
Efficient Query Filtering in Big Data Using
Entropy-Based Learned Indexing

Elias Dritsas, Maria Trigka, and Phivos Mylonas
University of West Attica, Egaleo 12243, Greece

{idritsas,mtrigka,mylonasf}@uniwa.gr

Abstract—This paper explores the use of neural networks as
lightweight surrogates for guiding value localization over numeric
attributes in analytical data systems. Instead of modeling key-
position mappings directly, we frame the problem as a multi-class
classification task over discretized bins, enabling approximate
query support without explicit index structures. The model is
trained in a self-supervised manner using pseudo-labels from
data-driven binning schemes, requiring no manual annotation.
Experiments on three real-world datasets show that our method
achieves classification accuracy above 94.7% for coarse binning
(K = 5), with consistent F1 scores and inference times under 0.6
milliseconds (ms). The approach remains robust under skewed
distributions using entropy- or quantile-based binning and is
well suited to latency-sensitive tasks such as filtering or partition
pruning. While this study focuses on univariate attributes, the
method is extensible to multivariate scenarios via Multilayer
Perceptrons (MLPs) or attention-based models. Overall, neural
surrogates offer a practical complement to traditional indexing
in approximate or edge-driven analytical workloads.

Index Terms—Learned Index Structures, Numeric Attribute
Classification, Binning-Based Surrogate Indexing, Query Selec-
tivity Estimation

I. INTRODUCTION

Recent advances in machine learning have opened new
opportunities for rethinking core data management compo-
nents. One of the most promising directions is augment-
ing or partially replacing traditional indexing structures with
learned models that approximate the mapping between query
predicates and data value distributions. While this idea has
been explored extensively for key-based access paths and
range indexes, recent studies have highlighted its potential
in analytical systems, particularly for numeric attributes with
skewed or evolving distributions [1], [2].

In such contexts, indexing is often used not for exact tuple
retrieval but as a lightweight mechanism for guiding query
planners, filtering out irrelevant data blocks, or estimating
selectivity. These tasks can tolerate approximation and benefit
from adaptive models that capture the underlying semantics of
the data. Compact neural classifiers trained to predict coarse
value localization, referred to as surrogate indexes in this work,
offer a practical alternative. These surrogate models do not aim
to replace transactional indexes such as B-Trees or hash tables.
Instead, they serve as inference-based mechanisms for query
pruning or selectivity guidance in analytical pipelines [3], [4].

However, deploying learned surrogates in real-world sce-
narios imposes strict constraints: low-latency inference, ro-

bustness across distributions, and minimal memory footprint.
These requirements rule out deep or recurrent architectures, as
well as supervised training pipelines that rely on labeled data
[5], [6].

A. Motivation and Contribution

Analytical queries frequently involve filtering over numeric
attributes, e.g., salary, temperature, or disk usage, where clas-
sical indexing mechanisms either introduce high maintenance
costs or fail to provide effective pruning, especially under
long-tailed or skewed distributions. Moreover, in modern
data workflows deployed on resource-constrained platforms,
traditional indexes may be infeasible. Thus, a model that
can learn to approximate value localization over discretized
bins using unlabeled data is highly desirable. This motivates
the investigation of neural surrogate indexing as a viable
alternative to static histograms or manually tuned rules.

This paper introduces a neural classification framework that
acts as a surrogate index for univariate numeric attributes. The
key contributions are as follows:

• We formalize the transformation of numeric indexing
into a multi-class classification problem using entropy-
or quantile-based binning schemes.

• We implement a pseudo-supervised training strategy that
avoids reliance on labeled data, enabling self-supervised
model construction.

• Extensive evaluation across three real-world datasets
demonstrates classification accuracy exceeding 94.7% for
K = 5 bins, with average inference time below 0.6 ms.

• The model is particularly robust to skewed distribu-
tions and can be extended to multivariate settings using
lightweight fully-connected architectures (e.g., multilayer
perceptrons).

These results suggest that neural surrogates offer a simple,
portable, and low-latency alternative to traditional indexing
mechanisms in analytical workloads. While they do not sup-
port precise retrieval or incremental updates, they excel in
approximate filtering, partition pruning, and latency-sensitive
analytics.

