leverage their respective strengths. These studies sug-

gest that integrating visual and attribution-based explanations can yield more compre-

hensive and trustworthy interpretations [21][22]. Additionally, there is growing inter-

est in user-centered evaluation metrics that assess not only the technical quality of 

explanations but also their impact on human decision-making [23]. 

In addition to visual explanation techniques, explainability has gained prominence 

in other domains such as sentiment analysis and educational data mining. For exam-

ple, recent studies have compared classifiers like Naive Bayes and SVM for Twitter 

sentiment analysis while also evaluating the role of preprocessing and ensemble 

methods in improving interpretability and classification performance [24, 25]. In the 

educational domain, deep learning models for predicting team-based academic out-

comes have incorporated SHAP explanations to identify key features influencing 

predictions, highlighting the demand for transparent and trustworthy AI systems in 

learning environments [26, 27]. These studies underscore the broader applicability of 

explainability tools and reinforce the importance of selecting XAI methods that bal-

ance interpretability, computational feasibility, and contextual needs—a motivation 

also central to the present work. 

While much of the prior work focuses on individual method performance, this 

study distinguishes itself by offering a systematic, side-by-side evaluation of Grad-

CAM and Saliency Maps using unified evaluation criteria. By emphasizing clarity, 

completeness, and trustworthiness in real-world image classification tasks, this work 

provides actionable insights for practitioners aiming to enhance model transparency in 

practice. 

 

3 Methodology 

3.1. Experimental Setup 

We conducted experiments using two benchmark image classification datasets: 

• ImageNet – A large-scale dataset containing high-resolution images across 

1,000 categories, commonly used for training deep learning models [7]. 

• CIFAR-10 – A smaller dataset consisting of 10 object classes with lower res-

olution images, enabling controlled XAI evaluations [8]. 
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The CNN architectures used in our study include: 

• VGG16 – A deep yet simple model with sequential convolutional layers, 

making it a suitable candidate for interpretability research [9]. 

• ResNet50 – A deeper network that utilizes residual learning, allowing us to 

analyze the performance of XAI methods in complex architectures [10]. 

3.2. Evaluation Criteria 

We evaluate Grad-CAM and Saliency Maps using three key metrics: 

• Clarity: The ease with which explanations can be interpreted by humans [4]. 

• Completeness: The extent to which an explanation captures the model’s de-

cision-making process [5]. 

• Trustworthiness: The alignment of explanations with expected human rea-

soning patterns [6]. 

These criteria have been widely used in previous explainability studies to assess 

the effectiveness of XAI techniques in deep learning applications [7]. 

 

3.3. Implementation Approach 

For each dataset, we applied Grad-CAM and Saliency Maps to visualize model 

predictions [3]. To ensure fair comparisons, we used pre-trained models and applied 

identical conditions for generating explanations [5]. Feature masking tests were con-

ducted to measure the impact of highlighted features on classification confidence [6]. 

These methodologies have been widely used in previous research to evaluate explain-

ability techniques in deep learning [7]. 

4 Implementation of XAI Techniques 

4.1. Explanation Methods and Their Implementation 

This section presents the implementation details of Grad-CAM and Saliency Maps, 

explaining how these techniques were applied to the VGG16 and ResNet50 CNN 

architectures to generate visual explanations [2][3]. 

Several studies have demonstrated the effectiveness of Grad-CAM in various deep 

learning applications, particularly in medical imaging, where model interpretability is 

essential for clinical decision-making [4]. Similarly, Saliency Maps have been widely 

used to analyze CNN behavior in security and autonomous systems [5]. However, 

while Grad-CAM provides region-based heatmaps, Saliency Maps offer pixel-level 

feature importance, often introducing more noise in the visual interpretation [6]. 

A key advantage of Grad-CAM is its ability to highlight discriminative regions 

within an image without requiring architectural modifications, making it a practical 

approach for existing pre-trained models [7]. In contrast, Saliency Maps require ex-



5 

   

 

tensive pixel-wise gradient computations, which can be computationally expensive 

[8]. 

To ensure a consistent and reproducible comparison, we implemented both meth-

ods using TensorFlow and PyTorch libraries, following standard XAI guidelines for 

post-hoc interpretability analysis [9]. 

 

4.2. Grad-CAM 

Gradient-weighted Class Activation Mapping (Grad-CAM) is a widely used XAI 

technique that highlights important image regions by computing the gradient of a 

target class with respect to the final convolutional layer’s feature maps. The imple-

mentation steps include: 

1. Forward pass: The input image is passed through the CNN to generate pre-

dictions. 

2. Gradient computation: The gradient of the target class score with respect to 

the feature maps is calculated. 

3. Feature weighting: The gradients are averaged spatially and used to weight 

the feature maps. 

