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Abstract—This survey presents a system-level analysis of big
data analytics in smart cities, bridging data sources, analytical
techniques, and deployment infrastructures. It categorizes ana-
lytics into stream, batch, predictive, semantic, and explainable
methods, and maps them to edge, fog, and cloud layers through
distributed orchestration and standardized interfaces. Real-world
applications across mobility, environment, safety, and citizen
services are examined, emphasizing execution-aware design,
interoperability, and compliance with ethical and regulatory
frameworks. The survey highlights integration gaps in prior
works and outlines future directions for transparent, scalable,
and semantically enriched urban intelligence systems.

Index Terms—Smart Cities, Big Data, Urban Intelligence,
Architectures, Cross-Domain Analytics

I. INTRODUCTION

The rapid deployment of urban sensors, mobile devices,
and interconnected systems has generated massive volumes of
heterogeneous, high-velocity data. Structured and unstructured
streams originate from traffic sensors, environmental monitors,
social media, smart meters, and user-facing applications. Ex-
tracting actionable insights from such data demands scalable
infrastructures and advanced analytics. Big data analytics thus
plays a central role in enabling urban intelligence across
domains, such as mobility, pollution, energy, and emergency
management []1]].

Yet, the technical landscape remains fragmented. Sched-
uled, stream, predictive, semantic, and explainable analytics
techniques are often applied in isolation, lacking architectural
cohesion. Urban data systems operate across edge, fog, and
cloud infrastructures, each posing distinct latency, privacy,
and scalability challenges. A systematic analysis is needed
to bridge analytics with execution architectures and align
urban data practices with interoperability, accountability, and
regulatory compliance requirements [2].

A. Motivation

Smart cities produce high-volume, heterogeneous data
across transport, environment, safety, and energy domains.
While prior studies address individual aspects of mobility
analytics, Internet of Things (IoT) platforms, or policy models,
a gap persists in connecting analytical methods with execution
infrastructures. Urban intelligence requires more than algo-
rithms: it depends on real-time data orchestration, semantic
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interoperability, and deployment-aware pipelines that respect
societal and regulatory constraints.

Recent advances in stream processing, edge—fog—cloud
computing, and explainable artificial intelligence (XAI) enable
actionable urban analytics, yet existing literature remains frag-
mented. There is limited integration across analytics layers,
architectural designs, and real-world deployments. This survey
addresses this gap by mapping analytics techniques to system
architectures, identifying deployment challenges, and outlining
best practices for scalable, transparent, citizen-focused smart
city systems.

B. Methodology

The study follows a structured and reproducible method-
ology to collect, select, and analyze recent literature on big
data analytics for smart cities. Relevant works were system-
atically retrieved from five major repositories, IEEE Xplore,
Elsevier ScienceDirect, SpringerLink, ACM Digital Library,
and Google Scholar, focusing on peer-reviewed articles, con-
ference papers, and surveys published from 2021 onward.
Inclusion was limited to studies addressing big data analytics
in urban contexts, across ingestion, processing, modeling, or
deployment stages. Excluded were papers limited to low-level
sensing, narrowly scoped optimizations, or theoretical models
without system-level applicability. After de-duplication and
abstract-level filtering, 49 publications were retained.

The research design comprised three phases. First, retrieval
was based on keywords such as “big data analytics,” “smart
cities,” and “urban intelligence.” Second, selected papers were
thoroughly reviewed to extract metadata on analytics types
(batch, stream, predictive, semantic, explainable), architectural
layers (edge, fog, cloud), and domains (mobility, environment,
safety, citizen services). Third, the works were mapped to a
unified taxonomy and comparatively analyzed across execution
scope, infrastructure, interoperability, and regulatory compli-
ance. This process supports consistent and comprehensive
insight into the current state of smart city analytics.

