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Abstract: The inherent volatility and nonlinear dynamics of cryptocurrency markets present significant challenges to
accurate price forecasting. This study explores a hybrid modeling approach combining classical time series
analysis and deep learning techniques to enhance prediction accuracy in the context of Bitcoin price move-
ments. We comprehensively evaluate ARIMA, ARIMAX, Support Vector Machines (SVM), and Long Short-
Term Memory (LSTM) networks using high-resolution historical market data from 2019 to 2024. Emphasis
is placed on integrating exogenous variables such as market volume, capitalization, and moving averages to
enrich model inputs. The experimental results demonstrate that hybrid models, particularly ARIMAX, out-
perform standalone statistical and machine learning methods in terms of Root Mean Squared Error (RMSE)
and R2 score, achieving superior alignment with actual market trends. The findings underscore the utility of
synergistic frameworks that leverage historical statistical regularities and deep learning’s capacity to model
nonlinear temporal dependencies. This research contributes to the advancement of robust, data-driven tools
for financial forecasting in highly dynamic and speculative digital asset markets.

1 INTRODUCTION

The emergence of digital currencies has completely
changed the structure of contemporary financial sys-
tems, swiftly evolving from specialized technol-
ogy innovations to essential parts of international
transaction networks. Among these, cryptocurren-
cies—digital tokens supported by blockchain tech-
nology and cryptographic mechanisms—have gained
much popularity because of their transparency, de-
centralization, and impenetrability Narayanan et al.
(2016). Bitcoin, introduced in 2009, laid the founda-
tion for a rapidly evolving ecosystem now comprising
over 5,000 active cryptocurrencies, including domi-
nant platforms such as Ethereum (ETH) and Ripple
(XRP) Pintelas et al. (2020). The diversity and veloc-
ity of this growth underscore the emergence of a dy-
namic and volatile market, one increasingly targeted
by speculative investors and academic researchers.

One of this domain’s most challenging yet intrigu-
ing problems is accurately forecasting cryptocurrency
prices. While the intrinsic volatility and susceptibil-
ity to external shocks render predictive accuracy in-

herently elusive, the endeavor to model price trajecto-
ries remains invaluable. Effective prediction systems
can significantly enhance strategic investment deci-
sions, inform macro-financial policy, and deepen in-
sights into the behavioral dynamics of digital financial
markets Urquhart (2016).

The academic community has broadly converged
on two distinct paradigms for approaching this prob-
lem. The first treats cryptocurrency valuation as
a canonical time series forecasting task, adopting
methodologies historically applied in econometrics
and signal processing. Traditional statistical mod-
els, particularly the Auto-Regressive Integrated Mov-
ing Average (ARIMA), rely on historical patterns
and autocorrelation structures to extrapolate future
values. Despite their interpretability and simplicity,
these models often fail to capture the complex nonlin-
earities inherent in high-frequency financial datasets.

In contrast, machine learning frame-
works—especially those grounded in deep learn-
ing—offer a data-driven alternative capable of
modeling latent, nonlinear dependencies. These
approaches utilize multilayered neural architectures



to extract hierarchical features from temporal data,
enabling robust function approximation even under
conditions of noise and volatility Siami-Namini et al.
(2018). Deep learning models, encompassing recur-
rent structures such as Long Short-Term Memory
(LSTM) networks and their variants, have demon-
strated superior performance in various domains by
leveraging their ability to learn representations across
different time scales and data granularities LeCun
et al. (2015).

The interaction between the data properties and
the model architecture introduces additional levels of
complexity. Exogenous factors, such as macroeco-
nomic signals, regulatory changes, and investor sen-
timent, specifically impact cryptocurrency markets.
Hybrid modeling techniques that combine statistical
regularities and contextual awareness are required to
capture these diverse contributions. This partnership
makes the development of adaptable models that can
more accurately forecast and generalize in various
market scenarios possible.