4. Heatmap generation: The weighted feature maps are summed and passed 

through a ReLU activation to obtain a final heatmap, which is overlaid onto 

the original image to enhance interpretability. 

Grad-CAM was applied to both VGG16 and ResNet50 models trained on 

ImageNet and CIFAR-10. We utilized pre-trained models and extracted feature maps 

from the last convolutional layer for optimal visualization. 

 

4.3. Saliency Maps 

Saliency Maps use gradient information to measure the impact of individual pixels 

on a model’s prediction. The implementation follows these steps: 

1. Forward pass: The model generates predictions for an input image. 

2. Gradient backpropagation: The gradient of the model output with respect 

to each input pixel is computed. 

3. Absolute value scaling: The absolute values of gradients are taken to deter-

mine pixel importance. 

4. Normalization: The computed values are normalized and visualized as an in-

tensity map, where higher values indicate higher importance. 

Saliency Maps provide pixel-level feature importance, making them useful for fi-

ne-grained explanations. However, they tend to be noisier compared to Grad-CAM, as 

small variations in pixel intensity can lead to large gradient fluctuations. 
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4.4. Implementation Framework 

To ensure a consistent evaluation, the following approach was followed: 

• Pre-trained VGG16 and ResNet50 models were used to maintain experi-

mental consistency [9]. 

• Grad-CAM and Saliency Maps were implemented using TensorFlow and 

PyTorch [7]. 

• The models were tested on a subset of ImageNet and CIFAR-10 images, se-

lecting representative samples from different object categories [8]. 

• The visual explanations were evaluated based on qualitative analysis and 

quantitative performance metrics [10]. 

This structured implementation enabled a direct comparison of Grad-CAM and Sa-

liency Maps, highlighting their effectiveness in enhancing model interpretability. 

 

4.5. Computational Complexity and Performance Considerations 

Understanding the computational complexity of XAI techniques is crucial for prac-

tical deployment. While Grad-CAM and Saliency Maps provide valuable interpreta-

bility, they differ in computational demands and real-time applicability [5]. 

 

4.6. Computational Cost of Grad-CAM 

Grad-CAM requires backpropagation to the final convolutional layer and averag-

ing of gradient information, making it computationally efficient compared to pixel-

wise methods [2]. However, for high-resolution images and deeper architectures (e.g., 

ResNet50), the computation time increases significantly. For instance, Grad-CAM 

explanations for CIFAR-10 images take approximately 0.2 seconds per image, while 

for high-resolution ImageNet images, the processing time can reach 1-2 seconds per 

image [7]. 

 

4.7. Computational Cost of Saliency Maps 

Saliency Maps require backpropagation to each pixel, leading to significantly 

higher computational overhead [3]. While they provide pixel-level feature im-

portance, they demand 4-5 times more computation than Grad-CAM, making them 

less feasible for real-time applications. This limitation is particularly critical for edge 

devices or mobile AI systems [6]. 

 

4.8. Trade-offs Between Speed and Explainability 

The choice of XAI technique depends on the application’s need for speed versus 

explanation granularity. Grad-CAM offers a good balance between efficiency and 
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interpretability, whereas Saliency Maps are more detailed but computationally expen-

sive [4]. Future improvements, such as optimized gradient computation and hardware 

acceleration (e.g., GPU-based inference), could mitigate these limitations [14]. 

Fig. 1 demonstrates how Saliency Maps require significantly more processing time 

than Grad-CAM, especially as image size increases, due to their pixel-wise backprop-

agation approach. 

 

Fig. 1. Comparison of computational time between Grad-CAM and Saliency Maps 

for different image sizes. 

Fig. 2 compares the execution speed of Grad-CAM and Saliency Maps on different 

hardware configurations, showing that GPU acceleration significantly reduces compu-

tation time for both techniques, but Saliency Maps remain computationally expensive. 
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Fig. 2. GPU versus CPU inference times for Grad-CAM and Saliency Maps.  

5 Experimental Results and Evaluation 

5.1. Comparative Analysis of XAI Techniques 

Several studies have evaluated the interpretability of Grad-CAM and Saliency 

Maps across various domains [3][5]. These techniques have been widely used to en-

hance model transparency in medical imaging, autonomous driving, and security ap-

plications [7]. 

A more in-depth analysis of Grad-CAM and Saliency Maps reveals that their effec-

tiveness varies depending on the application requirements [4]. Grad-CAM, as a re-

gion-based method, provides intuitive and easy-to-understand heatmaps by highlight-

ing important object areas rather than individual pixels [5]. This makes it particularly 

useful for high-level decision-making tasks, such as object classification in medical 

imaging and autonomous driving, where explainability is crucial for user trust [6]. 

On the other hand, Saliency Maps offer a more detailed, pixel-level visualization, 

making them suitable for tasks requiring fine-grained feature importance analysis [7]. 

