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Abstract: Cognitive overload significantly impacts human performance in complex interaction settings, making its early
detection essential for the design of adaptive systems. This paper investigates whether gaze-derived features
can reliably predict overload states using supervised machine learning (ML). The analysis is based on an
eye-tracking dataset collected during cognitively demanding visual tasks, incorporating fixations, saccades,
and pupil diameter measurements. Five classifiers, Logistic Regression (LR), Naive Bayes (NB), Support
Vector Machine (SVM), XGBoost (XGB), and Multilayer Perceptron (MLP), were evaluated using stratified
training and testing splits, alongside 5-fold cross-validation, to identify the presence or absence of cognitive
overload. Among them, XGB achieved the highest performance, with an accuracy of 0.902, a precision
of 0.958, a recall of 0.821, an F1-score of 0.884, and an area under the ROC curve (AUC) of 0.956. The
findings confirm that gaze-derived features alone can reliably distinguish cognitive overload states. The study
also highlights trade-offs between model interpretability and predictive performance, with ensemble methods,
such as XGB, offering superior results, which support their use in attention-aware systems. Future directions
include personalization, temporal modeling, cross-task generalization, and the integration of adaptive feedback
mechanisms.

1 INTRODUCTION

The ability to monitor users’ cognitive states during
task execution is increasingly essential in domains
such as human-computer interaction (HCI), educa-
tion, simulation training, and safety-critical opera-
tions. When cognitive demand surpasses an indi-
vidual’s capacity, performance degradation becomes
likely, a phenomenon known as cognitive overload.
Detecting this overload in real time enables systems to
adapt their complexity, pacing, or feedback, thereby
reducing user frustration and enhancing overall sys-
tem usability (Kosch et al., 2023).

Recent advances in eye-tracking technology have
made it feasible to non-invasively capture detailed
gaze behavior, offering insights into attention, infor-
mation processing, and cognitive effort. Compared
to physiological measures such as electroencephalog-
raphy (EEG) or functional near-infrared spectroscopy
(fNIRS), gaze-based features are easier to integrate
into practical environments and impose a minimal
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burden on users. Research has shown that saccade
patterns, fixation durations, pupil dilation, and blink
rates are modulated by cognitive load, making them
useful input signals for classification models (Abbad-
Andaloussi et al., 2022),(Gorin et al., 2024).

ML has become the predominant approach for
modeling the relationship between gaze behavior and
cognitive states. Classical models such as SVM and
LR, as well as more recent deep learning and en-
semble methods, have been applied to various cog-
nitive estimation tasks. However, many studies rely
on multimodal inputs or domain-specific datasets,
which limits their generalizability (Aksu et al., 2024),
(Skaramagkas et al., 2023).

Despite the growing body of literature on cogni-
tive state monitoring, a gap remains in evaluating how
well ML models can generalize cognitive overload
detection using gaze features alone. Existing studies
often involve complex sensor setups or focus on spe-
cific environments (e.g., virtual reality (VR) or driv-
ing), which limits their applicability in more general
HCI scenarios (Ghosh et al., 2023).

This study is motivated by the need to support the
design of cognitively ergonomic interfaces in profes-



sional human-machine interactions. Predicting cog-
nitive overload from eye-tracking data enables sys-
tem designers to better align interface complexity
with user capabilities, thereby minimizing cognitive
strain while preserving interaction fluency. By iden-
tifying when users experience mental overload, de-
signers can proactively adjust information flow and
visual load, preventing frustration, reducing nega-
tive emotional responses, and maintaining effective
decision-making. Such predictive insights are crit-
ical for ensuring that high-demand operational en-
vironments remain user-centered, without hindering
human cognition or compromising task performance.
A supervised learning framework is adopted to in-
fer whether cognitive overload occurs or not from
gaze-derived features, assuming a unified and effi-
cient pipeline. To concretely position this work within
the current research landscape and clarify its method-
ological scope, the key contributions are summarized
as follows:

• Investigation of cognitive overload prediction us-
ing an existing dataset collected via eye-tracking
device during simulated print configuration tasks,
featuring gaze-derived metrics such as fixation,
saccade, and pupil dynamics.

• A consistent preprocessing pipeline involving sig-
nal cleaning, event reconstruction, and feature
standardization for downstream model training.

• Statistical and visual analysis of gaze fea-
tures, confirming the relevance of fixation, pupil,
and saccade metrics for distinguishing cognitive
states.