C. Contribution

This survey offers a structured classification of big data
analytics techniques for smart cities, spanning stream, batch,
predictive, semantic, and explainable analytics dimensions.
These are mapped to deployment layers, edge, fog, and cloud,
highlighting their system-level integration. A domain-specific



application mapping is provided across mobility, environ-
ment, citizen services, and safety, supported by concrete use
cases. The study also analyzes execution mechanisms and
incorporates cross-cutting concerns such as interoperability,
compliance, and explainability. A comparative analysis with
recent surveys highlights integration gaps and supports the
novelty of this end-to-end perspective.

Section [II] outlines key concepts, data types, system layers,
and analytics dimensions. Section [[T] presents the taxonomy of
analytics techniques and their execution characteristics across
the edge—fog—cloud stack. Section [[V] examines representative
domains and real-world deployments. Section compares
prior surveys, discusses challenges, and outlines future trends.
Section [V concludes the paper.

II. DATA SOURCES AND INFRASTRUCTURES FOR SMART
CITIES

Smart city platforms are sustained by diverse urban data
streams and a layered infrastructure that ensures reliable acqui-
sition, processing, and integration. This section presents major
categories of data sources and the architectural components
that support scalable, real-time analytics and decision-making.

A. Urban Sensor Networks and Operational Systems

Physical sensors embedded in roadways, buildings, and
environmental stations generate continuous structured data
streams. Inductive loops and magnetometers measure traffic
density and lane occupancy, while air quality stations monitor
pollutants such as PM2.5 and NO,. Smart meters transmit
consumption profiles from water, gas, and electricity grids,
often via supervisory control and data acquisition (SCADA)
or advanced metering infrastructure (AMI) systems. These
sources follow standardized timestamping and encoding, sup-
porting periodic or event-triggered reporting [3]], [4].

Public services generate semi-structured records via au-
tomatic vehicle location (AVL)-enabled vehicles, global po-
sitioning system (GPS) tracking, and route execution logs.
Transportation networks produce vehicle locations and de-
lay reports; waste management systems transmit bin sta-
tus and geotagged collection events. Formats vary from
comma-separated values (CSV) and JavaScript Object Nota-
tion (JSON) to proprietary telemetry, requiring schema har-
monization during preprocessing [5].

Differences in sampling rates and delivery reliability neces-
sitate preprocessing techniques such as time-window align-
ment, device synchronization, and buffering. Before storage,
data undergoes normalization of units, reconciliation of times-
tamps, and metadata enrichment [6].

B. Citizen-Generated and Multimedia Data

Citizens contribute unstructured data through incident re-
ports, mobile applications, and social media, complementing
infrastructure-based sources. These inputs contain linguistic
variation, incomplete metadata, and inconsistent geotagging.
Natural language processing pipelines extract event types,

locations, and temporal references, while geocoding and tem-
poral inference enhance alignment with structured layers [[7]].

Video data from municipal closed-circuit television (CCTV)
and mobile devices introduces additional challenges. Live
feeds require on-device inference using convolutional mod-
els for object detection, behavioral analysis, and anomaly
tracking. Due to bandwidth limits, only processed metadata
(e.g., object counts, motion vectors) is transmitted upstream,
while raw video is selectively stored for forensics and model
retraining [8[], [9].

C. Processing Architecture: Edge, Fog, and Cloud Layers

Urban data infrastructures employ hierarchical processing
to balance latency and capacity. At the sensing site, edge
nodes handle threshold-based triggers, low-latency filtering, or
initial feature extraction. They communicate over lightweight
IoT protocols such as message queuing telemetry transport
(MQTT) or constrained application protocol (CoAP), operat-
ing under energy and bandwidth constraints [10]], [11].

Fog nodes perform regional aggregation and mid-level an-
alytics, executing spatiotemporal correlation and real-time co-
ordination tasks, such as synchronizing adaptive traffic signals.
These nodes act as intermediaries between local sensors and
global systems, reducing the volume and redundancy of data
transmitted to the cloud [[12].

