Privacy-Preserving Record Linkage over Big Data
Platforms

Elias Dritsas, Maria Trigka, and Phivos Mylonas
University of West Attica, Egaleo 12243, Greece
{idritsas,mtrigka,mylonasf} @uniwa.gr

Abstract—Privacy-Preserving Record Linkage (PPRL) inte-
grates sensitive datasets from independent parties without ex-
posing personal identifiers. While secure multiparty computation
(SMC) and homomorphic encryption ensure strong privacy,
they suffer from high computational costs and poor scalability.
Encoding-based methods like Bloom filters are lightweight but
face quality issues at scale due to saturation and blocking
inefficiencies. This paper proposes a scalable, modular PPRL
framework over distributed platforms. It combines Bloom filter
encoding, Hamming-based locality-sensitive hashing (LSH), and
Dice similarity within a MapReduce pipeline on Hadoop dis-
tributed file system (HDFS). The system supports decentralized,
end-to-end linkage under semi-honest or covert adversarial
models. Experiments on datasets of 100,000-500,000 records show
linear scalability, 7.2x speedup over cryptographic baselines,
and recall degradation linked to filter saturation. A regression
model captures the execution—candidate volume relationship,
aiding system tuning. The framework supports high-throughput,
regulation-compliant linkage for healthcare, finance, and public
sector use.

Index Terms—Privacy-Preserving, Big Data, MapReduce,
Bloom Filter, Distributed Systems

I. INTRODUCTION

Record linkage is a fundamental data-integration task that
aims to identify semantically equivalent entities across dis-
parate datasets. In modern distributed systems, such as those
operated by hospitals, financial institutions, or government
agencies, this task becomes increasingly complex due to
privacy constraints and the lack of centralized data access.
The growing prevalence of privacy regulations, including the
General Data Protection Regulation (GDPR), the Health Insur-
ance Portability and Accountability Act (HIPAA), and other
regional frameworks, has made PPRL a critical requirement
for data interoperability [1].

Conventional solutions to PPRL frequently employ SMC,
homomorphic encryption, or trusted third parties to protect
sensitive identifiers during the linkage. Although these ap-
proaches offer strong theoretical privacy guarantees, they are
often computationally prohibitive and impractical for large-
scale deployments. In response, encoding-based techniques,
particularly Bloom filter transformations, have gained traction
for enabling approximate matching under weaker privacy as-
sumptions. These methods reduce the computational overhead
but introduce new challenges, such as filter saturation, hash
collisions, and inefficiencies in blocking strategies [2], [3]].

979-8-3315-0448-9/24/31.00 ©2024 1IEEE

To address these issues on a scale, PPRL systems must be
confronted with algorithmic and architectural challenges. En-
coding schemes must strike a balance between recall, privacy,
and resistance to frequency-based inferences, particularly in
the sparse or saturated filter regimes. Blocking techniques are
necessary to reduce candidate volume without compromising
sensitivity, even in the presence of heterogeneous or skewed
data distributions. Furthermore, the underlying execution in-
frastructure must ensure scalability, memory efficiency, and
minimal privacy leakage during distributed processing [4], [5].

A. Motivation and Contribution

The need for PPRL arises in various real-world contexts
such as inter-hospital data exchange, cross-border compliance,
and multi-institutional fraud detection, where sensitive data
must be integrated across decentralized databases without
compromising confidentiality. These scenarios impose strict
requirements on efficiency, scalability, and robustness against
semi-honest or covert adversaries, often within heterogeneous
or regulation-bound infrastructures. Existing solutions fre-
quently struggle to balance formal privacy guarantees with
practical performance, particularly when operating at scale or
across institutional boundaries.

To address these challenges, this study introduces a scalable
and modular framework for PPRL over distributed Big Data
platforms. It employs Bloom filter encoding to pseudonymize
quasi-identifiers across parties, combined with a Hamming-
based LSH scheme for efficient blocking within a MapReduce
environment. Similarity evaluation is performed using Dice
coefficients directly over the HDFS, enabling high-throughput
linkage without centralized coordination.

The system was empirically evaluated across deployment
settings and benchmarked against cryptographic and central-
ized baselines. Results indicate linear scalability, measurable
recall degradation tied to Bloom filter saturation, and signifi-
cant improvements in latency and resource efficiency.