• Comparative evaluation of five supervised learn-
ing models (LR, NB, SVM, XGB, MLP) us-
ing standardized gaze-derived features, stratified
validation, and multiple performance metrics in-
cluding accuracy, precision, recall, F1-score, and
AUC.

• Demonstration of the discriminative power of
gaze-only features, showing that interpretable
models such as XGB can predict overload states
with high accuracy and AUC without requiring
multimodal inputs.

The remainder of this paper is structured as fol-
lows. Section 2 reviews relevant literature on cog-
nitive workload estimation using gaze-based features
and ML techniques. Section 3 details the proposed
methodology, including dataset overview, preprocess-
ing, feature analysis, model formulation, and evalu-
ation strategy. Section 4 presents and analyzes the
experimental results, providing a comparative assess-
ment of model performance across key metrics. Fi-

nally, Section 5 summarizes the main findings of this
work and outlines directions for future research.

2 Related Works

Recent research in cognitive workload estimation has
increasingly focused on gaze-based indicators due to
their unobtrusive nature and applicability in real-time
systems. Several studies have utilized ML to model
the relationship between eye behavior and cognitive
demand across various domains, including VR, driv-
ing simulation, and tasks that require attention.

A foundational dataset in this area is COLET,
which captures gaze behavior under multitasking and
time pressure across multiple task conditions (Ktis-
takis et al., 2022). By training classical classifiers
on fixation, saccade, and pupil-related features, the
authors reported classification accuracies of nearly
88%, validating gaze signals as effective predictors of
cognitive load. To advance generalization in uncon-
strained settings, the CLERA framework was intro-
duced as a unified deep model for eye-region track-
ing and load estimation (Ding et al., 2023). It in-
tegrates keypoint localization with workload regres-
sion in a single trainable architecture, outperforming
SVM-based approaches in naturalistic environments.
In the context of immersive training, cognitive load
was modeled during VR-based disassembly tasks us-
ing fixation duration and pupil dilation as inputs to
MLP classifiers (Nasri et al., 2024). Results indicated
high F1-scores, underscoring the discriminative value
of gaze dynamics as task complexity increased.

Multimodal approaches have also been explored.
One study combined gaze features with fNIRS sig-
nals and driving dynamics within a Convolutional
Neural Network (CNN) and Long Short-Term Mem-
ory (LSTM) pipeline, achieving near-perfect classi-
fication performance across n-back difficulty levels
(Khan et al., 2024). This integration of physiologi-
cal and behavioral data demonstrated the benefits of
signal fusion for robust load inference.

Gaze and pupillary data alone have proven suffi-
cient in low-latency contexts. A CNN-based model
was developed to detect stimulus onset using short
windows of pupil diameter and gaze vectors across
multiple cognitive domains (Dang et al., 2024). De-
spite domain variation, the models maintained re-
liable performance, especially for attention-oriented
tasks.

Workload prediction in gamified VR environ-
ments was also examined through a combination of
ocular and biosignals such as heart rate and galvanic
skin response (GSR) (Szczepaniak et al., 2024). Us-
ing SVM and Random Forest (RF) models, the study



reported F1-scores above 0.9, with interpretability
analysis highlighting pupil size and blink rate as dom-
inant predictors. Finally, a systematic benchmark
evaluated eleven ML algorithms on gaze-derived fea-
tures extracted under dual-task and time pressure con-
ditions (Skaramagkas et al., 2021). The study demon-
strated that lightweight models, such as RF, can match
more complex methods in both binary and multiclass
cognitive load classification.

A comparative summary of the aforementioned
studies is provided in Table 1, which outlines core ele-
ments, including domain, modality, feature types, and
model classes. As shown in the table, most prior work
emphasizes VR or driving contexts, often relying on
additional biosignals (e.g., fNIRS, GSR). In contrast,
this work focuses on fine-grained gaze-only signals in
a visual-cognitive task, leveraging both classical and
deep classifiers for robust binary prediction of over-
load states.

3 Methodology

A structured pipeline was followed to evaluate the
predictive capacity of gaze-derived features in detect-
ing cognitive overload. The key blocks of the process
are shown in Figure 1 and encompass dataset collec-
tion, preprocessing, model training, and evaluation.