Cloud systems provide cross-domain integration and heavy
analytics. Distributed file systems like Hadoop Distributed
File System (HDFS) store raw and processed data. In con-
trast, not only Structured Query Language (NoSQL) engines
such as MongoDB and Cassandra support scalable querying.
Distributed stream processing frameworks perform both batch
and real-time analytics. Directed acyclic graph (DAG)-based
orchestrators coordinate tasks including ingestion, validation,
model application, and export to external services [13], [14].

D. Interoperability, Privacy, and Governance

Smart city deployments face interoperability challenges
across domains and devices. Next generation service inter-
face linked data (NGSI-LD) and SensorThings application
programming interface (API) define semantic models for
context-aware data representation and querying. City geog-
raphy markup language (CityGML) provides geometric and
semantic metadata for urban objects, supporting fusion with
simulation platforms [[15].

Middleware platforms mediate between data producers and
consumers. FIWARE Orion brokers expose unified APIs and
manage dynamic discovery, registration, and routing. These
ensure compatibility between heterogeneous systems without
requiring complex coupling [|16].

Data governance imposes strict access control, anonymiza-
tion, and compliance mechanisms. Sensitive information, such
as GPS traces, is anonymized using k-anonymity, spatial cloak-
ing, or differential privacy. General data protection regulation
(GDPR)-compliant systems incorporate consent-aware APIs,
metadata registries, and auditable processing pipelines [|17].



TABLE I
URBAN DATA SOURCES, PROCESSING LAYERS, AND ASSOCIATED
TECHNOLOGIES.

Category Data Types Processing Technologies
& Modalities Layer & Standards
Sensor-Level Traffic sensors, Edge, Fog, MQTT, CoAP,
Infrastructure smart meters, air Cloud Modbus, IEC
quality monitors 61850
Operational Transport logs, GPS Fog, Cloud JSON, CSV,
Systems traces, bin reports SCADA, AVL
systems
Citizen- Reports, text, so- Edge NLP, BERT,
Generated cial media, CCTV (inference), YOLO, social
Content streams Cloud (archival) APIs
Analytics Fused, cleaned mul- Fog (preprocess- Kafka, Spark,
and Storage | tistream data ing), Cloud (an- | Flink, MongoDB,
Infrastructure alytics) Cassandra, HDFS
Interoperability Context entities, | Middleware, NGSI-LD,
and Governance metadata,  access Brokers SensorThings
policies API, CityGML,
FIWARE Orion,
GDPR

Table [[| consolidates the main categories of data, processing
layers, and associated technologies discussed in this section. It
provides a reference model for how smart city infrastructures
manage diverse, cross-domain information at scale.

III. BIG DATA ANALYTICS TECHNIQUES FOR SMART
CITIES

This section analyzes the analytical pipelines that en-
able adaptive urban decision-making through high-throughput,
context-sensitive computation. As smart city systems integrate
domain-specific information layers, ranging from real-time
sensor feeds to historical service records, they require scal-
able techniques tailored to distinct temporal granularities and
operational latencies.

A. Stream Analytics for Real-Time Urban Intelligence

Stream analytics enables real-time responses to dynamic
urban conditions by processing continuous data using frame-
works like Apache Flink and Spark Structured Streaming.
These systems handle event-time processing, in-flight aggre-
gation, and temporal joins across potentially disordered or
delayed data, essential for correlating events such as vehicle
speed anomalies [[18]].

Their primary advantage lies in low-latency operation. In
traffic systems, real-time GPS and sensor feeds inform conges-
tion detection and adaptive signal control, while environmental
systems trigger alerts or heating, ventilation, and air condition-
ing (HVAC) adjustments based on pollutant levels. Processing
is often colocated with edge or fog nodes to reduce latency in
location-sensitive scenarios [[19].

Despite these benefits, challenges persist in achieving con-
sistency and scalability under bursty loads. Mechanisms such
as watermarking, checkpointing, and exactly-once semantics
are essential to ensure correctness, especially in mission-
critical urban deployments [20].