The remainder of this paper is organized as follows: Sec-
tion reviews related works, Section describes the system
architecture, Section presents the experimental results, and
Section [V] concludes with future research directions.

II. RELATED WORKS

PPRL techniques span a range of trade-offs between pri-
vacy, scalability, and efficiency. Early solutions based on
SMC provided strong cryptographic guarantees but incurred

high computational costs. For example, the general-purpose
framework in [6] uses secret sharing with constant-round
protocols but is not tailored to record linkage. A mainzelliste-
based (MainSEL) system [[/] addresses PPRL specifically via
exhaustive encrypted comparisons without relying on trusted
third parties, yet omits blocking and cannot scale to large
datasets.

To mitigate computational overhead, approximate methods
employing Bloom filters have gained traction. The protocol
in [8]] combines Bloom filters and Dice similarity for secure
two-party linkage, but lacks distributed execution and does
not model the impact of filter parameters. A more scalable
design is presented in [9]], which implements four Bloom filter
workflows in Hadoop using MapReduce and Hamming LSH
(HLSH) or frequent pattern-based signatures (FPS) blocking.
However, the architecture is monolithic and lacks analytic
tools for modeling recall degradation or parameter tuning.

Empirical studies further validate PPRL’s potential. The
blinded evaluation in [[10] demonstrates a 99.3% match rate
using Bloom filters over real-world health data, though in
a static, non-distributed setup. In [[11]], Bloom filters were
used to accelerate structured query language (SQL) queries,
illustrating their scalability in large workloads, albeit outside
privacy contexts.

Alternative approaches include private set intersection (PSI)
and differential privacy (DP). In [[12], PSI protocols are com-
bined with Bloom filters and masking for secure linkage under
a semi-honest model. However, such methods typically operate
pairwise, lack blocking, and exhibit quadratic complexity. DP-
based systems like [13] inject noise into Bloom encodings
or similarity scores, enhancing privacy but degrading utility,
particularly in sparse or high-dimensional data.

In contrast to the aforementioned studies (summarized in
Table [[), the proposed system unifies Bloom filter encoding,
LSH-based blocking, and MapReduce-based similarity com-
parison into a fully modular, end-to-end PPRL pipeline. It
supports scalable, high-throughput linkage within Hadoop and
is the first to incorporate analytic models that relate execution
time to candidate volume and quantify recall degradation
due to Bloom filter saturation. These predictive capabilities
provide actionable tuning guidance, effectively bridging the
gap between theoretical scalability and practical deployment
in privacy-aware Big Data environments.

III. PROPOSED SYSTEM

This section presents the design of a scalable PPRL system
based on Bloom filter encoding and MapReduce execution
over the HDFS (Figure [I). The system consists of four core
stages: modeling the linkage problem, secure Bloom-based
encoding, blocking, similarity computation using MapReduce,
and complexity analysis.

A. Problem Statement and Adversarial Model

Let the two data custodians A and B hold disjoint private
datasets R4 = {r%A),...,r,(f‘)} and Rp = {TEB)7...,r£f)},
respectively. Each record consists of k quasi-identifying string

System Architecture

)
Bloom Filter Blocking Key
Private Encoding Projection

Records

Quasidentiiers % . %
R
mh e

Similarity
Computation
MapReduce
Jobs

Quasi-identifiers

Candidate Pairs

Fig. 1. System architecture of the proposed PPRL framework. Each data
custodian encodes local records into Bloom filters, stores them in HDFS, and
initiates two MapReduce stages: blocking and pairwise similarity comparison.

attributes, x = (x1,...,2%). The objective was to identify
all matching pairs (r; ,T§B)) such that both refer to the
same real-world entity, without exposing raw attribute values
between custodians.

We adopted a semi-honest adversarial model in which both
parties follow the protocol, but may attempt to infer infor-
mation from intermediate data. The only shared information
consists of Bloom filter representations, which are lossy, non-
invertible, and obfuscated via multiple hash functions. Under
practical parameterization, Bloom filters are computationally
difficult to invert and exhibit low information leakage.

From a formal perspective, the leakage function £(R) is
limited to a set of encoded Bloom filter vectors b(r) € {0, 1},
where » € R4 U Rp. Assuming uniform hash functions
and sufficient sparsity (i.e., expected density & < 0.5), such
representations are indistinguishable across inputs with equal
Bloom parameters. Hence, the system satisfies the bounded
leakage property, with no reconstruction guarantees available
to the adversary under standard cryptographic assumptions.

