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Abstract. Credit card transactions, especially when linked to smart 
devices and the IoT ecosystem in general, are one of the drivers of con-
temporary digital economy as well as a major indicator of the overall 
financial activity. As such as well as for a plethora of other reasons it 
is imperative that fraudulent transactions be efficiently and reliably dis-
covered. Because of their interconnected and time-dependent nature, a 
graphic representation not only is convenient, but also lends itself to 
machine learning strategies. To this end one viable approach is to con-
struct a framework consisting of three steps. First, at each vertex a vec-
tor containing first and higher order attributes is embedded, then ver-
tices are clustered, and finally vertex classification is done. As a concrete 
example three graph partitioning algorithms were selected, namely kNN, 
DBSCAN, and spectral clustering, whereas vertex clustering has been 
performed through logistic regression. The experimental results corrobo-
rate the efficiency of the abovementioned framework and are encouraging 
for the development of more higher order fraudulent transaction methods 
towards a more robust and highly reliable digital economy. 

Keywords: Graph clustering · DBSCAN · kNN · Higher order data · 
Logistic regression · Graph machine learning · Graph queries · Graph 
databases · Neo4j · Cypher · Fraudulent transactions · Digital economy 

1 Introduction 

With the worldwide growth of digital economy credit card and electronic pay-
ments are becoming increasingly importance for a number of reasons including 
speed, ease of access, and traceability. However, this also creates new attack 
vectors such as identity theft and fraud. To counter the latter, systems mining 
the vast ocean of credit card transaction data have already been developed and 
deployed. The analytics of the latter depend heavily on the representation of the 
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transaction data as this dictates the nature and complexity of the subsequent 
processing. Moreover, because of the inherently flexible and distributed nature of 
the information stored in graphs, a plethora of machine learning (ML) strategies 
can be applied, each tailored to the semantics of the underlying domain. 

The principal motivation behind this work is the growth of the significance 
of electronic payments in digital economy as stated earlier and consequently 
their safety is paramount for the robustness thereof. Given that in conjunction 
with the smart devices and the IoT ecosystem such payments offer a convenient 
and safe alternative to physical currency, it becomes evident that sagefuarding 
electronic payments is paramount to a robust and reliable digital economy. 

The primary research contribution of this conference paper is a modular 
graph theoretic framework for discovering fraudulent credit card transactions 
with a linear architecture consisting of the following three steps. 

– At each vertex is created a vector containing first and higher order attributes 
pertaining to both the structure and the function of the transaction graph. 

– Then vertices are clustered in a space of a higher order dimension determined 
by the number of attributes to isolate various card transaction types. 

– Finally a classifier operates on the clusters to determine which ones are most 
likely to contain fraudulent transactions. 

The remainder of this work is structured as follows. In Sect. 2 the recent sci-
entific literature regarding graph mining and graph signal processing (GSP) are 
briefly overviewed. In Sect. 3 the proposed graph processing framework for dis-
covering fraudulent transactions is described, while in Sect. 4 the results obtained 
from it are presented. Possible future research directions are explored in 5. Tech-
nical acronyms are explained the first time they are encountered in the text. Also 
the terms attribute and feature are used interchangeably throughout the text. 
Finally, the notation of this work is summarized in Table 1. 

Table 1. Notation synopsis. 

Symbol Meaning First in
�= Definition or equality by definition Eq. (5) 
Γ (·) Vertex neighborhood Eq. (4) 
{s1, . . . , sn} Set with elements s1, . . . , sn Eq. (5) 
|·| Set cardinality functional Sect. 3
‖·‖ Matrix or vector norm Eq. (12) 
I Identity matrix Eq. (9) 
logit (·) Binary logit function Eq. (14) 

2 Previous Work 

Graph mining is a vast research field [ 18, 19, 22] which currently focuses on diverse 
topics such as power laws describing graphs [ 38], efficient subgraph mining [ 27],
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community discovery through ML [ 32] and autoencoders [ 36], Boolean semiring 
factorization [ 14], and regularized nonnegative matrix factorization [ 3], adjacency 
matrix factorization [ 25], graph approximation through polar factorization [ 11], 
link prediction [ 21], vertex classification [ 37], and graph clustering [ 34] as well  
as multiview clustering [ 26]. Applications include analysis of academic networks 
[ 39], ontology matching [ 29], clustering trajectories in social graphs [ 15], digital 
health [ 24], drug discovery [ 40], and botnet discovery [ 23]. Clustering applications 
include partitioning the base of a cultural game [ 10], using multiple similarity 
metrics encoded as tensors [ 17], partitioning MBTI personalities with self orga-
nizing maps (SOMs) [ 16], and power iteration graph clustering [ 9]. Graph neural 
networks (GNNs) [ 31, 35] implemented in PyTorch [ 1, 20] are currently the prime 
ML methodology applied on graphs [ 28, 42]. Neo4j [ 2] is a graph database which 
has been applied to problems such as processing PubMed documents [ 13], cyber 
security analysis [ 4], and data science [ 5]. 