This study differentiates itself from prior work
by proposing a hybrid modeling framework that in-
tegrates classical statistical methods with advanced
deep learning architectures. Specifically, we incorpo-
rate exogenous variables such as market volume, cap-
italization, and moving averages into ARIMAX and
LSTM models to enhance predictive performance and
robustness in highly volatile cryptocurrency markets.
This multivariate approach enables more context-
aware forecasting, bridging the gap between inter-
pretability and accuracy. Our comparative analysis
demonstrates that hybrid models offer measurable im-
provements over standalone techniques, particularly
in scenarios characterized by structural shifts and
nonstationary behavior.

The remainder of the paper is organized as fol-
lows. Section 4 reviews the literature, discussing
previous studies and developments in cryptocurrency
forecasting to establish the research context. Sec-
tion 3 details the data preprocessing techniques and
methodologies used in our study. Section 4 explains
the practical application of the models within our
computational framework. Section 5 presents the re-
sults of our experiments, providing a comparative
analysis of model performances. Finally, Section 6
summarizes the findings and discusses potential di-
rections for future research in cryptocurrency price
prediction.

2 RELATED WORK

Forecasting cryptocurrency prices has emerged
as a significant research challenge due to the high
volatility, nonstationary behavior, and complex mar-
ket dynamics inherent in digital assets. Traditional
statistical approaches, such as Auto-Regressive In-
tegrated Moving Average (ARIMA), initially dom-
inated the field. These models offered a frame-
work for identifying linear patterns in time series but
struggled with the nonlinearities and abrupt structural
changes typical of cryptocurrency markets Pintelas
et al. (2020).

Researchers adopted machine learning techniques
such as Support Vector Machines and Random
Forests to address these limitations. These methods
demonstrated improved flexibility in handling diverse
features extracted from price, volume, and technical
indicators. However, their inability to model tempo-
ral dependencies restricted their effectiveness in cap-
turing sequential dynamics.

This led to a shift toward deep learning, particu-
larly the use of Recurrent Neural Networks (RNNs)
and their gated variants—Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU) networks.
These models are specifically designed to learn long-
term temporal dependencies and nonlinear transfor-
mations, allowing them to capture the intricate struc-
ture of cryptocurrency time series. In one prominent
study, LSTM architectures in Ethereum price predic-
tion yielded marked improvements over classical sta-
tistical models and underscored the model’s ability to
cope with highly volatile environments Zoumpekas
et al. (2020).

Further comparative studies have shown that GRU
models often achieve similar levels of predictive
accuracy to LSTM, while offering lower computa-
tional overhead—an advantage for applications re-
quiring rapid inference or operating under resource
constraints [51]. Moreover, recent contributions em-
phasize deep networks’ interpretability, ability to gen-
eralize across different cryptocurrencies, and adapt-
ability to high-frequency financial data LeCun et al.
(2015).

A notable work applied multiple deep learn-
ing architectures—including Multilayer Perceptrons
(MLP), RNN, LSTM, and Bidirectional LSTM—to
large-scale, high-frequency time series of various
cryptocurrencies. This study systematically com-
pared the predictive accuracy of each architecture, re-
vealing that advanced recurrent models consistently
outperform simpler feedforward networks. Addition-
ally, the research provided methodological insights
into the preprocessing and design considerations nec-



essary for effective financial forecasting using neural
networks Vonitsanos et al. (2024).

Complementary advancements include hybrid
models that integrate traditional time series decompo-
sition techniques with deep neural networks, enabling
improved denoising, trend extraction, and resistance
to nonstationary effects. These models combine the
filtering capabilities of statistical methods with the
pattern recognition strength of deep learning to en-
hance generalization across regimes Narayanan et al.
(2016).

Exogenous information has also proven beneficial
in enhancing model performance. Features derived
from news, sentiment analysis, and macroeconomic
indicators are now frequently incorporated into neu-
ral architectures, especially in time-sensitive applica-
tions where market psychology plays a critical role.
Techniques from natural language processing have
been leveraged to quantify sentiment from platforms
like Twitter and Reddit, enabling models to anticipate
price movements driven by investor behavior Siami-
Namini et al. (2018).