B. Secure Record Encoding

Each record r is transformed into a Bloom filter vector
b(r) € {0,1}! using a g-gram decomposition and p indepen-
dent hash functions. For each string attribute x;, the set of
g-grams is defined as

Qrj) ={zj[t it +q—1] |1 <t <|xj| =g+ 1} (D)

The variable ¢ indicates the position at which each q-gram
starts in the input string. By incrementing ¢, all the overlapping
g-grams of the string are generated.

The full set for a record is Q(r) = Ule Q(z;). Each g-
gram g € Q(r) is hashed using functions H = {hy,...,h,},
setting p positions in a binary vector of length [. The expected
number of 1-bits in the resulting Bloom filter is

E[s] = - (1 - (1 - ;)p'lw)l) . @)

TABLE I
SUMMARY OF RELATED WORKS.

Work Technique Encoding Blocking Distribution Scalability Differentiation
18] Secure multi-party PPRL Bloom Filter + Dice X X v No MapReduce or modular blocking
j9] Four MapReduce workflows Bloom Filter HLSH / FPS v Partial No saturation model or end-to-end match-
ing
j7] Encrypted exhaustive SMC Encrypted Bloom Filters X X X Strong privacy, not scalable to large N
j6] General-purpose SMC Secret Sharing X X v Cryptographic MPC only, no linkage logic
j 10] Blinded PPRL evaluation Bloom Filter Manual block- X v Operational validation only, no pipeline
ing
[11] Query acceleration in Re- Bloom Filter Indexes X X X Not privacy-oriented, no linkage pipeline
lational Database Manage-
ment System
[12] PSI with masked Bloom fil- Bloom Filter + Masking X X X Formal PSI under semi-honest model, no
ters blocking or distributed support
j13] DP for PPRL Noisy Bloom Filters X X X DP-based protection with accuracy degra-
dation in sparse domains
This MapReduce-based modular Bloom Filter LSH + FPS v v Full pipeline, scalable, saturation-aware,
Study PPRL regression-based tuning, leakage-bounded

The expected bit density in equation reflects the prob-
abilistic nature of the Bloom filter construction, which is
implemented in practice as a distributed MapReduce pipeline:
each mapper emits encoded vectors, and reducers validate
them and write the output to the HDFS. In practice, records
with missing or invalid attribute values were discarded before
encoding, and local duplicates may be filtered to improve the
blocking efficiency and avoid self-matches.

C. Blocking and Similarity Matching

To avoid a full cross-product comparison (n - m), the
system uses a projection-based blocking scheme. Let M =
{t1,...,ts} be a projection mask that selects s bit positions,
shared by both parties prior to execution. For any Bloom filter
b, the blocking key is

’L/J(b) = (b[ﬁll’ b[t2]v) b[ts])' 3)

Records with identical blocking keys were grouped together.
Within each block, candidate pairs (b;,b;) were compared
using normalized Hamming similarity

_ popcount(b; & b;)
; .

Pairs with sim > 6 are retained. This logic is implemented
in two MapReduce jobs: the first assigns blocking keys, and
the second executes comparison and filtering.

As illustrated in Figure [T} the system executes each phase
in a distributed manner, with all intermediate outputs stored
in the HDFS between the stages.

Figure [2] illustrates the modular execution flow of the
proposed PPRL pipeline over a distributed Hadoop infras-
tructure. Custodian A and Custodian B independently encode
their datasets into Bloom filter representations and store them
in the HDFS. The pipeline is composed of two sequential
MapReduce jobs: the first performs LSH-based blocking to
limit the number of candidate comparisons, and the second
executes a Dice similarity evaluation within each candidate
block. Intermediate results between stages are stored in the

HDEFS, enabling scalable, fault-tolerant execution without cen-
tralized coordination. This design facilitates efficient, high-
throughput linkage across distributed nodes while preserving
privacy guarantees.

Custodian A Custodian B

Bloom Filter Encoding

HDFS Storagei

LSH-Based Blocking MapReduce Job 1

HDFS Storagel

Dice Similarity Matching MapReduce Job 2

Matched Pairs

Fig. 2. Modular data flow in the proposed PPRL pipeline.