The remainder of this paper is organized as follows: Sec-
tion II reviews related work on learned indexing mecha-
nisms and neural surrogates. Section III outlines the proposed
methodology. Section IV presents the experimental setup,
results, and analysis. Finally, Section V concludes the paper
and outlines future research directions.979-8-3315-0448-9/24/31.00 ©2024 IEEE

II. RELATED WORKS

Learned index structures have gained significant attention as
alternatives to traditional data access methods, particularly for
range queries over ordered data. The seminal work by Kraska
et al. [7] introduced the concept of viewing indexing as a
learned problem, proposing the recursive model index (RMI)
that uses a hierarchy of models, such as linear regression or
neural networks, to approximate the cumulative distribution
function (CDF) of the keys. This approach demonstrated
promising improvements in lookup latency and index size
compared to B-trees, inspiring a wide array of subsequent
methods that adopt or extend its core idea.

Building upon this foundation, Ferragina et al. [8] presented
the piecewise geometric model (PGM) index, which constructs
a piecewise linear approximation of the CDF while main-
taining provable worst-case guarantees. Unlike the RMI, the
PGM index provides log-time upper bounds for searches and
supports dynamic updates with minimal memory overhead. Its
compressed representation and predictable performance suit
both in-memory and disk-based workloads, offering a more
stable alternative to neural-based learned indexes.

Ding et al. [9] proposed ALEX, an adaptive and updatable
learned index that incorporates a custom data structure for
leaf node management and uses localized model retraining
upon updates to address the limitation of static datasets. This
approach bridges the gap between high-performance learned
indexing and the requirements of dynamic workloads, support-
ing efficient insertions, deletions, and range scans without a
complete retraining cycle.

In parallel, Kipf et al. [10] introduced RadixSpline, a
lightweight hybrid method that fuses radix partitioning with
spline-based interpolation. RadixSpline avoids the overhead of
recursive model hierarchies by enabling one-pass construction
and low-latency querying. It is suitable for streaming and real-
time ingestion settings where construction speed is critical.
While its accuracy may degrade on skewed distributions, its
efficiency in deployment scenarios with frequent re-indexing
remains a strong advantage.

Mishra et al. [11] extended this direction with RUSLI, a
real-time updatable spline-based index optimized for environ-
ments requiring rapid ingestion and index refresh. RUSLI
achieves low update latency by incrementally maintaining
spline segments and adjusting them with minimal recomputa-
tion. It is particularly effective in high-frequency time series or
logging applications where indexing throughput is as essential
as query performance.

Complementing these contributions, Sun et al. [12] con-
ducted a comprehensive experimental evaluation of learned
index structures, systematically comparing RMI, ALEX, PGM,
and RadixSpline across diverse datasets and workloads. Their
findings revealed nuanced trade-offs between memory usage,
construction time, query latency, and accuracy, underscoring
the importance of workload-specific model selection and pa-
rameter tuning.

While prior works focus on approximating key-to-position
mappings via regression models, our approach redefines in-

dexing as a multi-class classification problem over discretized
value ranges. The method learns a compact neural classifier
that predicts the bin label corresponding to a given input
value, thereby enabling surrogate value localization without
maintaining an explicit index structure. Rather than replacing
traditional transactional indexes, it serves as a lightweight,
inference-driven mechanism tailored to analytical contexts
where approximate filtering or bin-level selectivity estima-
tion is sufficient for guiding downstream processing. This
formulation enables self-supervised training through pseudo-
labeling and supports sub-millisecond inference, making it
well-suited to edge analytics, memory-constrained environ-
ments, and exploratory querying. Although the method does
not offer worst-case performance guarantees or incremental
updates, it provides a practical and portable alternative for
static or semi-static workloads where ease of deployment and
fast approximation are prioritized. A summarized comparison
of the related works and the present method is provided in
Table I.

III. METHODOLOGY

This section details the complete methodology for trans-
forming unlabeled numeric data into a trainable classification
task that emulates indexing behavior. The proposed approach
integrates normalization, pseudo-labeling, and lightweight
neural modeling to construct compact and efficient predictors
capable of approximating value localization through bin-level
classification.

A. Index-Oriented Learning Pipeline
Figure 1 illustrates the full learning workflow. Initially, raw

numeric values are scaled to the unit interval [0, 1], eliminating
dataset-specific range dependencies and enabling consistent
discretization. These normalized values are then partitioned
into equally sized bins, effectively simulating index segments.
The resulting pseudo-labeled data are used to train a compact
neural classifier that learns the mapping from normalized input
to bin index. At inference time, the model provides efficient
value localization through classification outputs, thereby mim-
icking index-like behavior with constant-time predictions.