GSP is a cross-disciplinary field [ 43] encompassing topics such as graph spec-
tral wavelets [ 33], graph Fourier transform [ 41], graph Kalman filter [ 6], gradient 
graph Laplacian [ 7], and variational Bayesian estimation [ 8]. Applications include 
brain science [ 30] and mining Industry 4.0 process graphs [ 12]. 

3 Framework 

3.1 Attributes 

Graphs are excellent vehicles for embedding attributes in their vertices or edges. 
In the proposed approach not only there were attributes in the vertices, but also 
the types of the vertices and the edges were an important part of the design con-
veying information themselves. Specifically, a transaction graph was created in 
Neo4j where each vertex was a person, a credit card, a merchant, or a transaction 
and each edge respresented the following relations between them: 

– [:HAS_BOUGHT_AT]: This type of edge indicates that a specific person 
and a specific merchant have made a transaction. 

– [:OWNS_CARD]: This type of edges denotes the owner of a specific credit 
card as a person can be linked to multiple cards. 

– [:USED_IN]: This type of edges indicates that a specific card has been used 
in a given transaction. For each transaction there was only one card. 

As it can be seen, not every type of vertex is connected to every other one. 
This not only allows for a sparse graph reducing memory requirements, but 
also higher granularity as many elements have their own representation and 
decluttered visualization at the expense of longer Cypher queries. For instance, 
once transactions have been flagged as suspicious or not, the query of Fig. 1 lists 
the ten merchants who have the highest ratio of possibly fraudulent transactions. 

Depending on its nature, a set of first and higer order attributes were placed 
in each vertex. The first order attributes pertain to the vertex itself, are primarily 
functional, and do not depend on neighboring or other ones. These features are 
listed in Table 2. Moreover, in Fig. 2 the Cypher code for creating the embeddings
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Fig. 1. Cypher query for the merchants with the highest suspicous transaction ratio. 

Table 2. Embedded first order vertex attributes. 

Attribute Meaning 
transactionAmount Amount of the transaction 
timeStap Date and time of the transaction 
merchantCategoryCode Type of business 
creditCard Information about the card such as issuer 
transactionFrequency How often a particular card is used 
geoLocation The locations associated with the card and 

the merchant 
name Card holder name 

Table 3. Embedded higher order vertex attributes. 

Attribute Meaning 
walkLength The length of a random walk starting from that vertex 
walksPerNode Number of random walks starting from that vertex 
inOutFactor Balance between following inbound and outbound edges 
returnFactor Probability that random walks return to starting vertex 

of the higher order attributes is shown. The latter are directly related to the 
graph structure such as the number of paths crossing a given vertex and they 
are explained in Table 3.
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Fig. 2. Code for the higher order attributes. 

3.2 Graph Clustering 

Three graph clustering algorithms have been used in the context of this confer-
ence paper. The ubiquitous kNN scheme shown in Algorithm 1 and DBSCAN 
described in Algorithm 2, while the spectral clustering as well as some possible 
variations are explained in Eqs. (3) and  (4) and in the subsequent analysis. 

The kNN algorithm is simple in its design and concept. Specifically, it assigns 
iteratively to each unlabeled data point the label of that of the majority of its 
k closest labeled neighbors according to the rule of Eq. (1). Said neighbors are 
determined by a given proximity metric depending on the underlying domain.

�i = maj  [{�j1 , . . . , �jk}] (1) 

Algorithm 1. kNN clustering algorithm. 
Require: Distance metric g; Termination criterion τ ; Parameter k 
Ensure: Unlabeled data points are labeled 
repeat 
for all unlabeled data points do 

find the k closest neighbors based on g 
assign �i based on ( 1) 

end for 
until τ is true 
return 

DBSCAN relies heavily on the density, expressed as the number of points 
in a region of the data space, as well as on the reachability between important 
points termed core points as deemed by their local density. Specifically, if the 
number of points ni around a given point xi at a radius of ε is higher than n for 
a distance metric h, then  xi is deemed as a core point. Then, if a sequence of 
neighboring core points exists to a data point, then it is assigned to that cluster,
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otherwise it is considered as noise. Thus DBSCAN results in a partitioning based 
on the transitivity of reachability between core and non-core points. 

ni
�= |{s | h(s, x) ≤ ε}| (2) 