3.1 Dataset Overview & Preprocessing

This study utilized a dataset collected from an eye-
tracking device during simulated print configuration
tasks that involved complex visual interactions. Gaze
data were recorded under ecologically valid con-
ditions using the Gazepoint GP3 system (Mannaru
et al., 2017; Clemson, 2021), capturing continu-
ous streams of fixations, saccades, pupil diameters,
and gaze coordinates. The features of the acquired
dataset are summarized in Table 2. Participants un-
derwent individual calibration procedures to ensure
the spatial accuracy of gaze mapping. The dataset in-
cludes recordings from nine users, supplemented by
demographic and interaction-related metadata (e.g.,
age, experience, task familiarity). It comprises 2,510
overload samples (43.9%) and 3,207 normal samples
(56.1%).

The raw data were preprocessed to remove miss-
ing or invalid samples using system confidence scores
and pupil validity flags. Blink episodes were ex-
cluded, fixation events were reconstructed, and sac-
cade magnitudes were derived from gaze displace-
ments. All time indices were aligned to session start
to support temporal consistency. This data supported

the supervised training and evaluation of cognitive
state prediction models based exclusively on visual
attention dynamics.

We examined gaze-derived features related to fix-
ation duration, saccadic behavior, pupil size, and gaze
distribution to explore behavioral signatures of cog-
nitive overload. These features were selected based
on prior literature and observed empirical variabil-
ity. Our aim was not to reduce dimensionality, but
to evaluate the extent to which feature distributions
differed across cognitive states in a statistically and
behaviorally meaningful way.

Figure 2 shows kernel density plots of the distribu-
tions for each gaze-derived feature across normal and
overload conditions. Fixation duration and saccade
magnitude demonstrate the most distinct separation,
with overload samples characterized by longer fixa-
tions and reduced saccade amplitudes. Pupil diameter
measures are generally elevated under overload, albeit
with moderate overlap in distribution. Features such
as blink-constricted pupil size, pupil motion magni-
tudes, and gaze coordinates exhibit less separability
but still reflect subtle class-dependent shifts. These
trends are consistent with findings linking prolonged
fixation, reduced eye movement, and pupil dilation to
cognitive load and sustained attention.

To assess the statistical separability of fea-
tures across cognitive states, we applied the
Mann–Whitney U test (Wall Emerson, 2023) to all
relevant features in the dataset. This non-parametric
test evaluates whether values in the two classes origi-
nate from distinct distributions without assuming nor-
mality. Features were then grouped based on whether
they exhibited statistically significant differences at
the p < 0.01 level:

• Significant features (p < 0.01): Most gaze-
derived features showed strong evidence of
distributional divergence between cognitive
states. These include FPOGD (fixation dura-
tion), SAC MAG, LPD, RPD (left/right pupil
diameter), LPMM, RPMM, BKDUR, BKPMIN,
gaze positions CX, CY. Other significant features
are AGE, TOT EXP, EXP PLAT, TIME, CNT,
FPOGS, FPOGID, BKID, and CS. These results
are consistent with the relevant literature, which
links these features to visual attention and cogni-
tive load. Their statistical significance supports
their inclusion in subsequent interpretation and
model development.

• Non-significant features (p ≥ 0.01): A small
number of features did not show statistically sig-
nificant differences. These include i) eye-specific
gaze coordinates LPCX, LPCY, RPCX, RPCY,
and ii) pupil validity flags LPV, RPV. The lim-



Table 1: Comparative overview of related works on cognitive workload estimation.

Study Domain Input Modalities Features Used Model Type Labels
(Ktistakis
et al., 2022)

Visual Search Eye Tracking Fixations, Sac-
cades, Pupil,
Blinks

RF, SVM, XGB NASA Task
Load Index

(Ding et al.,
2023)

Driving (natu-
ral)

Eye region video Keypoints, Pupil,
Blinks

Deep multitask
CNN

Binary

(Nasri et al.,
2024)

VR Training Eye Tracking Pupil Dilation,
Fixation Duration

MLP, RF NASA Task
Load Index
(Binary)

(Khan et al.,
2024)

Driving Sim Eye + fNIRS +
Vehicle data

Gaze, HbO2, Ve-
hicle
Signals

CNN-LSTM N-back levels

(Dang et al.,
2024)

Multi-domain Eye Tracking Pupil, Gaze Vec-
tors

Task-specific
CNNs

Stimulus Onset

(Szczepaniak
et al., 2024)