3 METHODOLOGY

3.1 ARIMA

The Auto-Regressive Integrated Moving Average
(ARIMA) model is a foundational statistical tech-
nique for univariate time series analysis, designed to
model autocorrelations under the assumptions of lin-
earity and stationarity. Its formulation, denoted as
ARIMA(p, d, q), integrates autoregressive lags, dif-
ferencing operations, and moving average smoothing
to construct a detailed model of temporal dependen-
cies. Each component contributes a distinct func-
tion: the autoregressive term reflects persistence in
past values, the differencing step ensures the removal
of stochastic trends to attain stationarity, and the mov-
ing average term captures serial correlation within the
forecast errors.

ARIMA’s methodological appeal lies in its math-
ematical tractability and interpretability, which have
supported its longstanding use across macroeco-
nomic and financial forecasting contexts. Parameters
are typically optimized through likelihood-based ap-
proaches, and model selection is refined via statisti-
cal criteria such as the Akaike Information Criterion
(AIC) and the Bayesian Information Criterion (BIC),
which prioritize goodness of fit and model parsimony
Box et al. (2015).The general forecasting equation for
an ARIMA(p,d,q) model, after differencing the orig-

inal time series Yt d times to achieve stationarity (de-
noted as yt ), is given by:

ŷt = µ+
p

∑
i=1

φiyt−i −
q

∑
j=1

θ jet− j (1)

In cryptocurrency forecasting, the application of
ARIMA has been found to have significant limita-
tions. The model’s reliance on linear approximations
is ill-suited for capturing the nonlinear and chaotic
behavior typical in digital asset markets, which are
often influenced by regime shifts, speculative bub-
bles, and external shocks Azari (2019). Furthermore,
the ARIMA model’s reliance on strict stationarity as-
sumptions frequently necessitates successive data dif-
ferencing, which can obscure underlying structural
patterns and diminish the interpretability of the re-
sulting model. This over-reliance on differencing
may also introduce the risk of overfitting, particu-
larly when modeling complex and volatile financial
time series such as cryptocurrencies. Additionally,
ARIMA models are inherently limited in their ca-
pacity to incorporate exogenous variables—such as
macroeconomic indicators, social media sentiment,
and regulatory developments—which are often crit-
ical in shaping market behavior. These constraints re-
duce the model’s practical applicability in dynamic
and information-rich financial environments, where
adaptive and multifactorial modeling approaches are
required for accurate forecasting Petrică et al. (2016).

In contemporary empirical research, ARIMA is
predominantly utilized as a baseline model for as-
sessing the performance of more complex predic-
tive frameworks, including deep learning and hybrid
time series models. While it can exhibit adequate
forecasting capabilities under conditions of tempo-
ral regularity and limited stochastic disturbance, its
applicability is notably constrained in financial en-
vironments characterized by volatility clustering and
non-constant variance—phenomena extensively ana-
lyzed in the context of conditional heteroskedasticity
Bollerslev (1986).

3.2 Garch

A well-respected statistical modeling method for pre-
cisely forecasting short-term returns on financial as-
sets, particularly when such returns appear uncertain,
is the Generalized Autoregressive Conditional Het-
eroscedasticity (GARCH) model. An ARMA process
can be used to model the error variances in a GARCH
process. One benefit of the GARCH model is its abil-
ity to effectively lessen the excessive kurtosis that ex-
ists in returns Franses and Van Dijk (1996).



Let εt denote the innovation process. It is condi-
tionally normally distributed given past information,
denoted by ψt−1, as follows:

εt | ψt−1 ∼ N (0,ht)

In this expression, ht denotes the conditional variance,
ψt−1 refers to the information set available at time t−
1, and N indicates the conditional normal distribution
Fałdziński et al. (2020).

The GARCH(p,q) model, also referred to as
GARCH-n, is formulated as:

ht = α0 +
q

∑
i=1

αiε
2
t−i +

p

∑
j=1

β jht− j

where α0 > 0, αi ≥ 0, and β j ≥ 0 for i = 1,2, . . . ,q
and j = 1,2, . . . , p.

Except for volatility variation, which indicates the
lack of a trend or seasonal pattern, GARCH models
predict future volatility and assume that the time se-
ries is stable. While retaining an unaltered uncondi-
tional variance, these models exhibit conditional het-
eroskedasticity and mean reversion.