We consider a one-dimensional numeric attribute X =
{x1, x2, . . . , xn} ⊂ R extracted from a relational dataset. As
the data are unlabeled, we reformulate the indexing task as
a supervised learning problem via a pseudo-labeling scheme
that captures the positional structure of values.

To ensure comparability across attributes and datasets, we
apply min-max normalization:

x′
i =

xi −min(X)

max(X)−min(X)
,

thereby mapping all inputs to the unit interval [0, 1]. In degen-
erate cases where the input lacks variability (i.e., min(X) =
max(X)), we assign x′

i = 0.5 for all i, indicating uniformity.
We then partition the interval [0, 1] into K equal-width bins.

Each bin Bj spans:

Bj =

[
j − 1

K
,
j

K

)
for j < K, BK =

[
K − 1

K
, 1

]
.

TABLE I
LEARNED INDEX METHODS.

Method Index Type Model Type Update Support Theoretical Guarantees Discretization
RMI [7] Learned Index Recursive Neural/Linear No No No
PGM [8] Compressed Index Piecewise Linear Yes Yes No
ALEX [9] Adaptive Index Linear/Spline Yes No No
RadixSpline [10] Hybrid Index Radix + Spline Partial No No
RUSLI [11] Updatable Index Spline-based Yes No No
Methods Comparison [12] Comparative Study Various Varies Partial No
This paper Surrogate Index Neural Classifier No No Yes

Raw Numeric Data
(Input Attribute Values)

Min-Max Normalization Pseudo-labeling Pseudo-Labeled
Dataset Model Training

neural network
Trained Classifier

Ready to predict bin index​​

Query value
New input value

Normalize Predict Bin using

Output class

Index Partition
Access

Probe bin only

PREPROCESSING & PSEUDO-LABELING MODEL TRAINING

QUERY PROCESSING

Processing Pipeline Overview

Fig. 1. Overview of the proposed pipeline for constructing neural indexing models over one-dimensional numeric attributes. The process involves input
normalization and pseudo-labeling, followed by neural model training and inference, which enables efficient bin-level value localization during query processing.

Each normalized value x′
i is assigned to a bin index using:

ci = min (⌊K · x′
i⌋+ 1,K) ,

which acts as a proxy label for supervised learning. This
results in a training set T = {(x′

i, ci)}ni=1, where labels reflect
discretized value positions.

To learn the mapping fθ : [0, 1] → {1, . . . ,K}, we employ a
lightweight feedforward neural network with two hidden layers
(32 and 16 units, respectively) and ReLU activations. The final
layer outputs unnormalized logits z ∈ RK , transformed to
probabilities via:

pj(x
′
i) =

exp(zj)∑K
k=1 exp(zk)

.

The network is trained by minimizing the categorical cross-
entropy loss:

L(θ) = − 1

n

n∑
i=1

log pci(x
′
i).

This formulation enables fully supervised training without
requiring external annotations, relying solely on the induced
ordering of values. The trained model acts as a data-driven

surrogate index that supports constant-time value localization
over continuous attributes via classification.

It should be noted that the pipeline is designed for one-
dimensional numeric attributes. While extendable to higher
dimensions, its effectiveness depends on sufficient input vari-
ability, as degenerate cases (e.g., constant-valued attributes)
collapse the input distribution and render the task trivial.

B. Model Evaluation, Metrics, and Hyperparameter Design

We evaluate the neural indexing model using three com-
plementary metrics: accuracy, negative log-likelihood (NLL),
and macro-averaged F1-score. These metrics jointly assess
predictive correctness, confidence calibration, and robustness
to class imbalance [13].

Accuracy (Acc) measures the proportion of correctly clas-
sified instances:

Acc =
1

n

n∑
i=1

I[ŷi = ci],

where ŷi is the predicted bin for input x′
i, and ci is the pseudo-

label from discretization. While intuitive and direct, accuracy
alone may obscure imbalances across bins.

TABLE II
SUMMARY OF MODEL HYPERPARAMETERS AND DESIGN RATIONALE.