VR Game Eye + GSR +
Heart Rate

Saccades, Pupil,
Heart Rate, Elec-
trodermal Activ-
ity

SVM, RF Perceived Load

(Skaramagkas
et al., 2021)

Visual + Dual
Task

Eye Tracking 29 gaze metrics
incl. Blink, Fixa-
tion

RF, Extra Trees NASA Task
Load Index
(3-class)

This work Visual Task Eye Tracking
only

Fixation, Sac-
cade, Pupil

LR, NB, SVM,
XGB, MLP

Cognitive
Overload

Participant

Data 
pre-processinggaze data

user metadata

Model Training &
Evaluation 

(LR, NB, SVM,
XGB, MLP)

Predicted
Cognitive
Overload

Data collection
Eye-tracking device

(Gazepoint GP3)

Figure 1: Overview of the experimental pipeline.

ited separability of these features is likely due to
their dependence on external factors such as dis-
play layout or signal quality, rather than internal
cognitive state. While retained for modeling pur-
poses, these features were excluded from interpre-
tative and visual analyses due to their minimal be-
havioral relevance.

In summary, the analysis confirms that fixation,
saccade, and pupil-based features carry meaning-
ful behavioral signals related to cognitive overload.
These findings are supported by both statistical evi-
dence and observable patterns in the feature distribu-
tions. The dataset involved nine participants with di-
verse demographic and experiential backgrounds. Ta-
ble 3 summarizes each user’s age, total and platform-
specific professional experience, and the proportion
of time they were classified as cognitively overloaded.
The overload proportion is computed from the binary
class labels derived from eye-tracking features using
fixation duration and saccade magnitude thresholds.

Figure 3 presents exploratory correlations be-
tween overload proportion and selected participant-
level variables. A weak negative association is ob-

served between overload and both total and platform-
specific experience, suggesting that greater familiar-
ity with the task environment may reduce cognitive
strain. In contrast, pupil diameter and fixation dura-
tion tend to increase with overload, consistent with
established psychophysiological markers of elevated
mental effort. Saccade magnitude shows an inverse
trend, indicating more localized gaze behavior under
higher cognitive load.

3.2 Machine Learning Models

To formulate cognitive overload detection as a binary
classification problem, we consider five supervised
learning models, each defined by distinct mathemat-
ical foundations. Let x ∈ Rd denote a feature vector
derived from gaze behavior and participant metadata,
and y ∈ {0,1} represent the binary label indicating
cognitive state.

LR (Das, 2024) estimates the posterior probabil-
ity of class membership via the sigmoid function:
P(y= 1 | x) = 1

1+exp(−w⊤x−b)
where w∈Rd and b∈R

are the model parameters optimized by minimizing



Table 2: Structured summary of extracted features from eye-tracking data.

Feature(s) Type Description
Participant Metadata
UID Nominal Participant identifier for grouping or stratified sampling, not predictive.
AGE Numeric Age of the participants in years.
TOT EXP Numeric Total professional experience; reflects overall expertise.
EXP PLAT Numeric Experience specific to the simulated platform.
Fixation and Saccade Features
CNT Numeric Frame/sample index; useful for computing fixation order or timing.
TIME Numeric Time elapsed since session start; used for temporal analysis.
FPOGID Nominal Identifier for each fixation event.
FPOGS Numeric Fixation onset time, marking the start of a fixation.
FPOGD Numeric Fixation duration (ms); key indicator of cognitive effort.
SAC MAG Numeric Saccade magnitude; amplitude of movement between fixations.
SAC DIR Nominal Saccade direction; used in visual scanning analysis.
Pupil Metrics and Motion
LPD, RPD Numeric Left and right pupil diameters.
LPV, RPV Nominal Validity flags for pupil diameter measurements.
LPMM, RPMM Numeric Eye motion magnitude; may reflect fatigue or stress.
LPMMV, RPMMV Numeric Pupil motion velocity; complementary to LPMM, RPMM.
Blink Features
BKID Numeric Blink ID grouping samples during the same blink.
BKDUR Numeric Blink duration (ms).
BKPMIN Numeric Minimum pupil diameter recorded during a blink.
Gaze Coordinates and Confidence
CX, CY Numeric Central gaze coordinates on screen.
CS Numeric System-provided confidence score for gaze sample validity.
LPCX, LPCY Numeric Left eye gaze X/Y screen coordinates.
RPCX, RPCY Numeric Right eye gaze X/Y screen coordinates.
BPOGX, BPOGY Numeric Raw base point of gaze coordinates; system-derived, not used directly.