3.3 SVM

Supervised learning, unsupervised learning, semi-
supervised learning, and reinforcement learning are
the four basic methods that make up the area of ma-
chine learning. Support Vector Machines (SVM)
are supervised learning models that analyze data for
regression and classification using particular tech-
niques. One kind of supervised learning is clas-
sification, which uses several example input-output
pairings gathered during a training phase to map in-
put data to output data. Features from sample ob-
servations are used to train a decision function that
correctly assigns class labels. These characteristics
range widely, from social media posts to functional
neuroimaging data. Using the previously identified
trends, the decision function ”classifier” can automat-
ically assign class labels to fresh, unseen observations
once they have been formed. The capacity of the
SVM to learn data classification patterns with equal
accuracy and consistency is its strongest point. Al-
though SVM is sometimes used for regression (Sup-
port Vector Regression), it has become increasingly
popular as a flexible method for classification in vari-
ous data formats. Pisner and Schnyer (2020).

SVM offer several advantages, including their
effectiveness when the number of dimensions ex-
ceeds the number of samples, their ability to work
well when there is a clear margin of separation be-
tween classes, and their overall effectiveness in high-
dimensional spaces. However, SVMs also have no-
table drawbacks. They tend to perform poorly with

vast datasets due to high computational complexity,
and their performance can be significantly reduced
when dealing with noisy datasets that contain a large
amount of irrelevant information. An SVM decision
function is an ideal ”hyperplane” that efficiently clas-
sifies observations into several groups according to in-
formational patterns, or features. The hyperplane can
determine the most likely label for unobserved infor-
mation. Typically, the features used to infer the hy-
perplane are not in their original form; instead, they
are often derived data that was interpolated during the
feature selection process. As support vectors, features
are located and recognized by considering their rela-
tionships with each other Vapnik (1999).

3.4 LSTM

Developing algorithms that improve with practice is
the primary goal of machine learning. Ideally, as the
learning process is repeated, the algorithm’s perfor-
mance gets better. Using the given training data, the
learning algorithm is in charge of producing a classi-
fier function. This created classifier is then used on
unseen data to assess its effectiveness. Long Short-
Term Memory Recurrent Neural Networks (LSTM-
RNN) are well known for being very good dynamic
classifiers. They are used in machine translation,
speech-to-text transcription, language modeling, and
many other fields Staudemeyer and Morris (2019).

RNNs are limited to investigating the past in time
steps of about ten Staudemeyer and Morris (2019).
This happens when the feedback signal either expo-
nentially increases or decreases to zero. With the in-
troduction of LSTM-RNN, this issue was settled. The
memory block in the recurrent hidden layer is the
central part of an LSTM network. This block com-
prises memory cells that can preserve temporal in-
formation because of their self-connections Pintelas
et al. (2020). Adaptive gate units also control the in-
formation flow within the block. Depending on how
complicated the network architecture is, LSTM may
learn more than 1,000 time steps by treating the hid-
den layer as a memory unit. It can also efficiently han-
dle dependencies in time-series data over short and
long periods.

4 IMPLEMENTATION

4.1 Dataset

A CSV file containing the following
columns—timeOpen, timeClose, timeHigh, timeLow,
name, open, high, low, close, volume, marketCap,



and timestamp—contains the dataset that was utilized
to train and test the models. With timestamps show-
ing the exact data capture period, each column offers
a distinct perspective on the market’s activity on a
particular day, including opening and closing prices,
daily highs and lows, volume traded, and market
capitalization.

CoinMarketCap, a provider of several cryptocur-
rency market statistics, was the source of the informa-
tion, guaranteeing its correctness and dependability.
Cross-referencing with other sources and confirming
the consistency of the data points were just two of
the several actions taken to ensure the data’s integrity.
Before being utilized on each model, the dataset was
cleaned and preprocessed. This involved addressing
missing numbers, fixing any apparent irregularities,
and ensuring the dataset was appropriately formatted
for analysis.