However, this advantage comes at a cost—Saliency Maps are highly sensitive to mi-

nor variations in the input, leading to noisy and sometimes misleading visualizations 

[8]. Additionally, their computational complexity is significantly higher than that of 

Grad-CAM, limiting their use in real-time applications [9]. 

Despite these differences, both techniques have proven to be valuable tools in XAI 

research, enhancing transparency and aiding model validation [10]. The Table 1 be-

low presents a comparative evaluation of Grad-CAM and Saliency Maps, based on 

clarity, completeness, and trustworthiness. Grad-CAM excels in providing localized 

heatmaps that are easy to interpret but lacks detailed feature attribution. On the other 
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hand, Saliency Maps offer fine-grained explanations at the pixel level but introduce 

higher levels of noise, making them harder to interpret reliably. 

 

Table 1. A comparative analysis of Grad-CAM and Saliency Maps in terms of 

clarity, completeness, and trustworthiness. 

Method Clarity Completeness Trustworthiness 

Grad-CAM High Moderate High 

Saliency Maps Moderate High Moderate 

Grad-CAM produced heatmaps that effectively localized object regions, offering 

intuitive explanations [2]. However, it struggled with fine-grained details. In contrast, 

Saliency Maps provided pixel-level insights but exhibited noise, making interpreta-

tion more challenging [6]. 

These findings align with prior research, which suggests that gradient-based meth-

ods are effective in visualizing CNN decision-making processes, but they must be 

interpreted cautiously [9]. 

5.2. Experimental Visual Results 

Visual representations are essential for evaluating the performance of explainabil-

ity techniques in deep learning models. By analyzing Grad-CAM and Saliency Maps, 

we can assess their ability to highlight crucial image features and improve model 

interpretability. Grad-CAM generates heatmaps that emphasize discriminative image 

regions, making it particularly effective for high-level decision-making tasks such as 

medical diagnostics and autonomous navigation [4]. On the other hand, Saliency 

Maps provide fine-grained, pixel-level importance representations, which can reveal 

detailed feature attributions but may introduce noise and sensitivity to minor input 

variations [5]. 

In Fig. 3, Grad-CAM heatmaps are applied to a test image, highlighting the most 

influential regions used by the model for its prediction. These heatmaps provide an 

intuitive understanding of how the CNN focuses on specific areas when making a 

classification decision. The red and yellow regions in the heatmap represent the most 

important areas, offering clear insight into the decision-making process of the net-

work. Grad-CAM is particularly useful in applications requiring high-level object 

localization, such as medical imaging and autonomous navigation [4]. 

Similarly, Fig. 4 presents Saliency Maps, which visualize pixel-wise feature im-

portance. Unlike Grad-CAM, which highlights entire regions, Saliency Maps empha-

size individual pixels that contribute most to the model’s output. This method allows 

for a more detailed attribution of features but can introduce additional noise, making 

interpretation more challenging. While Saliency Maps offer fine-grained insights, 

their sensitivity to slight image perturbations makes them less robust for some appli-

cations [5]. 

Together, these figures illustrate the distinct approaches of Grad-CAM and Salien-

cy Maps, showcasing the trade-offs between localized feature explanations and fine-

grained attributions. 
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Fig. 3. Example of Grad-CAM heatmaps applied to a test image. 

 

 

Fig. 4. Saliency Map visualization illustrating pixel-level feature importance. 

These visual results confirm that Grad-CAM is particularly effective for applica-

tions requiring object localization, whereas Saliency Maps provide insights at a finer 

granularity but introduce interpretability challenges [6]. 
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6 Discussion 

Our results highlight the trade-offs between different XAI techniques. Grad-

CAM’s localized heatmaps make it a preferred method for interpretability but may 

miss important subtle details. Saliency Maps, while offering more granularity, often 

introduce noise that reduces readability. 

 

6.1. Implications for AI Transparency 

The findings emphasize the importance of selecting the appropriate XAI technique 

based on specific application needs. In scenarios where human users require clear 

explanations (e.g., healthcare diagnostics), Grad-CAM is more suitable [4]. However, 

for detailed forensic analysis, Saliency Maps provide richer insights [6]. 

Prior studies have demonstrated that visual explanations enhance user trust in AI 

models, particularly in critical applications such as autonomous driving and medical 

imaging [7]. Transparent AI systems improve human oversight, helping domain ex-

perts validate model decisions and identify potential biases [10]. 

6.2. Limitations and Future Directions 

Although Grad-CAM and Saliency Maps provide valuable interpretability, they al-

so come with limitations. Grad-CAM focuses on high-level feature importance and 

may fail to capture fine-grained details, while Saliency Maps, despite offering de-

tailed insights, introduce noise that complicates human interpretation [2]. 