Table 3: Participant demographics and overload proportion.

UID Age TotExp PlatExp Overload
1 45 21.0 15.00 0.44
2 46 20.0 14.00 0.37
3 24 0.0 0.67 0.45
4 32 10.0 0.00 0.39
5 45 22.0 15.00 0.41
6 21 0.0 0.67 0.42
7 27 0.2 1.00 0.46
8 59 30.0 16.00 0.09
9 42 18.0 12.00 0.26

the regularized negative log-likelihood. It offers in-
terpretability and strong baseline performance in stan-
dardized feature spaces.

The SVM (Pisner and Schnyer, 2020) algo-
rithm constructs a maximum-margin hyperplane in
a (possibly nonlinear) transformed feature space.
Given a kernel function K(xi,x j) = ⟨φ(xi),φ(x j)⟩,
the soft-margin SVM solves: minw,b,ξ

1
2∥w∥2 +

C ∑
n
i=1 ξi s.t. yi(w⊤φ(xi)+b)≥ 1−ξi, ξi ≥ 0 where

C > 0 is a regularization parameter and φ(·) denotes
the implicit feature mapping.

The Gaussian NB (Chen et al., 2020b) classifier
assumes conditional independence among features.

Each feature x j is modeled as: P(x j | y = k) = N (x j |
µ jk,σ

2
jk) The posterior is derived using Bayes’ rule:

P(y = k | x) ∝ P(y = k)∏
d
j=1 P(x j | y = k) This model

is computationally efficient and effective under mod-
erate violations of the independence assumption.

XGB (Chen et al., 2020a) constructs an addi-
tive ensemble of regression trees. At iteration t,
the model prediction is: ŷ(t)i = ∑

t
k=1 fk(xi), fk ∈

F where F denotes the space of CART models.
The learning objective is: L(t) = ∑

n
i=1 ℓ(yi, ŷ

(t)
i ) +

∑
t
k=1 Ω( fk), Ω( f ) = γT + 1

2 λ∥w∥2 with ℓ the logis-
tic loss, T the number of leaves, and γ, λ regulariza-
tion parameters.

An MLP (Cinar, 2020) defines a parametric func-
tion f (x;θ) as a composition of linear projections and
nonlinear activations. For one hidden layer: f (x) =
σ2(W2 · σ1(W1x + b1) + b2) where σ1 is typically
ReLU and σ2 is the sigmoid activation for binary clas-
sification. Parameters θ = {W1,W2,b1,b2} are op-
timized by minimizing binary cross-entropy loss via
backpropagation and stochastic gradient descent.

Each model offers a unique inductive bias, en-
abling a comparative evaluation under the same fea-
ture representation and data distribution.



Figure 2: Distributions of 9 gaze-derived features across cognitive states (Normal vs. Overload), capturing fixation, saccade,
pupil, and spatial attention dynamics.

Figure 3: Participant-level correlations between overload proportion and gaze-derived features.

3.3 Model Training and Evaluation

Before model fitting, all numerical feature vectors
were standardized using z-score normalization, trans-
forming each feature x j according to the formula:
x′j =

x j−µ j
σ j

, where µ j and σ j denote the empirical
mean and standard deviation of the feature computed
over the training set (Friedman and Komogortsev,

2019). From an ML perspective, this preprocessing
step is essential for ensuring optimization stability in
models such as LR, SVM, and MLP, where unscaled
features can distort gradient magnitudes or impact
kernel evaluations.

To ensure statistical robustness and minimize
sampling bias, the dataset was first split into a strati-
fied 80/20 train/test partition, preserving class distri-



bution. Model selection and hyperparameter tuning
were performed via stratified 5-fold cross-validation
applied exclusively to the 80% training subset. Af-
ter identifying the best-performing configuration, the
selected model was retrained on the full training data
and evaluated on the held-out 20% test set. This two-
stage protocol ensures that final performance metrics
reflect generalization to unseen data.