B. Batch Analytics and Temporal Pattern Discovery

Batch analytics retrospectively examines large urban
datasets to uncover temporal patterns and latent correlations.

Run on platforms like Spark, Hive, or Dask in data lakes, it
supports clustering, association rules, and time-series decom-
position [21]].

Their strength lies in analytical depth. Utilities use multi-
year smart meter data to detect anomalies or seasonal drifts,
while transport agencies apply temporal clustering to assess
past interventions or guide infrastructure planning. Integrat-
ing external variables, such as weather, holidays, or events,
enriches context modeling [22].

Though not real-time, batch analytics are vital for strategic
planning. Long-term forecasts on energy demand or policy
effectiveness rely on models built from extended temporal
windows, semantically labeled and spatially indexed [23]].

C. Predictive Modeling and Forecast-Driven Optimization

Predictive analytics aims to forecast future urban states
using statistical and machine learning models. Techniques
range from univariate time-series methods (e.g., ARIMA,
Prophet) to multivariate models like gradient boosting and
Long Short-Term Memory (LSTM) networks that capture
nonlinear dependencies [24]].

Applications span multiple domains: traffic volume pre-
dictions enable demand-responsive transit, emergency visit
forecasts inform health resource allocation, and short-term
load forecasting supports grid management. Predictions also
guide optimization pipelines, anticipated pedestrian flows ad-
just micro mobility pricing, while parking availability forecasts
inform routing. In this context, predictions are not endpoints
but inputs that steer real-time decisions and urban service
adaptation [25]].

D. Semantic Reasoning and Knowledge-Based Integration

Semantic reasoning applies symbolic logic and ontolo-
gies (e.g., sensor, observation, sample, and actuator ontology
(SOSA) / semantic sensor network ontology (SSN), CityGML)
to unify heterogeneous urban data. Middleware exposes rea-
soning over annotated entities and relations via RDF triples
and rule engines [26].

This enables integration across sources such as elevation
maps, rainfall sensors, and infrastructure data, supporting flood
response through rule-based inference on propagation patterns
and real-time thresholds. Semantic annotation facilitates auto-
mated fusion, provenance tracking, and explainability [27].

As cities adopt digital twins, semantic frameworks interlink
simulation, telemetry, and registries, ensuring coherent, cross-
domain interoperability and transparent decision support [28]].

E. Explainable Models and Transparent Decision Support

As algorithmic decision-making permeates urban services,
the demand for interpretability becomes fundamental. Black-
box models, especially in deep learning, are often inappro-
priate in public-sector contexts unless augmented with ex-
planation mechanisms. Methods such as SHapley Additive
exPlanations (SHAP) and Local Interpretable Model-agnostic
Explanations (LIME), counterfactual analysis, and gradient-
based attribution offer insights into feature relevance and
model behavior under perturbations [29].



TABLE II
BIG DATA ANALYTICS TECHNIQUES FOR SMART CITIES.

Analytical Target Data Types Execution Related Technolo-

Technique Tier gies & Models

Stream Real-time sensor data, Edge, Fog Apache Flink,

Analytics GPS traces, environ- Spark  Streaming,
mental readings Kafka, MQTT

Batch Analyt- | Historical logs, smart | Fog, Cloud Apache Spark,

ics meter archives, urban Hive, Dask, HDFS
service records

Predictive Multivariate time se- Fog, Cloud ARIMA, LSTM,

Modeling ries, demand profiles, XGBoost, Prophet
user mobility

Semantic Rea- Domain-tagged Cloud, Mid- RDF, OWL,

soning records, spatial | dleware CityGML,
knowledge graphs SOSA/SSN,

SPARQL

XAl Model outputs, Cloud, Deci- SHAP, LIME,
inferred decisions, sion Layer Counterfactuals,
sensitive predictions Attention Maps

Explainability supports two distinct goals in practical de-
ployments: internal validation and external accountability. En-
gineers use XAI tools to identify misclassification patterns,
investigate outliers, or monitor for concept drift. Simultane-
ously, decision-makers need interpretable justifications when
models prioritize interventions, recommend zoning changes,
or automate service eligibility [30].

