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Human-Computer Interaction in the Big Data Era: Systems, Cognition, and
Interactive Intelligence

The convergence of Human-Computer Interaction (HCI) and Big Data has introduced new demands for scalability, responsiveness, and
cognitive alignment in interactive systems. As data complexity grows and machine learning (ML) models become central to decision-
making, user interfaces (UIs) must evolve from static dashboards to dynamic, adaptive environments that support real-time exploration,
transparency, and trust. This survey offers an integrative analysis of recent advances at the intersection of HCI and Big Data, focusing
on four core dimensions. First, we synthesize scalable visual interaction techniques that address overplotting, high-dimensional
embedding, and cross-modal coordination. Next, we examine system architectures that prioritize interaction responsiveness through
adaptive pipelines, decentralized execution, and interface-centric data shaping. Also, we explore cognitive modeling strategies for
intent inference, cognitive load detection, and adaptive composition of views. Finally, we evaluate mechanisms for explainability and
trust, including interactive explanations, selective transparency, and auditable system behaviors. Together, these contributions define a
design agenda for future systems that are not only data-intensive but also human-aware, accountable, and ethically aligned.

CCS Concepts: • Human-centered computing → Visualization systems and tools; • Computing methodologies → Cognitive

science; Machine learning; • Applied computing → Computer-assisted instruction; • Information systems → Data analytics; Big
data systems.

ACM Reference Format:
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sure to enter the correct conference title from your rights confirmation email (CHIGREECE ’25). ACM, New York, NY, USA, 13 pages.
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1 Introduction

The proliferation of data in both volume and complexity has fundamentally altered the landscape of HCI. As users
increasingly engage with vast, heterogeneous, and dynamically evolving datasets, traditional interaction paradigms fail
to support the interpretive, exploratory, and decision-making needs of modern data-intensive tasks. At the same time,
Big Data infrastructures—designed for scalability, throughput, and automation—often lack mechanisms to accommodate
human cognition, adaptive interaction, or interface-level reasoning. The intersection of these domains demands a
shift from isolated system optimisation to holistic, user-aware data environments that integrate visual, architectural,
cognitive, and ethical dimensions into their core design [23, 73].

This transformation is especially urgent as analytic systems incorporate ML models whose predictions carry
operational, clinical, or societal consequences. In such settings, interactivity cannot be reduced to graphical UI (GUI)
design or usability heuristics—it must encompass latency resilience, intent inference, and trust calibration, all integrated
across distributed architectures. Building effective interfaces in Big Data environments thus requires coordinated
progress in data visualisation, systems engineering, cognitive modelling, and algorithmic explainability. However,
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2

existing research remains fragmented, with few works offering a unified perspective on how HCI can evolve to meet
the challenges of Big Data systems [28, 34].

While significant technical progress has been made in visual analytics, distributed systems, and human-centred
artificial intelligence (AI), the absence of a cohesive framework connecting HCI principles to Big Data architecture limits
both system usability and human interpretability. Current approaches often treat interactivity as an ancillary concern,
bolted onto infrastructures optimised for scale rather than engagement. This has led to a proliferation of powerful
tools in computation, but has been weak in terms of transparency, adaptability, and cognitive support. Addressing this
disconnect requires a rethinking of design priorities—placing the user not at the edge but at the centre of the Big Data
pipeline.

This survey offers a structured and integrative overview of current advances at the intersection of HCI and Big
Data. It defines a multi-layered framework that connects visual interaction, system architecture, cognitive modelling,
and interpretability, highlighting both state-of-the-art methods and open research challenges. Specifically, the present
survey:

• Synthesises advances in scalable visual interaction techniques, including multiscale encoding, progressive
rendering, and cross-view coordination for high-dimensional data exploration.

• Examines system architectures designed to support real-time interactivity, such as adaptive query pipelines,
decentralised execution frameworks, and interface-centric data shaping.