Each algorithm was trained using the following
hyperparameter configurations. LR used the L-BFGS
optimizer with ℓ2-regularization and a maximum of
1000 iterations. The SVM employed an RBF kernel
with C = 1.0 and γ = scale, optimized via sequential
minimal optimization. Gaussian NB estimated class-
conditional statistics in closed form under a normal-
ity assumption. XGB utilized 100 boosted trees with
a learning rate of 0.1, tree complexity regularization
γ= 0.1, and L2 penalty λ= 1.0. Finally, the MLP was
trained using the Adam optimizer with ReLU activa-
tions, a single hidden layer of 100 units, a learning
rate of 0.001, mini-batches of 32, and 500 training
epochs.

Model performance was evaluated using stan-
dard metrics, which are defined based on the ele-
ments of the confusion matrix (Naidu et al., 2023),
with T P, T N, FP, and FN denoting true/false posi-
tives/negatives:

• Accuracy = T P+T N
T P+T N+FP+FN

• Precision = T P
T P+FP

• Recall = T P
T P+FN

• F1-score = 2 · Precision·Recall
Precision+Recall

AUC reflects the probability that a random over-
load instance is ranked above a normal one, offering
threshold-independent discrimination. Models were
implemented in Python 3.10 using scikit-learn
1.3.0 and XGB 1.7.6, executed on Ubuntu 22.04
with an Intel i7 CPU and 32GB RAM. GPU accel-
eration was not required.

4 Results and Discussion

The five ML models were evaluated on a stratified
20% test set using accuracy, precision, recall, F1-
score, and AUC. These metrics capture both overall
performance and sensitivity to cognitive overload.

Table 4 summarizes the performance of all eval-
uated models. XGB consistently outperformed the
others across all metrics, achieving the highest ac-
curacy (0.902), F1-score (0.884), and AUC (0.956),
highlighting its ability to model nonlinear dependen-
cies effectively. MLP also yielded strong results, par-

ticularly in recall and F1-score, indicating its capac-
ity to learn complex interactions between gaze-based
features. LR and SVM demonstrated comparable but
more conservative behavior, with high precision but
lower recall, while NB trailed slightly due to its sim-
plifying independence assumptions.

These findings highlight the value of using com-
plementary evaluation metrics beyond accuracy, as
F1-score and AUC provide a more nuanced view of
model behavior under class imbalance and subtle cog-
nitive effects. They also emphasize the importance
of model selection strategies that account for deploy-
ment constraints, including interpretability, respon-
siveness, and tolerance to false negatives. In this
context, ensemble-based models like XGB emerge
as highly dependable, whereas MLP presents a com-
pelling trade-off between adaptability and complex-
ity.

Beyond aggregate performance, consistency and
reliability are essential for cognitive state monitor-
ing in operational settings. While the reported re-
sults reflect strong overall performance, future work
may benefit from additional validation across multiple
data splits to reinforce generalization claims. Further-
more, calibration (i.e., how well predicted probabili-
ties reflect actual outcomes) is critical when system
actions depend on confidence thresholds. Incorporat-
ing calibration analysis can further improve deploy-
ment readiness in practical settings.

Table 4: Experimental results on the test set.

Model AccuracyPrecision Recall F1-score AUC
XGB 0.902 0.958 0.821 0.884 0.956
MLP 0.870 0.925 0.765 0.837 0.918
LR 0.851 0.910 0.723 0.805 0.894
SVM 0.846 0.902 0.714 0.797 0.889
NB 0.828 0.872 0.690 0.770 0.871

5 Conclusions

This study examined cognitive overload detection us-
ing only gaze-derived features, applying five super-
vised ML models to data from visually demanding
tasks. Among them, XGB delivered the best perfor-
mance, achieving an accuracy of 0.902, precision of
0.958, recall of 0.821, F1-score of 0.884, and AUC of
0.956. These results demonstrate that eye-based met-
rics, including fixations, saccades, and pupil diameter,
are sufficient for reliable binary classification, thereby
eliminating the need for multimodal input.

Beyond predictive performance, the findings high-
light the feasibility of deploying lightweight, gaze-



based models in real-time HCI systems. Unlike mul-
timodal approaches, this method offers a focused and
interpretable solution based solely on ocular behavior.

Models were trained on pooled gaze data from
multiple users, allowing intra-sample generalization
but not evaluating performance on unseen individuals.
Future work should investigate subject-independent
validation and extend the framework to support per-
sonalized modeling, multi-class classification, tem-
poral gaze dynamics, and cross-task generalization,
thereby enhancing adaptive, user-aware cognitive
monitoring.
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