The dataset covers Bitcoin’s daily market activity
from September 2019 to February 2024. It offers a
strong basis for evaluating the intricate price trends of
cryptocurrencies and forecasting future movements.
The richness and breadth of the information are essen-
tial factors in creating a reliable model for predicting
Bitcoin prices. The dataset offers a daily picture of
the Bitcoin cryptocurrency’s performance, with each
record representing a day’s worth of market activity.
These specifics make a thorough examination of pric-
ing movements throughout time possible.

4.2 Tools

We created our predictive models using Scikit-
learn and TensorFlow, two popular machine learn-
ing frameworks. The open-source Python package
Scikit-learn is widely used because it provides prac-
tical and intuitive tools for traditional machine learn-
ing algorithms, such as support for statistical model-
ing and preprocessing methods Silaparasetty and Sila-
parasetty (2020). Google created TensorFlow, an ex-
tensive framework for general machine learning and
deep learning applications. Its design uses data flow
graphs and efficient tensor operations and is ideal for
large-scale numerical computation.

5 EXPERIMENTAL EVALUATION

5.1 Experimental Setup

To ensure a consistent and fair comparison, all mod-
els were trained and evaluated on the same dataset
comprising daily Bitcoin market data from Septem-
ber 24, 2019, to February 6, 2024. The dataset was

divided into training (80%) and testing (20%) sub-
sets. Preprocessing steps included handling miss-
ing values, converting timestamps to datetime for-
mat, and normalizing features where necessary. Each
model—ARIMA, ARIMAX, SVM, and LSTM—was
implemented using Python and trained using their re-
spective optimal configurations. Evaluation was per-
formed using standard metrics to assess predictive
performance and generalization on unseen data.

5.2 Statistical Tests

The four models evaluated in this study span statisti-
cal, machine learning, and deep learning paradigms.
ARIMA is a univariate model that forecasts future
values based on past observations and their errors.
It operates under the assumption of stationarity, thus
requiring differencing for non-stationary time series.
ARIMAX extends ARIMA by incorporating exoge-
nous variables—specifically volume, market capi-
talization, and a 7-day moving average of closing
prices—allowing the model to learn from additional
market indicators and potentially improve predictive
performance. SVM for regression was implemented
using a radial basis function (RBF) kernel, enabling
the model to capture complex, non-linear relation-
ships in the data. This approach is particularly effec-
tive for small- to medium-sized datasets with high di-
mensionality. Lastly, LSTM networks, a variant of re-
current neural networks (RNNs), were employed due
to their ability to learn long-range dependencies in
sequential data. LSTM models are especially suited
for financial time series forecasting, as they can han-
dle the inherent volatility and noise present in such
datasets.

To assess and visualize each model’s forecasting
accuracy, we compared the predicted and actual Bit-
coin prices. Figure 1 presents the prediction results
for ARIMAX, SVM, and LSTM models against ac-
tual values. The ARIMAX model demonstrates the
highest alignment with the observed price trends, par-
ticularly during periods of strong market movement.
LSTM also exhibits robust performance, capturing
the general trajectory of price changes and adapt-
ing well to nonlinear patterns. In contrast, the SVM
model performs adequately but struggles to maintain
accuracy during sudden price fluctuations, underscor-
ing the challenges of modeling high-volatility assets
with non-temporal models.

Additionally, Figure 2 illustrates the time series
plot of Bitcoin prices from 2019 to 2024, contex-
tualizing the volatility and irregular seasonal trends
present in the dataset. These fluctuations emphasize
the complexity of the forecasting task and the im-



Figure 1: Comparison of predicted vs. actual Bitcoin prices
using ARIMAX, SVM, and LSTM models. ARIMAX
demonstrates the closest alignment with real market trends,
followed by LSTM.

portance of choosing models capable of recognizing
long-term dependencies and structural shifts.

Figure 2: Daily closing prices of Bitcoin from 2019 to 2024.
The time series exhibits high volatility and irregular pat-
terns.

Finally, we include Figure 3 to display histograms
of residuals for the ARIMA model. The distribution
exhibits skewness and leptokurtic behavior, indicating
a departure from normality. This non-Gaussian er-
ror structure supports adopting more advanced mod-
els such as LSTM and ARIMAX, better suited for
handling non-linear and non-stationary data with ir-
regular error patterns.