D. Complexity Analysis

The computational complexity of the proposed system arises
from three principal stages: record encoding, blocking, can-
didate generation, and similarity comparisons. Each phase
contributes to runtime and resource utilization, depending on
the dataset size and Bloom filter parameters [|14].

During encoding, each record underwent g-gram extraction
across k string attributes, followed by hashing using h inde-
pendent functions. This process incurred a cost of O(gkh) per

record. For datasets R 4 and Rp of sizes n and m, respectively,
the total encoding complexity is given by:

Tencode = O ((n+m) - gkh) . (5)

To reduce the number of pairwise comparisons, the system
applies a projection-based blocking scheme using a mask M
of s bit positions. Each Bloom filter is mapped to a blocking
key in O(s) time. Records with identical keys were grouped
into blocks, within which all pairs were compared. Let K
denote the number of resulting blocks, and let n;, m; be the
number of records in block 7 from R4 and Rp, respectively.
The total number of candidate comparisons is then

K
B=Y n-m. (©)
i=1

For each candidate pair, the system computes Hamming
similarity by performing an XOR operation and counting the
set bits. This operation has cost O(l), where [is the length
of the Bloom filter. Therefore, the total cost of similarity
comparisons across all candidate pairs becomes

Tmatch = O(B . l) (7)

By combining the encoding and comparison stages, the end-
to-end complexity of the system can be expressed as

Tiota = O ((n+m) - gkh+ B -1). (8)

This expression highlights the sensitivity of the system
to the number of candidate comparisons B. In practice, B
is orders of magnitude smaller than n - m due to effective
blocking; however, it remains the dominant factor in the
runtime. As such, Bloom filter sparsity and blocking selectivity
play a crucial role in ensuring scalability.

IV. EXPERIMENTAL ANALYSIS

This section presents the experimental evaluation of the
proposed system in terms of its performance, scalability,
and linkage quality. All measurements were obtained through
controlled deployments in a distributed Hadoop environment
using datasets of increasing size and known ground-truth
correspondence.

A. Experimental Setup

The proposed system was deployed on a homogeneous
Hadoop cluster consisting of five nodes. Each node was
equipped with two Intel Xeon E5-2640 processors operating
at 2.4 GHz, 32 GB RAM, and 1 TB local SSD storage.
The nodes were interconnected through a dedicated 1 Gbps
Ethernet switch. Apache Hadoop version 2.7.4 was used, with
YARN as the resource manager and HDFS configured with a
replication factor of three. All MapReduce jobs were executed
using the default fair scheduler, without custom parameter
tuning or resource allocation adjustments.

Three dataset configurations were prepared to evaluate
the scalability and linkage accuracy of the system. Each
configuration involved disjoint datasets from two custodians,

denoted R4 and Rp, with a known set of overlapping records
exclusively used for evaluation. Configuration E1 contained
100,000 records in R4 and 10,000 in Rp; E2 consisted
of 200,000 and 100,000 records respectively; and E3 used
500,000 and 100,000 records. All records were encoded using
Bloom filters with the following fixed parameters: q-gram
length ¢ = 2, filter length | = 512, number of hash functions
p = 4, and the Hamming similarity threshold 6 = 0.80.
These values were selected following established configura-
tions in the literature [8]], [[10], and were empirically validated
to preserve recall above 90% while maintaining acceptable
saturation ratios across all dataset sizes. Each experiment was
executed five times to assess variability and ensure statistical
significance. The reported values correspond to the arithmetic
means.

B. Evaluation

The performance evaluation focused on execution time
(T'), communication overhead, and linkage quality. The ex-
ecution time was measured as the wall-clock duration from
data ingestion to the output of the matched pairs, in-
cluding all stages of the pipeline. Communication over-
head was quantified as shuffle volume (5), extracted from
Hadoop’s reduce_shuffle_bytes counter and reported
in megabytes [15].

