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Abstract—This paper presents a machine learning (ML)-based
approach to trip duration prediction using a large-scale mobility
dataset from New York City (NYC) yellow taxi, incorporating
both raw and engineered features to model spatiotemporal and
fare-related factors that influence trip duration. Six regression
models including Linear Regression (LR), Support Vector Re-
gressor (SVR), Random Forest (RF), Gradient Boosting (GB),
XGBoost, and Multi-Layer Perceptron (MLP), were trained
and evaluated using standard metrics namely, Mean Absolute
Error (MAE), Root Mean Squared Error (RMSE), and the
Coefficient of Determination (R2). The RF model achieved the
best performance, with an MAE of 53.83 sec, an RMSE of 143.38
sec, and an R2 score of 0.929. These results demonstrate the
suitability of ensemble tree-based models for predictive analytics
in intelligent transport systems and outline future directions
for enhancing performance using contextual and real-time data
streams.

Index Terms—Big Data, Trip Duration Prediction, Models,
Machine Learning, Urban Mobility

I. INTRODUCTION

Accurate prediction of taxi trip duration is a key enabler for
efficient urban mobility systems. As cities grow increasingly
complex and data-rich, transportation analytics must leverage
scalable, data-driven approaches to provide timely and ac-
curate travel-time estimates. The widespread deployment of
global positioning system (GPS)-enabled services and digital
fare systems has enabled the collection of massive volumes
of trip data, allowing for predictive modelling at an unprece-
dented scale. In this context, ML techniques, particularly
those applied to large-scale spatiotemporal datasets, offer a
compelling path forward for enhancing the responsiveness and
efficiency of urban transport operations [1].

Recent studies have shown that combining raw mobility
data with engineered features such as time-of-day or fare-
per-mile can significantly improve the quality of trip duration
predictions. However, identifying suitable models that can
handle data heterogeneity, non-linearity, and scale is still an
open challenge. Different algorithms offer trade-offs between
accuracy, interpretability, and deployment cost, especially
when used in city-scale applications involving millions of trips
per month [2].

Motivated by these challenges, this work explores the effec-
tiveness of various supervised ML models in predicting taxi
trip duration from real-world NYC yellow taxi data. The goal
is to evaluate how well different regression algorithms perform

under consistent preprocessing conditions and to identify mod-
els that strike the best balance between predictive power and
practical deployment feasibility. The main contributions of this
study are as follows:

• A feature-rich dataset of taxi trips by combining raw
spatial, temporal, and fare-based attributes.

• A systematic comparison of six ML regressors, LR,
SVR, RF, GB, XGBoost, and MLP, using three standard
evaluation metrics (MAE, RMSE, and R2).

• Empirical evidence that RF consistently outperforms all
other models in terms of accuracy, generalization, and
training efficiency, while maintaining robustness and rela-
tively low computational complexity due to parallelizable
training and minimal preprocessing requirements.

The rest of the paper is organised as follows. In Section II,
we describe the dataset and the adopted methodology. Next, in
Section III, we discuss the acquired research results. Finally,
conclusions and future directions are outlined in Section IV.

II. MATERIAL AND METHODS

This section presents the dataset, preprocessing pipeline,
and ML methodology employed for trip duration prediction.
We describe the construction of a feature-rich dataset derived
from real-world urban mobility records. Furthermore, we
detail the regression models and evaluation metrics used to
assess predictive performance under consistent experimental
conditions.

A. Data Preprocessing and Description

The dataset used in this study is sourced from the pub-
licly available records of the NYC taxi in January 2015. It
includes detailed logs of individual yellow taxi trips, each
represented by spatio-temporal information (pickup datetime,
dropoff datetime, and coordinates), trip context (passen-
ger count, trip distance), and fare-related data (fare amount,
tip amount, tolls amount, and total amount). To ensure data
quality, a systematic cleaning process was applied to eliminate
entries with missing or corrupt values, implausible distances,
durations, or geographic coordinates, and zero or negative
fares. After filtering, over 1 million valid trip records were
retained for analysis.