• Analyses models for cognitive adaptation and user intent inference, highlighting how systems modulate
complexity and structure based on user behaviour and cognitive load.

• Explores mechanisms for explanation and trust, covering interactive model introspection, selective transparency,
and compliance-aware auditability in human-AI systems.

The remainder of this paper is structured as follows. Section 2 presents scalable visual interaction techniques.
Section 3 discusses human-centered system architectures. Section 4 explores cognitive adaptation and user modeling.
Section 5 examines explainability, trust, and auditability. Section 6 provides a cross-cutting discussion. Finally, Section 7
concludes the survey and outlines future directions.

2 Visual Interaction Techniques in Data-Intensive Interfaces

As data volumes and dimensionality grow, interactive visualizations must scale while preserving clarity, responsiveness,
and semantic coherence. This section examines techniques that enable users to effectively navigate, interpret, and
manipulate large-scale data through visual and interaction-driven mechanisms.

2.1 Scalable Abstractions and Density-Preserving Visual Encoding

Scalable visualization in Big Data systems requires techniques that preserve structural and statistical properties while
minimizing visual overload. Direct rendering of raw data quickly leads to overplotting, aliasing, and perceptual saturation.
Methods such as kernel density estimation, hexagonal binning, and adaptive sampling summarize dense regions while
maintaining statistical variance, enabling users to detect macro-patterns—clusters, gradients, anomalies—without
obscuring fine-grained structures [60].

High-dimensional data introduces additional challenges, as visual encoding must project complex manifolds into lim-
ited 2D or 3D space. Techniques like principal component analysis (PCA), t-distributed stochastic neighbor embedding
(t-SNE), and uniform manifold approximation and projection (UMAP) facilitate this but often introduce distortions
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Human-Computer Interaction in the Big Data Era: Systems, Cognition, and Interactive Intelligence 3

and reduce interpretability under interaction. To mitigate these effects, hybrid methods now embed semantic over-
lays—glyphs, colour encodings, or domain cues—within reduced-dimensional plots, preserving both geometry and
context for richer interpretation [18, 33].

Maintaining density-aware representation across zoom levels further complicates visualization. Multiscale frame-
works, such as Nanocubes and imMens, enable seamless transitions between overviews and detail by using pre-
aggregated spatial-temporal tiles. These are not merely animated transitions but computed recompositions that reag-
gregate data on-the-fly, requiring precise interpolation strategies to prevent structural artefacts or misrepresentation
[29, 30].

2.2 Real-Time Interaction Under Latency Constraints

Interactive analysis of large-scale datasets depends on maintaining a tight perceptual loop between user actions and
system feedback. While users expect latency below 200 milliseconds, operations on distributed or disk-resident data
frequently exceed this threshold. To bridge this gap, latency-aware interfaces employ progressive, approximate, and
predictive strategies that decouple interactivity from full computation [4, 54].

Progressive computation delivers immediate partial results—refining them as more data is processed—making it
effective for exploratory tasks like clustering or top-k queries. Systems such as Profiler and SampleAction dynamically
tune computation precision based on interaction speed and viewport changes, prioritizing responsiveness over exactness
[51].

Asynchronous designs further buffer interaction from backend delays through task queues, speculative execution, and
non-blocking rendering. Interaction-aware schedulers use behavioral logs to prefetch likely following states, optimizing
perceived latency. These approaches tightly couple frontend event models with backend execution graphs to maintain
interface fluidity under load [78].

To preserve interpretability, latency-tolerant systems also integrate uncertainty visualization techniques—such as blur
or confidence shading—that communicate the provisional status of results. These cues help manage user expectations
and support iterative reasoning even under incomplete computation, ensuring functional continuity and cognitive
alignment [55].