The linkage quality was assessed using standard classifi-
cation metrics. Let true positive (T'P) denote the number of
correctly matched pairs, false positive (F'P) the number of
incorrect matches, and false negative (F'IN) the number of
missed true matches [16]]. The precision, recall, and F1-score
are defined as follows:

Precision = L Recall = L
) TP+ FP’ TP+ FN’
Fl — 2 - Precision - Recall ©)

Precision + Recall

The Bloom filter saturation ratio 4 was used to estimate
the encoding efficiency, which was computed as the average
fraction of bits set per filter:

1 [16(r)1
0= 1= —.
A

Let K be the number of blocking buckets. If each block @
contains n; and m; records from R4 and Rp, respectively,
the total number of candidate comparisons is:

K
i=1

C. Results and Discussion

(10)

(1)

Table [II] reports the performance and linkage quality across
three configurations. As the dataset size increases from El
to E3, the execution time 7' grows from 158 s to 958 s,
while the number of candidate comparisons B increases from
2.7 x 10° to 53.2 x 10°. This nonlinear growth in B arises
from the increased block density and g-gram redundancy,
leading to more intra-block comparisons. The shuffle volume

TABLE II
PERFORMANCE AND LINKAGE METRICS.
ID| |Ral| IRl T S B Precision| Recall | F1
s | MB)| M) | (%) (%) (%)
E1| 100k| 10k | 158 | 214 | 2.7 99.12 96.80 | 97.94
E2| 200k| 100k| 426 | 84.7 | 13.4 | 98.77 95.26 | 96.98
E3| 500k| 100k| 958 | 197.3| 53.2 | 98.20 92.11 | 95.05

S also increases tenfold, reflecting the increased 1/O and
communication overhead.

Despite this scaling, the system maintained a strong linkage
quality. The precision remained above 98% in all settings, and
the Fl-score only declines slightly from 97.94% to 95.05%.
The recall drop in E3 (to 92.11%) is attributed to Bloom
filter saturation: as the record size increases, more g-grams are
hashed into each filter, increasing bit collisions and reducing
the matching selectivity.

These metrics also provide insights into the blocking per-
formance of the LSH scheme. The number of candidate
comparisons B is several orders of magnitude smaller than
the Cartesian product |R4|-|Rp|, demonstrating that the LSH
scheme achieves substantial pruning without compromising
the sensitivity. Across all three experimental setups, recall
remained consistently high, above 92%, indicating that very
few true matches were lost due to blocking-induced false
negatives. Furthermore, the recall remains robust even when
the ratio ‘Ig—;}l varies from 10:1 in EI to 2:1 in E2 and 5:1 in
E3, suggesting that the blocking mechanism scales well under
moderate class imbalance and skewed distributions.

To assess the runtime complexity theoretically derived in
Section III.LD, we performed a linear regression between T’
and B, resulting in:

T =1517-B+163.64 with R?2 =0.982. (12)

This model was fitted using the three experimental config-
urations (E1-E3) listed in Table A linear least-squares
regression yielded the slope and intercept, reflecting the per-
comparison cost and fixed system overhead, respectively. The
results, especially the R? value of 0.982, empirically confirm
that execution time is dominated by the O(B - [) term, which
is consistent with the theoretical complexity discussed in
Section ITI.D. As shown in Figure[3] the runtime scales linearly
with the number of candidate comparisons, with no significant
deviation from linearity observed across the tested range.
This regression model could enable practitioners to anticipate
execution time under different blocking granularities and data
volumes, supporting informed system tuning and deployment
planning.

However, for larger datasets, reducing the memory pres-
sure or skewed key distribution may introduce bottlenecks.
This highlights the need for load-balancing mechanisms on
a higher scale. In our experimental runs, we observed a
moderate variance in reducer execution times, with the slowest
reducer lagging behind the average in configuration E3. This
imbalance is attributed to the key skew introduced by the
frequent g-gram patterns, which can result in uneven candidate

group sizes. Although no explicit mitigation was applied in
the current pipeline, preliminary experiments with hash-based
partitioning and sampling-based pre-balancing showed a slight
improvement in tail reducer time.

1000

900 -

800 [
observed

——fitted

600 -

Execution time T (s)

400 [

300 -

100 I I I I I
0 10 20 30 40 50 60

Number of candidate comparisons - B (millions)

Fig. 3. Execution time 7" versus number of candidate comparisons B.