Algorithm 2. DBSCAN clustering algorithm. 
Require: Distance metric h; Radius  ε; Minimum density n 
Ensure: Clusters are formed 
for all points s do 

find core points through ( 2) 
end for 
for all core points x do 

find neighboring core points 
end for 
for all non-core points s do 

assign them to a cluster or mark them as noise 
end for 
return 

Spectral clustering is based on the trajectories a random walker can take 
on a graph. Specifically, the normalized primary graph eigenvector contains the 
stationary distribution of the number of times the walker will visit each vertex. 
Therefore, it makes perfect sense to link the probability a vertex will be visited 
to its centrality. The eigenvector centrality is computed as in Eq. (3). At the 
k-th position the vector g contains the nonnegative centrality score for vk. The  
existence of the eigenvalue with a value of one stems from the Perron-Frobenius 
theorem. Intuitively, the eigenvector represents a state of balance in the graph. 

Ag = g ⇔ (I − A)g = 0 (3) 

The above centrality metric comes from assuming a linear model for the 
centrality score gk of vertex vk as shown in (4) and it depends heavily on the 
topology of the underlying graph. Also under this model centrality is only addi-
tive and unweighted, while it relies exclusively on neighborhoods of depth one. 

gk =
∑

vi 

gi, vi ∈ Γ (vk) (4) 

Recall that the neighborhood Γ (v) of a vertex v with an edge set E is the 
set of vertices u adjacent to v as shown in Eq. (5). Consequently, the neighbor-
hood cardinality |Γ (v)| is by definition the degree of v. For directed vertices a 
distinction should be made for inbound and outbound neighborhoods. 

Γ (v) �= {(u, v) ∈ E} (5)
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A possible extension of (4) is through a nonlinear kernel h(·) :  V → R+ which 
essentially changes how the centrality values coming from the neighborhood 
contribute to that of a given vertex. In this case the centrality is computed as in 
(6). Observe that the model is linear on the transformed centrality values h(vk). 

h(vk) =
∑

vi 

h(vi), vi ∈ Γ (vk) (6) 

Another generalization of (4) is to assume a nonlinear model after the addi-
tion of the centrality values at each vertex. This model is similar to the function 
of most graph neural network (GNN) architectures in the sense that the nonlin-
ear kernel is applied on the aggregation of the values from neighboring vertices 
and then the result is broadcast to neighboring vertices. Thus Eq. (4) essentially 
represents a steady state of the graph under a nonlinear model. 

gk = h

(
∑

vi 

gi

)
, vi ∈ Γ (vk) (7) 

This leads to the nonlinear eigenvalue problem of (8). Therein the nonlinear 
function ϕ(·) is the result of h(·) to the linearly transformed variables Ag, namely  
a composition of a nonlinear and a linear function. Note that in (8) the  kernel  
h(·) is elementwise applied to Ag or, equivalently, the kernel ϕ(·) to g. 

g = h(Ag) =  ϕ(g) (8) 

Typically nonlinear eigenvalue problems are difficult to be solved. Consider 
for instance the delay eigenvalue problem of (9) and the quadratic eigenvalue 
problem of (10). Both have applications in many engineering scenarios and 
despite their simple closed form are difficult to be solved analytically in the gen-
eral case. The quadratic eigenvalue problem of (9) has applications in control 
problems as well as in the stability of certain systems of differential equations. 

M(λ) =  A0 + λA1 + λ2A2 (9) 

Another example of a difficult nonlinear problem is the delay eigenvalue prob-
lem of Eq. (10) which has applications among others to digital telecommunica-
tions, control theory, and acoustic systems. In Eq. (10) the positive integer p and 
the positive reals depend heavily on the underlying problem. 

M(λ) =  −Iλ + A0 + 
p∑

k=1 

Ake−λτk (10) 

Returning to (8) one way to solve the eigenvalue problem of ϕ(·) is to use 
a stationary point method. The latter is seeking through various means a point 
satisfying condition (11), which coincides exactly with the problem of (8). 

x∗ = ϕ(x∗) (11)
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A necessary condition for the stationary point methods of (11) is that the 
norm of the gradient of the function ϕ(x) remains bounded. Essentially this curbs 
the fluctuations of the original function, ensuring thus higher local smoothness.

‖∇xϕ(x)‖2 ≤ β0 (12) 

Another condition is the regularization of (13) which controls the fluctuations 
of both the solution and the that of the q-th order derivative thereof. The latter 
has a relative weight of μ0 which is a positive regularization hyperparameter 
(Fig. 3).

‖ϕ(x)‖2 + μ0 ‖∇q 
xϕ(x)‖2 ≤ β1 (13) 

Fig. 3. Indicative transaction graph. 