A total of 11 features were used to support regression-
based prediction of trip duration. These included both
raw variables directly extracted from the original records,



such as trip distance, fare amount, passenger count, and to-
tal amount, and engineered attributes derived during prepro-
cessing. The target variable trip duration was computed as the
difference (dropoff datetime - pickup datetime). Additional
features, such as pickup hour, day of week, and is weekend,
were extracted from timestamps to capture temporal patterns,
while log trip distance and fare per mile were introduced
to mitigate skewness and model spatial-economic behavior.
Features not subject to explicit filtering, either because they
were created from clean inputs or inherently valid, were
retained without further modification.

Overall, data preprocessing served a dual purpose. First, to
enforce strict quality control via rule-based filtering (to remove
outliers), and second, to enhance the feature space through
transformation and enrichment. This two-phase approach en-
abled the construction of a robust, ML–ready dataset tailored
to modeling urban trip duration. Table I summarizes the
selected features, the applied filtering rules, their descriptions,
and key statistical properties in the cleaned dataset.

TABLE I
SUMMARY OF APPLIED FILTERING RULES, FEATURE TYPES, AND

STATISTICS FOR SELECTED FEATURES.

Feature Filtering Rule Type Description Statistics / Distribution
trip distance > 0 Numeric (continuous) Total distance of the trip in

miles
2.78 ± 3.33, [0.01–99.9]

fare amount > 0 Numeric (continuous) Fare charged to the passen-
ger (excluding tip)

11.80 ± 9.47, [0.01–360.0]

passenger count 1 ≤ x ≤ 6 Nominal (categorical) Number of passengers in the
taxi

Mode: 1, 70.6%

pickup hour derived Numeric (cyclical
hour)

Hour of the day when
the trip started from
pickup datetime

Mode: 19:00 (7.1%), Evening
hours dominant, Range: [0–23]

tip amount none Numeric (continuous) Additional tip paid by the
passenger

1.19 ± 1.60, [0.0–100.0]

tolls amount none Numeric (continuous) Toll charges incurred during
the trip

0.38 ± 1.41, [0.0–27.5]

total amount none Numeric (continuous) Sum of fare, tip, and tolls 13.38 ± 10.22, [0.01–365.4]
day of week none, derived Nominal (categorical) Day of the week (0=Mon-

day, ..., 6=Sunday) from
pickup datetime

0: 10.65%, 1: 11.76%, 2:
13.97%, 3: 16.39%, 4:
16.27%, 5: 19.05%, 6:
11.91%

is weekend none, derived Nominal (categorical) Binary, indicates whether
the trip occurred on a week-
end if day of week ≥ 5

0: 69.04%, 1: 30.96%

log trip distance none, derived Numeric (continuous) Log-transformed trip
distance
log(trip_distance +
10−5) to avoid log(0)

0.98 ± 0.58, [-4.61–4.60]

fare per mile none, derived Numeric (continuous) Fare normalized by distance 8.06 ± 29.91, [0.0–998.1]
trip duration 60 ≤ x ≤ 7200 Numeric (continuous) Trip duration (sec), used as

the prediction target
740.52 ± 545.21,
[60.0–7150.0]

B. Correlation and Mutual Information Analysis

To assess feature relevance, Pearson correlation coefficients
(PCC) were computed for continuous variables, while mutual
information (MI) was calculated for all features. PCC cap-
tures linear dependence, whereas MI detects both linear and
nonlinear associations and supports categorical inputs [3].

As shown in Table II, fare amount, total amount, and
log trip distance yield the highest PCC values (ρ > 0.791),
confirming their strong linear association with trip duration.
Tip amount and tolls amount show moderate correlation,
while fare per mile exhibits negligible linear dependence
(ρ = −0.064) but a relatively high MI score (0.548), revealing
a nonlinear contribution.