Figure [4] shows that the recall degrades as the Bloom filter
saturation ratio ¢ increases. From El to E3, ¢ increased from
0.1875 to 0.2055, correlating with a 4.69% absolute drop in
recall. To further quantify this relationship, we fitted a linear
model of the form recall ~ 1 — « - 4, yielding o = 2.543
with R2 = 0.993. The fitted line closely approximates the
observed trend, indicating that a 0.01 increase in § resulted in
a recall loss of approximately 0.025 within the tested interval.
Although the model captured the overall degradation pattern
well, adding a 95% confidence interval and residual plots
could reveal local variations and potential heteroskedasticity,
especially in larger or more diverse datasets. These findings
confirm that maintaining § < 0.22 is essential for preserving
linkage sensitivity.

observed
0.965 fitted

0.955

0.95 |

0.945 -

Recall

0.94 -

0.935

0.93 [

0.925 -

0.92 I I I I I I I I I |
0.186 0.188 0.19 0.192 0.194 0.196 0.198 0.2 0.202 0.204 0.206

Bloom filter saturation §

Fig. 4. Recall as a function of Bloom filter saturation ratio ¢.

Table [[II| compares the proposed system with two baseline
approaches: a centralized record linkage (CRL) and an SMC-
based method. CRL, lacking distributed execution, required
approximately 3.4x more time than the proposed pipeline.
Despite achieving a slightly higher F1-score (98.12%), it offers
no scalability and imposes significantly higher CPU utilization
(98%), compared to 76% of the proposed method. The SMC-
based solution, which provides formal cryptographic guar-
antees, suffered from 7.2x slower execution, 1.65x higher
shuffle volume, and 1.17x higher CPU load. Although it
is appropriate for scenarios requiring strong formal privacy
(e.g., GDPR level-3 settings in inter-institutional data sharing),
SMC remains impractical for large-scale deployment. By con-
trast, the proposed framework achieves near-interactive perfor-
mance with pseudonymization-grade privacy and substantial
efficiency in both runtime and resource usage. In particular,
the Bloom filter encodes the conceals of attribute values
through non-invertible hashing with randomized collisions,
which mitigates direct re-identification under typical linkage
attacks. Although this approach does not provide formal
privacy guarantees such as DP or provable leakage bounds, it
offers practical protection against passive adversaries without
auxiliary background knowledge, which is consistent with the
pseudonymization requirements defined in GDPR Recital 26
[17]].

In conclusion, the results confirm that the system meets
its design objectives: runtime complexity scales linearly with
candidate volume, filter saturation impacts recall in a quan-
tifiable manner, and privacy-performance trade-offs remain
controllable under realistic configurations. Although the tested
dataset configurations were carefully designed to reflect prac-
tical deployment scenarios with controlled variability in size
and overlap, we acknowledge that a broader generalization of
the findings requires further experimentation.

TABLE III
COMPARISON WITH BASELINE METHODS (100K x 10K)
Method T (s) F1 (%) | S (MB) | CPU (%)
Proposed 158.3 97.94 214 76
CRL 532.5 98.12 0 98
SMC-based | 1147.2 94.65 35.2 89

V. CONCLUSION AND FUTURE WORK

This paper introduced a scalable, privacy-preserving frame-
work for approximate record linkage over distributed Big
Data infrastructures. By combining Bloom filter encoding
with MapReduce-based blocking and matching on HDFS, the
system enables efficient linkage of quasi-identifiers without
exposing raw data. Empirical evaluation demonstrated linear
runtime scalability, precision above 98.2%, and recall above
92.1%, with a 7.2x speedup over SMC-based methods. A
regression model confirmed the theoretical complexity and
quantified recall degradation as a function of Bloom filter
saturation, offering practical tuning guidance.

Future work will focus on extending the system’s robustness
under heterogeneous data, skewed distributions, and adver-

sarial perturbations. Emphasis will be placed on modeling
blocking-induced false negatives, formally bounding leakage,
and integrating DP mechanisms. Further optimization will
target reducer load balancing and adaptive blocking. Finally,
domain-specific extensions for regulated data-sharing environ-
ments and federated registries will be explored.

REFERENCES

[11 A. Gkoulalas-Divanis, D. Vatsalan, D. Karapiperis, and M. Kantarcioglu,
“Modern privacy-preserving record linkage techniques: An overview,”
IEEE Transactions on Information Forensics and Security, vol. 16, pp.
4966-4987, 2021.

[2] I. Gamiz, C. Regueiro, O. Lage, E. Jacob, and J. Astorga, “Challenges
and future research directions in secure multi-party computation for
resource-constrained devices and large-scale computations,” Interna-
tional Journal of Information Security, vol. 24, no. 1, pp. 1-29, 2025.