2.3 Multi-Modal and Multi-View Exploration Interfaces

In exploratory analysis of heterogeneous datasets, no single view suffices to represent the underlying semantics. Multi-
view systems address this by rendering coordinated perspectives—temporal, spatial, categorical—and synchronizing
interactions across them. Shared interaction models and consistent synchronization ensure that filters, selections, and
highlights propagate meaningfully between views [41, 52].

Coordination can be tight or loose: tight coupling links views directly (e.g., scatterplot–table selection), while
loose coupling allows more interpretive flexibility. Both require interoperable data schemas and consistent interaction
grammars, especially in modular or web-based environments [58].

Multi-modal integration further complicates coordination across time-series, logs, and text. Issues like desynchroniza-
tion, encoding mismatches, and semantic divergence are addressed through time warping, co-indexing, or embedding
alignment. Mediation layers help unify semantics for cross-type exploration [27].

Adaptive view composition enhances usability by dynamically reorganizing layout and visibility according to user
intent. Techniques such as pruning, rearrangement, and attention-aware prioritization optimize space and focus, often
guided by interaction history, task context, or gaze-based inference [50].
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4

Table 1 summarizes principal categories of visual interaction techniques that address the challenges of scalability,
latency, and interpretability in Big Data environments. Each strategy integrates computational optimization and adaptive
interface design to enable efficient exploration, preserve semantic continuity across interaction scales, and support
real-world decision-making under high-volume, high-velocity data streams, as illustrated through practical use cases.

Table 1. Visual Interaction Techniques for Scalable and Responsive Big Data Interfaces with Example Use Cases.

Visualization
Strategy

Core Methods Interaction Pur-
pose

Design and Perfor-
mance Criteria

Example Use Cases

Scalable
Encoding

Hex binning, PCA,
UMAP, t-SNE with
semantic overlays

Reduce clutter and
preserve structure
in dense or high-
dimensional data

Clarity, pattern visibil-
ity, structural preserva-
tion

Large-scale fraud detec-
tion; High-dimensional
genomics analysis

Latency-Aware
Interaction

Progressive rendering,
approximate queries,
speculative prefetching

Maintain respon-
siveness during
computation or data
retrieval

Response time, per-
ceived fluidity, early-
stage accuracy

Real-time traffic mon-
itoring; Interactive
recommendation explo-
ration

Multi-View
Coordination

Brushing/linking,
shared filters, synchro-
nized selections

Enable cross-view
exploration of di-
verse attributes

Task efficiency, accu-
racy, coordination sta-
bility

Urban mobility analyt-
ics; Cross-linked sales
and demographics ex-
ploration

Multi-Modal Inte-
gration

Time alignment, co-
indexing, semantic
mappings across modal-
ities

Unify exploration
across text, spatial,
and temporal data

Interpretive consis-
tency, integration
accuracy

Patient health record
timelines; Cyber-
security incident
investigations

Multiscale
Navigation

Pre-aggregated tiles, hi-
erarchical data cubes

Seamlessly move be-
tween overview and
detail

Zoom latency, semantic
continuity, interaction
smoothness

Exploration of satellite
imagery; Temporal
trends in social media
analysis

3 Human-Centered System Architectures for Big Data Analytics

Designing interactive Big Data systems requires architectural models that prioritize responsiveness, flexibility, and user-
centric data access. This section explores system-level strategies that support dynamic queries, distributed processing,
and synchronized interface behavior.

3.1 AdaptiveQuery Pipelines for Interaction-Driven Workflows

Traditional Big Data pipelines are optimized for static queries and batch throughput, but exploratory analytics demand
adaptive pipelines capable of responding to dynamic, user-driven changes in filters, parameters, and aggregations.
These pipelines must evolve in real time to accommodate iterative workflows [62].

To achieve this, systems employ fine-grained execution graphs composed of modular operators that can be reordered,
rescheduled, or recomputed as the interface state evolves. Strategic materialization and caching localize recomputation,
minimizing latency. For example, modifying a filter triggers only partial query re-evaluation, guided by query-aware
lineage tracking that preserves transformation dependencies across interface components [32, 74].