Discrete and temporal features such as pickup hour,
day of week, is weekend, and passenger count were ex-
cluded from PCC but yield non-zero MI values. Notably,
pickup hour (MI = 0.096) captures time-of-day effects not
visible through linear correlation. Overall, MI values ranged

from 0.009 to 1.404, offering a unified scale for evaluating
both dominant and subtle relationships.

The ranking in Table II highlights a consistent pattern:
spatial and fare-related attributes dominate in both linear
and nonlinear relevance metrics, confirming their interpretable
impact on trip duration. Temporal and normalized features,
though ranked lower, may encode context-specific or inter-
action effects not captured by global statistics. Given the
diversity of models considered, all features were retained to
preserve potential nonlinear or conditional contributions across
learners.

TABLE II
PEARSON CORRELATION AND MUTUAL INFORMATION SCORES WITH

RESPECT TO trip duration

Feature PCC (ρ) MI
fare amount 0.859 1.404
total amount 0.834 1.164
log trip distance 0.827 0.696
trip distance 0.791 0.697
fare per mile -0.064 0.548
tip amount 0.400 0.403
tolls amount 0.337 0.302
pickup hour - 0.096
day of week - 0.035
is weekend - 0.026
passenger count - 0.009

C. Machine Learning Models and Evaluation Metrics
This study employs a suite of regression algorithms to

model the relationship between trip attributes and taxi ride
duration. The models encompass linear, kernel-based, ensem-
ble, and neural network methods, each defined by unique loss
functions, learning procedures, and representational assump-
tions.

Let Dtrain = {(xi, yi)}ni=1 be the training dataset, where
xi ∈ Rp represents the feature vector of trip-related at-
tributes (e.g., distance, fare, time) and yi ∈ R denotes the
corresponding trip duration in seconds. Similarly, let Dtest =
{(xj , yj)}mj=1 denote the test set, and ȳ = 1

m

∑m
j=1 yj be the

empirical mean duration. The objective is to learn a predictive
function f : Rp → R such that f(xj) ≈ yj , i.e., the estimated
duration closely approximates the true value. The following
ML models were trained to approximate this mapping function
f .

LR [4] models trip duration as a linear combination of
input features: ŷ = x⊤β + β0. Parameters are estimated by
minimising the residual sum of squares: L(β) = 1

n

∑n
i=1(yi−

x⊤
i β − β0)

2.
SVR [5] is a kernel-based method minimizing prediction

error within an ε-insensitive margin: minw,b,ξ,ξ∗
1
2∥w∥

2 +

C
∑n

i=1(ξi + ξ∗i ) s.t.


yi − ⟨w, ϕ(xi)⟩ − b ≤ ε+ ξi

⟨w, ϕ(xi)⟩+ b− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

where ϕ(·) is a kernel mapping and C controls error tolerance.
RF [6] constructs an ensemble of T decision trees trained on

bootstrapped samples, with random feature subsets. The final
prediction is the mean of all tree outputs: ŷ = 1

T

∑T
t=1 f

(t)(x)



GB [7] builds an additive model in a stage-wise manner:
fM (x) =

∑M
m=1 ρmhm(x) where hm(x) is the m-th weak

learner trained to approximate the negative gradient of the
loss function.

XGBoost [8] is a highly optimized gradient
boosting algorithm using second-order Taylor
approximation of the loss function and regularization:
L(t) =

∑
i

[
gift(xi) +

1
2hift(xi)

2
]
+ Ω(ft) where gi and hi

are first and second-order gradients.
MLP [9] is a feed-forward neural network composed of an

input layer, one or more hidden layers, and an output layer.
Each neuron computes a non-linear activation over weighted
inputs. The network is trained using backpropagation and
stochastic gradient descent to minimize the mean squared
error.

To evaluate the performance of the trained regression mod-
els, three commonly adopted metrics were used: MAE, RMSE,
and the Coefficient of Determination (R2). These metrics
provide complementary insights into the prediction quality,
error sensitivity, and variance explanation of the models [10].