[3] W. Yin, L. Yuan, Y. Ren, W. Meng, D. Wang, and Q. W. W. Yin,
“Differential cryptanalysis of bloom filters for privacy-preserving record
linkage,” IEEE Transactions on Information Forensics and Security,
2024.

[4] F. Armknecht, Y. Heng, and R. Schnell, “Strengthening privacy-
preserving record linkage using diffusion,” Proceedings on Privacy
Enhancing Technologies, vol. 2023, pp. 298-311, 2023.

[5] A. Karakasidis and G. Koloniari, “More sparking soundex-based
privacy-preserving record linkage,” in International Symposium on Al-
gorithmic Aspects of Cloud Computing. Springer, 2022, pp. 73-93.

[6] I. Damgard and Y. Ishai, “Scalable secure multiparty computation,” in
Annual International Cryptology Conference. Springer, 2016, pp. 501—
520.

[71 S. Stammler, T. Kussel, P. Schoppmann, F. Stampe, G. Tremper,
S. Katzenbeisser, K. Hamacher, and M. Lablans, “Mainzelliste secureep-
ilinker (mainsel): privacy-preserving record linkage using secure multi-
party computation,” Bioinformatics, vol. 38, no. 6, pp. 1657-1668, 2022.

[8] D. Vatsalan and P. Christen, “Scalable privacy-preserving record linkage
for multiple databases,” in Proceedings of the 23rd ACM international
conference on conference on information and knowledge management,
2014, pp. 1795-1798.

[9] D. Boussis, E. Dritsas, A. Kanavos, S. Sioutas, G. Tzimas, and V. S.

Verykios, “Mapreduce implementations for privacy preserving record

linkage,” in Proceedings of the 10th Hellenic Conference on Artificial

Intelligence, 2018, pp. 1-4.

S. Randall, H. Wichmann, A. Brown, J. Boyd, T. Eitelhuber, A. Mer-

chant, and A. Ferrante, “A blinded evaluation of privacy preserving

record linkage with bloom filters,” BMC medical research methodology,

vol. 22, no. 1, p. 22, 2022.

E. Chioti, E. Dritsas, A. Kanavos, X. Liapakis, S. Sioutas, and A. Tsaka-

lidis, “Bloom filters for efficient coupling between tables of a database,”

in Engineering Applications of Neural Networks: 18th International

Conference, EANN 2017, Athens, Greece, August 25-27, 2017, Pro-

ceedings. Springer, 2017, pp. 596—608.

A. Adir, E. Aharoni, N. Drucker, E. Kushnir, R. Masalha, M. Mirkin,

and O. Soceanu, “Privacy-preserving record linkage using local sensi-

tive hash and private set intersection,” in International Conference on

Applied Cryptography and Network Security. Springer, 2022, pp. 398—

424,

T. Nébrega, C. E. S. Pires, and D. C. Nascimento, ‘“Blockchain-

based privacy-preserving record linkage: enhancing data privacy in an

untrusted environment,” Information Systems, vol. 102, p. 101826, 2021.

L. Luo, D. Guo, R. T. Ma, O. Rottenstreich, and X. Luo, “Optimizing

bloom filter: Challenges, solutions, and comparisons,” IEEE Communi-

cations Surveys & Tutorials, vol. 21, no. 2, pp. 1912-1949, 2018.

Y. Guo, J. Rao, D. Cheng, and X. Zhou, “ishuffle: Improving hadoop

performance with shuffle-on-write,” IEEE transactions on parallel and

distributed systems, vol. 28, no. 6, pp. 1649-1662, 2016.

G. Naidu, T. Zuva, and E. M. Sibanda, “A review of evaluation metrics in

machine learning algorithms,” in Computer science on-line conference.

Springer, 2023, pp. 15-25.

M. Finck and F. Pallas, “They who must not be identi-

fied—distinguishing personal from non-personal data under the gdpr,”

International Data Privacy Law, vol. 10, no. 1, pp. 11-36, 2020.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

	Introduction
	Motivation and Contribution

	Related Works
	Proposed System
	Problem Statement and Adversarial Model
	Secure Record Encoding
	Blocking and Similarity Matching
	Complexity Analysis

	Experimental Analysis
	Experimental Setup
	Evaluation
	Results and Discussion

	Conclusion and Future Work
	References