Advanced systems further integrate learning-based optimizations. Reinforcement learning (RL) and multi-armed
bandit algorithms anticipate query paths by modeling user interaction patterns, dynamically adjusting operator
Manuscript submitted to ACM
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placement and resource allocation. These mechanisms treat interaction as a continuous feedback signal, yielding
pipelines that are not only computationally efficient but semantically aligned with evolving analytic intent [56, 69].

3.2 Decentralized Architectures for Scalable Interface Responsiveness

As data infrastructures span cloud, edge, and on-premises nodes, centralized architectures face latency and bandwidth
limitations that impair interactivity. To address this, human-centered systems increasingly adopt decentralized architec-
tures that shift computation closer to data sources and UIs. This shift reflects not just a network optimization, but a
rethinking of when and where computation should occur to sustain interactive responsiveness [1, 3].

Edge-side processing handles pre-aggregation, filtering, and transformation before transmission, significantly reduc-
ing the data volume, especially in high-frequency domains such as sensor analytics and financial systems. Concurrently,
client-side computation via WebAssembly or in-browser engines enables lightweight querying and visualization without
relying on the server. Together, these decentralisations optimise both data ingress and interaction loops [59, 68, 71].

Distributed coordination is maintained through partition-aware schedulers and the use of eventual consistency
models. While strong consistency is vital in transactional systems, exploratory analytics tolerate staleness in favor
of responsiveness. Dynamic query routing further adapts to node locality, system load, and user priority, ensuring
efficient task allocation. These design patterns collectively enable fluid interaction across geographically dispersed and
bandwidth-limited environments [35, 63].

3.3 Middleware for State Synchronization and Interaction Fidelity

Maintaining a consistent interaction state is critical in multi-view, multi-user, and real-time analytics. Middleware serves
as the coordination layer between frontends and distributed backends, ensuring state synchronization and managing
communication across components [8].

Modern middleware relies on reactive dataflows, where user actions (e.g., selections, transformations) trigger event
propagation to shared state stores. To maintain correctness under concurrency and latency, techniques like operational
transformation and conflict-free replicated data types (CRDTs) handle rollback, ordering, and resolution [26].

Beyond synchronization, middleware logs interactions, task history, and analytic provenance, supporting session
replay, user modeling, and layout reuse. Scalability is achieved through event partitioning, pub-sub messaging, and
schema abstraction, enabling modular and extensible systems that support dynamic dashboards, plugin visualizations,
and cross-platform interaction [31, 72].

3.4 Interface-Centric Data Shaping and Schema Flexibility

Rigid schemas and static data models pose a significant barrier to fluid interaction in Big Data systems, especially in
exploratory settings where user queries evolve dynamically. Traditional schema-first approaches require predefined
structures and aggregations, limiting adaptability. Interface-centric data shaping overcomes this by treating the UI as a
primary consumer of data, dynamically adapting schemas based on visualization context and user interaction state
[13, 67].

Central to this paradigm is schema-on-read, which enables flexible interpretation of semi-structured or nested data
without enforcing fixed relational models. Systems like Apache Drill and Presto support on-the-fly schema inference
and polymorphic views—such as pivot tables, graph traversals, or JSON (JavaScript Object Notation) expansion—directly
aligned with interactive components [7, 45].
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6

Responsiveness is further enhanced through dynamic view generation, which utilizes user-defined lenses to reshape
or annotate data streams during rendering. These lenses operate within just-in-time (JIT) query planners optimized for
interface responsiveness rather than full backend coverage. Declarative UI grammars, like Vega or Altair, specify the
data structure required by each visualization, ensuring semantic alignment with user intent [15, 42].

To support cross-source integration, interface-centric architectures include schema mapping layers or ontology
mediators that reconcile naming conflicts, data types, and granularity levels. These mediators enable the seamless
merging of heterogeneous datasets without the need for extensive extract, transform, load (ETL) or manual schema
engineering, allowing for real-time exploration across previously incompatible domains [5, 21].