Furthermore, public-facing applications must balance trans-
parency with privacy. Visual summaries and natural-language
explanations enhance user trust but must avoid leaking sen-
sitive correlations. In this context, XAI is not merely a
debugging tool but a bridge between statistical inference and
policy legitimacy [31].

Table [l summarizes the core categories of big data analytics
employed in smart city contexts, mapping each technique
to the corresponding data modalities, processing layers, and
associated technologies.

IV. APPLICATIONS AND USE CASES

Smart city analytics materialize through domain-specific
services, where contextual adaptation and operational rele-
vance are essential. This section outlines representative ap-
plications in mobility, sustainability, public safety, and citizen
services, illustrating how analytical methods align with tem-
poral constraints, governance structures, and feedback loops
unique to each domain.

A. Intelligent Mobility and Traffic Orchestration

Smart city mobility systems leverage real-time analytics to
optimize flow, enhance safety, and cut emissions. Adaptive
traffic signals use live GPS and loop detector data to ad-
just phases under low-latency constraints, often via fog-level
processing. At the system level, multimodal transit platforms
combine historical ridership, real-time vehicle locations, and
disruption alerts to optimize routing. Predictive models guide
dynamic fleet assignments and bus frequency adjustments,
integrating micro-mobility data for responsive service deliv-
ery. Semantic reasoning further supports unified management
across transport modes. Ontology-based models define route
hierarchies and service priorities, enabling automated violation

detection, emergency prioritization, and cross-agency coordi-
nation via interoperable data layers [32], [33]].

B. Environmental Monitoring and Urban Sustainability

Sustainability applications focus on long-term environmen-
tal monitoring and mitigation. Air quality platforms use dis-
tributed sensors and predictive models to detect pollution
hotspots, trigger alerts, and control public HVAC systems.
Seasonal trends extracted via time-series analysis inform zon-
ing and policy. Sensor-equipped waste bins report fill levels,
enabling batch analytics to uncover inefficiencies and predic-
tive routing to reduce overflows and fuel use. Incorporating
weather and event data refines scheduling. Water systems
integrate Water systems fuse SCADA streams with anomaly
detection to spot contamination or leaks, combining edge
detection, fog aggregation, and central validation for proactive
maintenance and resource efficiency [34], [35].

C. Public Safety and Emergency Response

Urban safety systems employ real-time sensing and infer-
ence for early detection and response. CCTV and mobile
signals support crowd monitoring, enabling anomaly detection
for event safety and evacuation planning. Object recognition
and trajectory analysis flag suspicious behavior or unautho-
rized access. Using semantic ontologies to infer risk zones
and allocate resources, disaster platforms integrate weather,
hydrological, and citizen data. Coupled with digital twins,
these systems simulate scenarios and assess impact. Emer-
gency services use historical data and environmental inputs
to forecast incidents and pre-position assets. Given the stakes,
such predictive decisions require transparency and auditability
to ensure trust in life-critical deployments [36], [37].

D. Citizen Services and Participatory Platforms

Citizen-centric analytics in smart cities integrates partic-
ipatory sensing, open data access, and personalized service
delivery. Mobile applications enable users to report urban is-
sues (e.g., noise, lighting, road defects), with natural language
processing (NLP) pipelines extracting structured information
and geo-referencing events for automated routing to relevant
authorities. Open data portals provide real-time and historical
datasets on mobility, air quality, and utilities, facilitating third-
party innovation and transparent governance. Usage patterns
and feedback analytics drive iterative service optimization
and expose systemic inefficiencies. Personalized dashboards
leverage urban data streams and XAI to generate context-
aware alerts and behavioral recommendations. For instance,
air quality warnings may prompt indoor activity suggestions,
accompanied by interpretable justifications. Privacy-preserving
methods such as differential privacy or federated aggregation
ensure anonymity while maintaining data utility for fine-
grained, citizen-level service adaptation [38]], [39].