MAE = 1
n

∑n
i=1 |yi − ŷi| quantifies the average magnitude

of the prediction errors without considering their direction. It is
robust to outliers compared to RMSE and retains the same unit
as the target variable. It provides an interpretable measure of
the expected absolute deviation between predicted and actual
values.

RMSE =
√

1
n

∑n
i=1(yi − ŷi)2 penalizes larger errors more

than MAE due to the squaring of residuals, making it more
sensitive to outliers. It is particularly suitable when large
deviations are undesirable, and the goal is to optimize for both
accuracy and consistency. Like MAE, it is expressed in the
same unit as the target variable.

R2 = 1−
∑n

i=1(yi−ŷi)
2∑n

i=1(yi−ȳ)2 represents the proportion of variance
in the dependent variable that is predictable from the inde-
pendent variables. A score of 1 indicates perfect prediction,
while a score of 0 indicates that the model performs no better
than a mean-based baseline. Negative values can occur if the
model performs worse than the baseline. This metric is scale-
independent, facilitating the comparison of model performance
across different datasets.

Together, these metrics provide a robust basis for comparing
model performance from multiple perspectives: average pre-
diction accuracy (MAE), sensitivity to large errors (RMSE),
and explanatory power (R2).

D. Model Training and Optimization

All models were trained using a standardised experimental
pipeline to ensure consistency and comparability across the
selected regression algorithms. The dataset of NYC Yellow
Taxi trips was split into 80% training and 20% testing subsets.
Stratified sampling was not applied, as the target variable—trip
duration—is continuous and not class-based. This random split
preserved the natural distribution of durations and ensured
adequate representation of all trip types across both subsets.

Model training was implemented using scikit-learn
(v1.4.1) and XGBoost (v1.7.6) in Python 3.10 [11]. Ex-

periments were conducted on a workstation with an Intel
Core i7 CPU and 32 GB RAM. For each model, a grid
search with 3-fold cross-validation was performed on the
training set to identify the optimal hyperparameters based
on minimum validation RMSE. After hyperparameter tuning,
the best configuration was selected and retrained on the full
training set, then evaluated on the hold-out test set using MAE,
RMSE, and R2 metrics.

The hyperparameter space explored and the selected con-
figurations are summarized in Table III.

TABLE III
OPTIMAL HYPERPARAMETERS FOR THE ML MODELS.

Model Optimal Hyperparameters
LR Applied without regularization
SVR kernel = rbf, C = 1.0, epsilon = 0.2
RF n estimators=100, max depth=15,

min samples split=2
GB n estimators=100, learning rate=0.1, max depth=5
XGBoost n estimators=100, learning rate=0.1, max depth=5,

verbosity=0
MLP hidden layer sizes=(100,), max iter=300, activa-

tion=’relu’, solver=’adam’

This experimental setup ensured methodological rigor
across all models, enabling a fair and meaningful comparative
analysis of their performance in predicting taxi trip duration.
No feature selection or dimensionality reduction was applied,
as all cleaned and engineered features were retained to pre-
serve information and support generalization.

III. RESULTS AND DISCUSSION

This section presents the experimental results and analyses
the predictive performance of the six ML models. We report
their accuracy in estimating trip duration using standard regres-
sion metrics. The discussion highlights differences in model
behavior, generalization capacity, and suitability for real-world
deployment.

A. Performance Evaluation

The six regression models were evaluated on a hold-out test
set using three standard regression metrics: MAE, RMSE, and
R2. The evaluation results are reported in Table IV.

Among all models, the RF achieved the best predictive
accuracy, with an MAE of 53.83 seconds, RMSE of 143.38
seconds, and an R2 score of 0.929, indicating that it explains
over 92% of the variance in trip duration. This result highlights
the model’s ability to effectively capture non-linear depen-
dencies and complex interactions among the features in the
dataset.