Table 2 summarizes key architectural components that enable responsive, adaptive, and consistent interaction in
Big Data environments. Each module integrates backend computation with user-facing interfaces, balancing latency,
scalability, and dynamic data alignment to sustain fluid exploratory workflows.

Table 2. Human-Centered Architectural Components for Interactive Big Data Systems with Representative Frameworks.

Architectural
Module

Technical Mechanisms Role in Interaction Evaluation and Inte-
gration Factors

Representative
Frameworks

Adaptive Query
Pipelines

Incremental execution,
operator caching, lineage
tracking, RL planners

Dynamic recomputa-
tion based on interac-
tion changes

Latency, recomputation
scope, UI reactivity

Apache Drill, Dat-
aPolaris

Decentralized
Execution

Edge/cloud workflows,
WebAssembly, partition-
aware routing

Reduce delay and
balance load across
sources

Round-trip time,
throughput, coordina-
tion effort

Apache Druid,
EdgeDB

Middleware
Synchroniza-
tion

Reactive dataflows, op-
erational transformation,
CRDTs, pub-sub models

Maintain consistent
interaction state
across views or users

Update latency, session
coherence, modularity

Firebase, Fluid
Framework

Interface-
Centric Shap-
ing

Schema-on-read, JIT
views, semantic media-
tion

Align data access with
interface and task
needs

Query success rate,
adaptation speed,
maintenance cost

Presto, Drill Fluid
Query

4 Cognitive Adaptation and User Modeling in Interactive Big Data Systems

As users engage with complex data environments, systems must adapt to the cognitive demands and evolving analytical
behavior. This section examines techniques for inferring user intent, detecting cognitive load, and personalising
interfaces to support effective and sustained interaction.

4.1 Intent Inference and Interaction Profiling

Understanding user intent in exploratory analytics is fundamentally different from traditional retrieval tasks. Users
often begin without fixed goals and refine hypotheses iteratively, making intent difficult to capture explicitly. Systems
must infer intent from behavioral cues such as navigation paths, mouse movement, view changes, and interaction
timing [49].

Modern systems utilize probabilistic models derived from interaction logs. Techniques like inverse RL (IRL), Long
short-term memory (LSTM), and Transformers detect evolving patterns and focus shifts, producing session-specific
profiles that adapt in real time [46, 76].

Intent modeling supports more than passive analysis—it enables interfaces to behave as proactive collaborators.
Inferred goals guide data prioritization, ranking, and content preloading. For instance, repeated focus on anomalies can
trigger prefetching or visual emphasis on outlier patterns [57].
Manuscript submitted to ACM
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Importantly, intent inference must remain interpretable and user-correctable. Systems should explain adaptive
behaviors and allow users to confirm or revise inferred goals, ensuring alignment with expectations and preserving
trust in exploratory workflows [79].

4.2 Adaptive Interface Composition Based on Cognitive Metrics

While intent inference aligns systems with user goals, cognitive adaptation targets the user’s ability to process
information in real-time. In interactive Big Data environments, cognitive load fluctuates rapidly in response to data
complexity, task novelty, and time pressure. Ignoring these dynamics risks user fatigue, stalled decision-making, and
analytic errors. Adaptive interfaces respond by regulating visual complexity and interaction tempo based on real-time
cognitive signals [17, 44, 53].

Load estimation draws on interaction metrics, such as dwell time, re-query frequency, and click entropy, as well as
advanced systems that incorporate physiological inputs, including eye tracking or electroencephalogram (EEG) data.
These signals are processed through probabilistic or deep learning models to infer mental effort non-invasively. When
overload is detected, the interface adapts by simplifying views, deferring updates, or emphasising relevant content,
guided by policies that prioritise usability and cognitive stability [2, 36, 40].