Table [[II] consolidates the key urban domains addressed by
big data analytics in smart city contexts. It highlights the
main application areas, representative real-world use cases,



analytical techniques employed, and the corresponding execu-
tion layers. The table illustrates how heterogeneous methods
such as stream analytics, semantic reasoning, and XAI are
deployed across the urban stack, from edge processing of
sensor data to cloud-based decision support. Each use case
anchors the analytics in a concrete service setting, showcasing
data translation into actionable urban intelligence.

V. DISCUSSION AND FUTURE TRENDS

Several recent surveys have explored big data analytics in
smart cities, each emphasizing different layers of the system
stack. [40]] centers on policy adoption and socio-technical
theory, neglecting analytics pipelines and infrastructure. [41]]
focuses on spatiotemporal clustering and mobility modeling,
lacking architectural and semantic integration. [42[ adopts
a governance-oriented lens, highlighting temporal misalign-
ments without engaging technical detail.

Similarly, [43]] proposes a privacy- and consent-driven eth-
ical framework with case studies but omits analytics archi-
tecture. [44] classifies applications like crime prediction and
transport optimization without formal modeling or deployment
depth. [45]] surveys IoT-big data integration using layered
architectures, yet offers limited discussion on analytic diversity
and practical services. In contrast, the present survey provides
an end-to-end perspective, spanning data ingestion, real-time
and retrospective analytics, semantic modeling, and XAlI,
explicitly mapped to execution layers and urban domains.

By aligning big data techniques with infrastructure tiers
(edge, fog, cloud) and key applications (mobility, sustain-
ability, safety, citizen services), this work offers a structured
blueprint for building interpretable, latency-aware, and fault-
tolerant systems. It advances urban analytics by integrating
statistical learning, semantic reasoning, and distributed or-
chestration, addressing prior literature gaps and enhancing
theoretical clarity and practical relevance.

A key future trend in smart cities is the convergence of
semantic interoperability and real-time analytics. Adopting
knowledge graphs, ontologies (e.g., SOSA/SSN, CityGML),
and standardized APIs (NGSI-LD, SensorThings) will enable
seamless data exchange across domains like mobility, environ-
ment, and energy. Paired with reasoning engines, these tools
will support cross-domain inference and automated decision-
making. Their integration with DAG-based orchestration and
distributed stream processing (e.g., Apache Flink, Spark Struc-
tured Streaming) will foster scalable, context-aware urban
workflows [46]], [47].

Equally crucial is deploying XAI in critical services. As
predictive models inform traffic control, emergency response,
and environmental alerts, interpretability becomes essential for
engineers, officials, and citizens. Future platforms will embed
XAI techniques, such as SHAP, LIME, counterfactuals, and
attribution maps, into dashboards and user interfaces. With
growing regulatory pressure (e.g., GDPR, Al Act), pipelines
must ensure transparency and accountability by design, pro-
moting auditable, human-centered intelligence over opaque
model performance [48]], [49].

VI. CONCLUSIONS

This survey examined big data analytics in smart cities
through a system-oriented lens, integrating analytical tech-
niques with infrastructure execution and real-world applica-
tion domains. A five-dimensional taxonomy was introduced,
covering stream, batch, predictive, semantic, and explainable
analytics, and mapped across the edge—fog—cloud continuum.
The analysis extended to practical deployments in mobility,
environment, citizen services, and safety, highlighting the
interplay between data processing models, architectural con-
straints, and regulatory considerations. By comparing existing
surveys, this work identified fragmentation in prior approaches
and addressed the lack of end-to-end perspectives. The find-
ings offer a foundation for designing urban analytics systems
that are execution-aware, interoperable, and aligned with ac-
countability and transparency requirements. These insights can
inform the design of future urban analytics platforms that are
both scalable and context-aware.
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