The XGBoost and GB models also performed competitively,
with MAE values of 114.35 and 116.70 seconds, respectively,
and R2 scores above 0.71. These models demonstrate strong
generalization capability and are well-suited for structured
regression tasks involving tabular features.

On the other hand, the LR and SVR models showed
lower performance, with MAE values exceeding 130 seconds
and R2 scores below 0.65. These results reflect the limited



capacity of these models to account for the nonlinear and
context-dependent nature of trip durations in a dynamic urban
environment.

The MLP Regressor achieved intermediate performance,
with an MAE of 127.94 seconds and an R2 score of 0.657.
While capable of modeling non-linear patterns, it was more
sensitive to initialization and required careful tuning.

The observed performance differences suggest that
ensemble-based models, particularly Random Forest and
XGBoost, are better equipped to handle the heterogeneous
and interaction-rich nature of the taxi trip data. The
relatively low errors and high R2 scores achieved by these
models indicate their suitability for real-world deployment
in applications such as travel-time estimation, taxi fleet
management, and route optimization.

TABLE IV
EVALUATION RESULTS OF THE ML MODELS.

Model MAE (s) RMSE (s) R2

LR 131.23 189.67 0.646
SVR 157.88 216.45 0.584
RF 53.83 143.38 0.929
GB 116.70 171.12 0.715
XGBoost 114.35 168.40 0.722
MLP 127.94 186.02 0.657

B. Interpretability and Deployment Considerations

The RF model clearly outperformed all other approaches,
offering the highest accuracy and generalization ability with
minimal tuning. Its ensemble architecture effectively captured
complex relationships between spatial, temporal, and eco-
nomic features, making it a strong candidate for practical
deployment in mobility analytics and intelligent transportation
systems. The model’s ability to handle feature heterogeneity
and its built-in resistance to overfitting contributed to its
dominance across all evaluation metrics.

Other ensemble methods, such as XGBoost and GB, also
performed competitively, though with higher training complex-
ity and slightly lower predictive power. These models remain
viable for deployment scenarios that can accommodate addi-
tional optimization overhead and require fine-grained control
over model regularization. LR and SVR underperformed due
to their limited flexibility in modelling nonlinear interactions.
While computationally efficient and interpretable, their accu-
racy is insufficient for operational scenarios requiring real-time
travel-time predictions at the city scale. The MLP regressor,
despite its theoretical capacity for non-linear learning, showed
marginal improvement over linear models. Its sensitivity to
hyperparameter tuning and lower stability make it less suitable
for mid-scale, tabular mobility datasets without extensive
optimization.

Overall, ensemble tree-based models, especially RF, offer
the most favourable balance between accuracy, robustness, and
ease of deployment for big data regression tasks in urban
mobility domains.

IV. CONCLUSION

This study investigated the application of supervised ML
models to predict taxi trip duration using a large-scale, real-
world mobility dataset from New York City. After a rigorous
preprocessing and feature engineering pipeline, six regression
models, namely LR, SVR, RF, XGBoost, GB and MLP were
trained and evaluated using standard metrics: MAE, RMSE,
and R2. The experimental results demonstrated that ensemble-
based methods, particularly RF, significantly outperformed
linear, kernel-based, and neural models in terms of both
accuracy and robustness.

The findings confirm that tree-based ensembles are well-
suited for modeling structured urban transportation data, of-
fering a favorable balance between predictive performance
and deployment feasibility. Simpler models, although more
interpretable and computationally efficient, failed to capture
the non-linear dynamics of urban mobility patterns. The study
also highlighted practical trade-offs between model complex-
ity, training stability, and generalization capacity.

Future research directions include integrating external data
sources, such as weather conditions, public events, and real-
time traffic feeds, to further enhance prediction accuracy. Ad-
ditionally, exploring model distillation, interpretable surrogate
modeling, and reinforcement learning for adaptive routing and
dynamic pricing represents promising avenues for operational
deployment in smart transportation systems.
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