5.3 Evaluation Metrics

The models were evaluated using two key quantita-
tive metrics for a robust comparison. The Root Mean
Squared Error (RMSE measures the average magni-
tude of the prediction error and is particularly sensi-
tive to large deviations, making it effective for high-
lighting significant inaccuracies. The R2 Score, also
known as the Coefficient of Determination, indicates
the proportion of variance in the dependent variable
explained by the model, thus providing a measure of
its explanatory power.

In addition to these metrics, further statistical di-
agnostics were explicitly applied to the ARIMA and
ARIMAX models. The Augmented Dickey-Fuller
(ADF) test was employed to assess the stationarity of
the time series data, which is a critical assumption for
the validity of these models. To evaluate whether the
residuals followed a normal distribution, the Jarque-
Bera test was conducted. Furthermore, the Ljung-
Box test and Autocorrelation Function (ACF) plots
were used to detect any autocorrelation remaining in
the residuals, ensuring the adequacy and reliability of
the model fit.

Table 1 presents the performance metrics for each
forecasting model. The evaluation used the Root
Mean Squared Error (RMSE) and the Coefficient of
Determination (R2 score). Among all models, ARI-
MAX achieved the best performance with the low-
est RMSE and the highest R2 value, indicating strong
predictive accuracy and generalization capability. The
SVM model also demonstrated solid performance,
slightly outperforming the LSTM model. In contrast,
the ARIMA model yielded significantly higher er-
rors, underscoring its limitations in capturing Bitcoin
prices’ complex and volatile behavior.

Table 1: Performance Metrics of Forecasting Models

Model RMSE R2 Score
ARIMA 7012.59 –
ARIMAX 508.45 0.9920
SVM 793.32 0.9806
LSTM 943.17 0.9732

6 CONCLUSIONS AND FUTURE
RESEARCH

With an emphasis on Bitcoin, this research aimed
to examine how well sophisticated deep learning al-
gorithms anticipate the price movements of cryp-
tocurrencies. The aim was to find the best model for
the Bitcoin Historical Price time-series dataset. We
trained and tested the models using data spanning four
years. The bitcoin market is going through a crucial
stage at this time.

Through a thorough analysis of the three dis-
tinct models—ARIMA, SVM, and LSTM—this study
aims to assess each one’s quality and predictive ca-
pacity for future Bitcoin prices. Two key met-
rics—root mean square error (RMSE) and coefficient
of determination (R2 score)—formed the basis of the
comparison analysis. Visual graphs were then used to
illustrate the models’ accuracy, error rates, and capac-
ity to capture variance.



Figure 3: Histogram and Q-Q plot of ARIMA residuals. The results reveal significant deviations from normality, supporting
more robust forecasting models.

The study emphasizes the importance of choos-
ing the right forecasting model depending on spe-
cific requirements and circumstances. The ARIMAX
model is an excellent option for situations requiring
high accuracy and precision because it can produce
improved predictions on our Bitcoin dataset. How-
ever, because of its remarkable capacity to explain
variance, the SVM model is also a viable option
for applications that demand a compromise between
computing efficiency and accuracy. Last, the LSTM
model might be favored in circumstances requiring
the recognition of intricate patterns across time or
real-time prediction abilities, even if it has greater
error rates. In contrast to prior studies that empha-
size deep learning architectures alone, our work es-
tablishes that statistical-deep learning hybrids, when
equipped with exogenous market features, can sig-
nificantly outperform standalone deep models. This
finding suggests a paradigm shift from model-centric
optimization to data-centric integration for financial
forecasting tasks.

Future studies could concentrate on creating hy-

brid models that further improve prediction efficiency
and accuracy by combining the benefits of SVM,
LSTM, and ARIMAX. Additionally, adding more
cryptocurrencies and extended periods to the data set
may offer a deeper understanding of how well the
models perform in various market scenarios. It may
also be possible to increase forecast accuracy by look-
ing at the effects of outside variables like significant
market occurrences or regulation changes.
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