Personalization enhances this process by modeling user-specific thresholds and behaviors over time, integrating both
implicit cues and explicit feedback. However, adaptive systems must remain predictable: abrupt or excessive changes
can disrupt flow and reduce trust, particularly in collaborative settings with varying cognitive baselines. Effective
adaptation thus requires stability-aware strategies that ensure continuity, fairness, and user control [6, 70].

Table 3 outlines key cognitive adaptation strategies that enable interactive Big Data systems to infer user states
and personalize interface behavior dynamically. Each approach integrates user modeling techniques to optimize task
efficiency, reduce cognitive load, and maintain adaptability across diverse interaction contexts.

Table 3. Cognitive Adaptation and User Modeling in Interactive Big Data Systems with Application Contexts.

Cognitive Focus Modeling Techniques Adaptation Goal Assessment and De-
ployment Considera-
tions

Application Contexts

Intent Inference IRL, LSTM behavior mod-
els, session embeddings

Anticipate user goals
and analytic direction

Prediction accuracy,
alignment with task
flow

Interactive search assis-
tants, adaptive recom-
mender systems

Cognitive Load
Detection

Dwell time, gaze, EEG,
zoom-back frequency

Detect mental strain
and adapt complexity

Task performance, sen-
sor feasibility, privacy

Real-time learning plat-
forms, adaptive dash-
boards

Interface Adaptation View simplification,
attention-aware layouts

Regulate interface
density based on
cognitive state

Usability gains, error re-
duction, adaptation sta-
bility

Context-aware mobile
apps, Virtual Reality
training environments

Personalization Interaction history, con-
tinuous preference learn-
ing

Tailor the interface
to the individual and
context

Long-term user satisfac-
tion, overfitting risks

Personalized e-
commerce interfaces,
smart assistants

5 Explainability, Transparency, and Trust in Human-Centered Analytics

As ML models become central to Big Data analytics, interfaces must make their behavior understandable, trustworthy,
and accountable. This section explores methods for visual explanation, trust calibration, and auditability that support
user comprehension and regulatory alignment.
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5.1 Interactive Visual Explanation of Model Decisions

Explainable interfaces convert opaque model behavior into interpretable and interactive representations. In Big Data
systems, this requires both global logic and local decision paths to be embedded in dynamic workflows. Visual
methods—such as saliency maps, LIME (Local Interpretable Model-agnostic Explanations) and SHAP (SHapley Addictive
exPlanations) plots, and decision path overlays—are core tools for analytical reasoning, not peripheral aids [38, 48].

Unlike static outputs, interactive explainers support what-if analysis, allowing users to explore input variations and
model sensitivity in real-time. Altering patient attributes in a clinical profile may have direct and indirect effects on a
risk score, which is critical in domains such as healthcare or finance [11].

Modern systems increasingly combine visuals with domain-aware narrative scaffolds, delivering explanations that
are tailored to different expertise levels. These hybrid interfaces bridge perceptual intuition and semantic clarity [19].

To remain usable, explanation tools must manage complexity. Multi-layered designs reveal information incrementally,
adapt to user intent and expertise, and maintain a balance between depth and cognitive load, essential for transparent,
scalable AI systems [65].

5.2 Trust Calibration Through Selective Transparency

Trust in analytic systems is dynamic, evolving through interaction based on system behavior, task complexity, and user
expertise. Users must rely on system outputs when appropriate, but remain critical in the face of uncertainty or bias.
Selective transparency supports this by exposing model rationale and confidence only when relevant, balancing trust
with vigilance [9, 39].

Calibration often beginswith the visualisation of uncertainty, using cues such as colour gradients or shaded boundaries
to frame outputs probabilistically. This helps users recognise prediction limits and avoid overinterpreting results [77].

Transparency should adapt to context: high-stakes tasks require detailed explanations (e.g., feature importance,
ambiguity handling), whereas exploratory scenarios may benefit from more concise summaries. Systems must adjust
disclosure depth based on user behavior, task sensitivity, and cognitive load [25].