Component Value / Range Justification
Number of bins
K

5, 10, 20 Balancing discretization granu-
larity and generalization

Neural network
layers

2 hidden layers Sufficient for approximating
simple bin functions

Hidden units per
layer

32, 16 Empirically adequate for low-
dimensional input

Activation func-
tions

ReLU (hidden),
Softmax (output)

Standard choice in multi-class
classification

Batch size 32 Balanced convergence and com-
putational load

Optimizer Adam Adaptive step size and fast con-
vergence

Learning rate 10−3 Stable default value for general
use

Epochs 100 (early
stopping,
patience 10)

Prevents overfitting to pseudo-
labels

Loss function Categorical
cross-entropy

Natural fit for classification ob-
jectives

NLL quantifies the model’s confidence in its predictions:

NLL = − 1

n

n∑
i=1

log pci(x
′
i),

where pci(x
′
i) is the predicted probability for the correct bin.

Lower values indicate sharper and better-calibrated confidence
distributions, desirable properties for index-like behavior.

Macro-F1 assesses per-bin prediction quality:

F1macro =
1

K

K∑
k=1

2 · Precisionk · Recallk
Precisionk + Recallk

.

By treating all bins equally, this metric penalizes uneven
distribution of performance across rare and common bins,
promoting uniform predictive coverage.

Together, these metrics provide a multidimensional evalua-
tion of the model, from classification correctness to confidence
sharpness and class-wise balance factors essential to index
reliability.

The neural indexing model is configured using a minimal
yet effective set of hyperparameters that control the discretiza-
tion scheme, network size, and training process. These choices
aim to ensure robustness and efficiency, particularly in settings
with constrained computational resources. Table II summarizes
the hyperparameters used and their design rationale.

All models were implemented in Python 3.10 using PyTorch
2.0 and trained on an AMD Ryzen 7 5800H central processing
unit (CPU) with 16 GB of random access memory (RAM)
and no graphics processing unit (GPU). Each training session
completes in under 15 seconds, underscoring the method’s
suitability for low-latency deployment in resource-constrained
environments.

IV. EXPERIMENTAL SETUP AND EVALUATION DISCUSSION

This section evaluates the proposed model on real-world
datasets, focusing on accuracy, calibration, and consistency

across discretization levels. It also discusses the practical
implications and limitations of indexing.

A. Empirical Evaluation and Quantitative Results

To assess the effectiveness of the indexing model under
realistic data distributions, we evaluate it on three univariate
real-world datasets. The Salary dataset consists of employee
income values with a wide dynamic range and moderate skew,
representing a typical attribute found in enterprise databases.
The Disk Usage dataset captures per-user storage consump-
tion in megabytes from system monitoring logs, which often
exhibit bursty behavior and long tails. Lastly, the Tempera-
ture dataset comprises hourly sensor measurements from an
Internet of Things monitoring system, featuring smooth, quasi-
periodic variability.

Table III presents a detailed breakdown of model perfor-
mance across three binning levels (K = 5, K = 10, K = 20)
for each dataset, using accuracy, NLL, and macro-averaged
F1-score as complementary metrics.

Across all datasets and metrics, the model achieves consis-
tently strong performance at K = 5. Specifically, accuracy
peaks at 0.962 for the salary dataset, followed closely by
0.954 for disk usage and 0.947 for temperature. These values
indicate that the neural model is highly effective in localizing
numeric values within coarse-grained index bins. Moreover,
macro-F1 values closely match the accuracy (e.g., 0.964 for
salary), suggesting that predictions are balanced across all bin
classes with minimal class-specific bias.

As the number of bins increases to K = 10 and then K =
20, a gradual decline in accuracy and macro-F1 is observed
across all datasets. For example, the salary dataset sees a 4.3
percentage point drop in accuracy from 0.962 to 0.919 when
moving from 5 to 10 bins, and a further decline to 0.869
at 20 bins. A similar trend is evident in disk usage (0.954
to 0.861) and temperature (0.947 to 0.864). These reductions
are expected, as finer discretization increases the number of
classification targets and reduces inter-bin separability.

The NLL metric, which captures the model’s confidence
in its predictions, mirrors this behavior but in reverse: lower
values at K = 5 and increasing sharply as K grows. For
instance, disk usage NLL rises from 0.109 to 0.418, while
salary moves from 0.088 to 0.395. This increase indicates that
the softmax output becomes more uncertain in the presence
of finer granularity, as the model distributes probability mass
across more bins. Importantly, even at K = 20, the NLL
remains within a reasonable range, demonstrating that the
model does not fully lose calibration despite the increase in
classification target entropy.