3.3 Classification 

The third and final step of the proposed framework is the transaction classi-
fication. To keep the proposed framework simple, only the ubiquitous logistic 
regression has been used. The latter essentially partitions the decision plane to 
determine the respective probabilities of the outcomes of a binary decision. This 
is done under the assumption that the logit of the underlying distribution is a 
linear combination of the input variables as shown in Eq. (14). 

logit (p) �= ln  p 
1 − p 

= b1x1 + . . .  + bmxm + b0 = bT x (14)
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Logistic regression is frequently applied to a broad spectrum of problems 
ranging from financial engineering and smart city resources allocation to long 
logistic chains. This happens because of its reasonable power and simplicity. 

4 Results 

In this section the results of the proposed framework are presented and explained. 
The dataset used is the fraudulent transaction dataset available from Neo4j 1. 

The results are given in Tables 4, 5, and  6 for the kNN, DBSCAN, and 
spectral clustering schemes. 

Table 4. Results for kNN and logistic regression. 

Fraudulent Precision Accuracy F1 score 
No 0.59 0.81 0.68 
Yes 0.64 0.38 0.47 

Table 5. Results for DBSCAN and logistic regression. 

Fraudulent Precision Accuracy F1 score 
No 0.65 0.81 0.72 
Yes 0.65 0.78 0.71 

Table 6. Results for spectral clustering and logistic regression. 

Fraudulent Precision Accuracy F1 score 
No 0.96 0.78 0.86 
Yes 0.80 0.96 0.87 

As is evident from the above tables, the spectral clustering combined with 
logistic regression gave the highest F1 score followed at some distance by 
DBSCAN, whereas kNN did not yield satisfactory results. This can be attributed 
to the fact that spectral clustering operates on the entire input graph fully uti-
lizing its higher order structure. On the contrary, kNN is totally local relying 
solely on small neighborhoods, while DBSCAN lies in-between as it is based on 
larger segments of the data region and it is more parameterized (Figs. 4 and 5).

1 https://neo4j.com/blog/fraud-detection/financial-services-neo4j/fraud-detection. 

https://neo4j.com/blog/fraud-detection/financial-services-neo4j/fraud-detection
https://neo4j.com/blog/fraud-detection/financial-services-neo4j/fraud-detection
https://neo4j.com/blog/fraud-detection/financial-services-neo4j/fraud-detection
https://neo4j.com/blog/fraud-detection/financial-services-neo4j/fraud-detection
https://neo4j.com/blog/fraud-detection/financial-services-neo4j/fraud-detection
https://neo4j.com/blog/fraud-detection/financial-services-neo4j/fraud-detection
https://neo4j.com/blog/fraud-detection/financial-services-neo4j/fraud-detection
https://neo4j.com/blog/fraud-detection/financial-services-neo4j/fraud-detection
https://neo4j.com/blog/fraud-detection/financial-services-neo4j/fraud-detection
https://neo4j.com/blog/fraud-detection/financial-services-neo4j/fraud-detection
https://neo4j.com/blog/fraud-detection/financial-services-neo4j/fraud-detection
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Fig. 4. Vertex clustering with kNN. 

Fig. 5. Vertex clustering with DBSCAN.
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5 Conclusions and Future Work 

The focus of this conference paper is the discovery of fraudulent activities in 
credit card transaction graphs by exploiting their interconnected nature. Said 
discovery took place with performing vertex clustering and then performing logis-
tic regression on the resulting partitioning. Each vertex contained an embedding 
of first order as well as higher order attributes. Graph clustering can identify sus-
picious clusters through hidden and latent patterns and facilitate fraud detection, 
resulting thus in a more robust digital economy. The proposed processing was 
implemented over Neo4j, a leading graph database. By representing credit card 
transactions, cardholders, and merchants as vertices and their relationships as 
edges, Neo4j enables the creation of a comprehensive graph model that captures 
the complex connections between these entities. Through the synergy of graph 
clustering and machine learning techniques provided by Neo4j the credit card 
fraud detection system displays considerable accuracy. 

Regarding possible future research directions, a first step would be to test 
the proposed methodologies to larger transaction graphs which may well contain 
in their vertices more attributes. Additionally, the potential for real-time mon-
itoring to provide protection against ever-evolving and new fraudulent patterns 
can be explored. Finally, sophisticated clustering or classification methodologies 
such as consensus clustering can be added to the proposed framework. 

Acknowledgments. This conference paper is part of Project 451, a long term research 
initiative with a primary objective of developing novel, scalable, numerically stable, and 
interpretable higher order analytics. 

The authors have no competing interests relevant to this work. 
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