A key challenge is automation bias, where overconfidence arises from overly assertive outputs. Solutions include
confidence disclaimers, model override options, and visibility into model provenance—all of which help users form
accurate mental models of reliability [66].

Ultimately, trust calibration must be evaluated through outcomes: improved decision quality, increased user en-
gagement, and appropriate scepticism. Trust matters most when it reinforces system validity and fosters responsible
human-AI collaboration [47].

5.3 Auditable and Compliant Interaction Logging

In regulated domains, explainability must extend beyond user understanding to support oversight, traceability, and legal
accountability. This requires tamper-proof logs that record user actions, model outputs, and data access in verifiable,
auditable formats. These logs serve not only as evidence but as interactive tools for reconstructing workflows, validating
compliance, and contextualising decisions [24, 37].

Technically, auditability depends on immutable structures, such as Merkle trees, blockchain, or append-only databases,
that ensure cryptographic integrity and non-repudiation. This is particularly critical in sensitive sectors such as
healthcare or finance, where disputes may arise from specific analytical decisions [22, 64].
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Interfaces present these logs via tailored views: timeline replays for analysts, policy reports for compliance teams,
and execution traces for developers. Modern frameworks increasingly embed automated checks that flag regulatory or
ethical violations, such as biased model behaviour or unauthorised data use [75].

Notably, auditability must support both algorithmic and human interpretation. Without intelligible interfaces, raw
logs fail to ensure transparency. Co-designing audit and explanation layers is essential to make Big Data systems not
just functional but trustworthy and accountable [61].

Table 4 summarizes principal mechanisms designed to foster model transparency, user trust, and ethical accountability
in Big Data systems. Each mechanism is characterized by its interaction objectives, evaluation criteria, and integration
with practical toolkits that support interpretable and compliant user experiences.

Table 4. Explainability, Transparency, and Trust Mechanisms in Big Data Interfaces with Supporting Toolkits.

Trust-Enabling
Mechanism

Interface Ap-
proaches

User-Oriented Func-
tion

Evaluation and Ethi-
cal Implications

Supporting Toolkits

Visual Explanations SHAP, LIME, saliency
maps, what-if tools

Clarify model behavior
and decision logic

Explanation accuracy,
user insight, cognitive
load

SHAP Python Library,
Google What-If Tool

Trust Calibration Confidence previews,
adaptive transparency,
uncertainty cues

Align user trust with
system reliability

Trust scores, rejection
rates, overconfidence
risk

TrustyAI Toolkit, Ten-
sorFlow Uncertainty Es-
timation

Auditability and
Compliance

Immutable logs, exe-
cution tracing, policy
alerts

Ensure traceability and
legal accountability

Audit completeness, us-
ability, regulatory fit

Hyperledger Fabric,
Blockchain Auditing
Frameworks

Multi-modal Deliv-
ery

Visual + textual narra-
tives, domain-specific
overlays

Support diverse users
and tasks through ex-
planation flexibility

Comprehension rate,
domain alignment,
clarity

IBM AI Explainability
360, ELI5

6 Discussion

The analysis presented in this survey highlights the evolving convergence of HCI and Big Data systems while uncovering
persistent gaps in the integration of interface responsiveness, cognitive adaptation, and trust-aware mechanisms.
Although significant advances have been made in individual areas, such as visual interaction, system architectures,
cognitive modeling, and explainability, the coherent orchestration of these dimensions into adaptive, human-centered
systems remains largely underexplored.

Existing surveys (Table 5) predominantly frame Big Data challenges in terms of infrastructure, storage, and batch
analytics. For instance, [16] emphasizes the scalability of data acquisition and processing, without addressing the
real-time needs of user interaction. Similarly, [14] focuses on visualization technologies but omits architectural strategies
for sustaining latency resilience or mitigating cognitive overload during exploration. In contrast, the present work
repositions the user as an active agent, synthesizing advances that enable real-time, interpretable, and cognitively
adaptive interfaces for data-intensive environments.