Future research should explore hybrid XAI approaches that combine the strengths 

of Grad-CAM and Saliency Maps [9]. Additionally, optimizing computational effi-

ciency and developing human-centered evaluation metrics can further enhance AI 

interpretability [12]. 

 

6.3. Critical Appraisal and Ethical Considerations 

While both Grad-CAM and Saliency Maps offer valuable contributions to the field 

of explainable AI, their practical effectiveness and societal implications merit deeper 

evaluation beyond technical accuracy. 

 

6.4. Interpretability for Non-Experts 

One of the most crucial aspects of XAI is whether the explanations are understand-

able to users without technical expertise. Grad-CAM, due to its region-based 

heatmaps, tends to align better with human perception. Users can visually identify 

which parts of an image influenced the model’s decision, often without requiring a 

deep understanding of neural networks. In contrast, Saliency Maps—although offer-

ing pixel-level detail—often result in noisy visualizations that may overwhelm non-

expert users or be misinterpreted. Studies have shown that clear, simple visual cues 

increase user satisfaction and trust in AI systems [1][2]. 
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6.5. Impact on User Trust and Decision-Making 

Transparency plays a pivotal role in building user trust. Grad-CAM, by offering 

more intuitive visuals, enhances the perceived reliability of AI outputs in high-stakes 

domains such as medical imaging and autonomous systems. However, if explanations 

are overly simplistic or misleading, they may create a false sense of confidence. Sali-

ency Maps, while technically detailed, may lead to skepticism due to their lower clari-

ty. Thus, trust is not solely a function of technical correctness but of how explanations 

align with human cognitive processes [3][4]. 

 

6.6. Ethical Implications and Responsibility 

From an ethical perspective, explainability is closely linked to issues of accounta-

bility, fairness, and informed decision-making. XAI methods must not only reveal 

what influenced a model's decision but also support users in evaluating whether that 

influence is appropriate or biased. For example, in healthcare applications, if an ex-

planation highlights irrelevant regions, it could mislead clinicians and compromise 

patient outcomes. Moreover, the computational cost of techniques like Saliency Maps 

raises questions of accessibility and equity, particularly for institutions with limited 

resources. 

Additionally, explainability must be accompanied by honest communication of un-

certainty. Over-reliance on visualizations like heatmaps, without understanding their 

limitations, may result in over-trust or under-trust in AI systems. Therefore, research-

ers and practitioners must ensure that these tools are transparent, honest, and respon-

sibly deployed. 

 

6.7. The Need for Human-Centered Evaluation 

Current metrics such as clarity and completeness provide a starting point but do not 

fully capture the human experience of interacting with AI explanations. Future evalu-

ations should include user studies, especially involving domain experts and layper-

sons, to assess the real-world interpretability of explanations. Without such assess-

ments, we risk developing tools that are technically sound but practically ineffective 

or even harmful. 

 

7 Conclusion and Future Work 

The findings of this study highlight the critical role of explainability in deep learn-

ing, particularly in fields where trust and transparency are essential. Through the 

comparative analysis of Grad-CAM and Saliency Maps, we observed how each tech-

nique contributes unique strengths: Grad-CAM offers intuitive and focused heatmaps 

ideal for object localization, while Saliency Maps provide more detailed, pixel-level 

explanations. 
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Our experiments demonstrated that Grad-CAM tends to produce explanations that 

are more immediately interpretable, making it preferable in domains such as 

healthcare or autonomous systems where time-sensitive decisions are required. In 

contrast, Saliency Maps, though more granular, sometimes suffer from noise, which 

can hinder their interpretability in practice. Nonetheless, in cases where high-

resolution understanding is important, such as in fine-grained image classification 

tasks or research diagnostics, Saliency Maps still hold significant value. 

Moreover, we observed that the performance of both methods may vary depending 

on the complexity of the dataset and the architecture of the model. While Grad-CAM 

was more robust on large-scale models like ResNet50, Saliency Maps proved more 

adaptable in simpler datasets like CIFAR-10. 

To further improve the usability and efficiency of XAI techniques, future research 

should explore the following directions: 

• Hybrid XAI Approaches: A combination of Grad-CAM and Saliency Maps 

could leverage their respective advantages, allowing for both clear localiza-

tion and detailed feature importance analysis. 

• User-Centered Interpretability Improvements: Refining explanation methods 

to align with human cognitive processes can enhance trust and usability in 

real-world AI applications. 

• Computational Optimization: The high cost of generating Saliency Maps 

suggests a need for more efficient approximation techniques, potentially us-

ing hardware acceleration. 

• Domain-Specific Explainability Metrics: Current evaluation criteria are often 

subjective; developing quantitative metrics tailored to specific industries 

(e.g., healthcare, finance) could improve the adoption of XAI methods. 
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