While [43] introduced the conceptual foundation of Human-Data Interaction (HDI), the discussion remained largely
theoretical. This survey operationalizes HDI principles by grounding them into deployable techniques such as progres-
sive intent modeling, latency-tolerant multiscale visualizations, and semantic synchronization across heterogeneous
modalities. This technical translation addresses a critical gap absent in prior works.

Moreover, whereas surveys like [10] and [12] concentrate on visual scalability in specific contexts (large displays,
Linked Data exploration), they fall short in addressing broader systemic challenges, such as cross-modal consistency
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and cognitive workload regulation. Our contribution explicitly expands the scope to include multi-modal coordination,
adaptive system behavior, and trust calibration, all of which are embedded directly into the interaction loop.

The work of [20] brings explainability and ethics into the discussion of ML-driven Big Data systems; however, it
treats explainability as an external analytic function rather than an embedded, user-driven interaction capability. In
contrast, this survey focuses on how explainability mechanisms must be natively integrated within interactive systems
to sustain informed decision-making and ethical compliance under real-time conditions.

Collectively, the findings advocate a paradigm shift: from Big Data systems that prioritize throughput and passive
visualization to systems that actively anticipate user intent, dynamically adapt cognitive complexity, and maintain
explainability as a continuous, user-governed process. Future Big Data interfaces must integrate architectural flexibility,
mental awareness, and ethical transparency not as auxiliary features, but as intrinsic, foundational design principles
critical for sustainable, human-centered intelligence.

Table 5. Survey Articles on Human-Computer Interaction in the Big Data Era.

Ref. Description

[16] A survey on Big Data covering definitions, applications in business, society, and science, and challenges
such as data capture, analysis, and visualization. Emphasises the rise of data-intensive science as a new
research paradigm.

[43] Introduces HDI as a new interdisciplinary field. Focuses on user agency, legibility, and negotiability in data
systems. Emphasizes ethical and societal concerns over data use.

[14] Surveys Big Data visualisation tools, emphasising the strategic role of visualisation in analytics. Discusses
functional and non-functional characteristics of primary tools and their challenges with scale and hetero-
geneity.

[20] Explores the integration of MLwith Big Data, highlighting applications, challenges (e.g., scalability, privacy),
and future directions. Stresses ethical implications and interpretable models.

[12] It focuses on visual exploration techniques on the web of Linked Data. Analyzes state-of-the-art methods
and identifies scalability and user interaction as key challenges in large-scale semantic datasets.

[10] Surveys interactive visualisation on large, high-resolution displays. Covers benefits, interaction techniques,
empirical findings, and applications, highlighting challenges in collaborative data analysis at scale.

7 Conclusion

As Big Data systems increasingly drive critical decisions, HCI plays a key role in ensuring transparency, adaptability,
and cognitive alignment. This survey examined four interconnected dimensions—scalable visual interaction, responsive
architectures, cognitive modelling, and explainability—that link system performance with human reasoning and trust.

Visual methods address scale through progressive rendering and abstraction, while adaptive architectures ensure
responsiveness via decentralisation and flexible schemas. Cognitive models infer intent and manage complexity, and
trust mechanisms reveal model behaviour through interactive, auditable explanations. Together, these elements form
the basis for truly human-centred Big Data systems.

Future research must integrate real-time cognitive signals (e.g., gaze, speech, physiology) into scalable, privacy-
preserving adaptive systems. Collaborative analytics will require user models that adjust to shared and divergent goals.
Explainability should evolve into domain-aware, long-term trust frameworks that are tailored to specific domains. As
generative models advance, systems must strike a balance between user agency and algorithmic control. Addressing
these issues will define the next wave of cognitively and ethically aware HCI systems.
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