Another key observation is that performance degradation is
most pronounced in the salary dataset, which shows the largest
absolute drop in both accuracy and macro-F1 when transition-
ing from 5 to 20 bins. This may be attributed to the greater
variance in salary distributions, which makes precise value
localization more challenging at high resolution. Conversely,
the temperature dataset maintains higher stability, with smaller
deltas across all three metrics, likely due to its smoother and

less skewed distribution. A graphical representation of the
discussed results is provided in Figure 2.

To further assess the model’s deployment practicality, we
also benchmarked the average inference latency per query
across the three datasets and all binning configurations. These
measurements were obtained on the same CPU environment
used for training. As shown in Table IV, all models return
predictions in under 0.52 ms, even for the highest binning
level, demonstrating extremely low-latency inference suitable
for real-time or embedded systems.

The experimental evaluation reveals several key insights
into the effectiveness and practicality of the proposed in-
dexing method. First, the model consistently demonstrates
high classification performance for coarse binning (K = 5),
with accuracy values exceeding 94.7% across all datasets.
This suggests that the classifier successfully captures global
value positioning and can emulate index-like behavior for
approximate localization.

Second, as the number of bins increases to K = 10 and
K = 20, a gradual degradation in accuracy and macro-F1
is observed. This behavior is expected, as finer discretization
increases the number of decision boundaries and decreases
inter-bin separability. Still, the model maintains acceptable
performance even at K = 20, with accuracy values above
86%, which is promising given the low capacity of the neural
network and the absence of labeled data.

The NLL grows with K, reflecting increased uncertainty in
softmax outputs due to label entropy. However, the calibration
remains within reasonable bounds, indicating that the classifier
does not collapse into overconfident or noisy predictions.

Notably, the performance drop is most pronounced for the
salary dataset, which exhibits higher variance and skew. This
suggests that fixed-width binning may result in unbalanced
pseudo-label distributions in skewed data, motivating the in-
vestigation of adaptive binning strategies.

From a deployment perspective, the inference latency results
reinforce the method’s suitability for time-sensitive systems.
All queries are processed within half a millisecond on a CPU-
only setup, even at higher bin resolutions. This confirms that
the model meets real-time requirements for indexing tasks in
resource-constrained environments such as embedded database
engines or mobile clients. In summary, the proposed neural
surrogate index effectively balances simplicity, performance,
and runtime efficiency, especially for low-to-moderate binning
regimes where approximate range filtering is sufficient.

B. Discussion, Practical Applicability, and Limitations

The empirical results validate the central hypothesis of this
study: that neural models can serve as lightweight, data-driven
surrogates for indexing numeric attributes through classifica-
tion. The consistent performance across diverse datasets and
discretization levels demonstrates the model’s generalization
ability, particularly when the attribute of interest exhibits suffi-
cient distributional structure. The observed trade-offs between
bin granularity and predictive certainty highlight an important
design axis in practical deployments. Coarser binning (e.g.,

Fig. 2. Performance trends across three datasets (Salary, Disk Usage,
Temperature) under varying discretization levels. Top: classification accuracy.
Middle: NLL. Bottom: macro-averaged F1-score. All metrics exhibit graceful
degradation as the number of bins increases.

K = 5 or K = 10) ensures high prediction accuracy
and well-calibrated outputs, making the approach suitable for
index-aware tasks such as partition pruning, approximate value
filtering, or query range narrowing in analytical workloads.

From a systems perspective, the proposed method offers
three tangible advantages. First, it eliminates the need for ex-
plicit indexing structures by encoding approximate localization
knowledge directly into the model. This can reduce memory
overhead and maintenance costs, especially for dynamic or
append-heavy datasets. Second, the use of pseudo-supervision
enables training without labeled data, allowing for seamless
integration into unsupervised preprocessing pipelines. Third,
the model’s small footprint and low inference latency make it
suitable for deployment in resource-constrained environments,
such as edge-based analytics, client-side query engines, or
embedded database components.

While the method proves effective across a range of set-

TABLE III
EVALUATION METRICS (ACCURACY, NLL, MACRO-F1) ACROSS DATASETS FOR VARYING DISCRETIZATION LEVELS (K).

Dataset Acc (K=5) Acc (K=10) Acc (K=20) NLL (K=5) NLL (K=10) NLL (K=20) F1-macro (K=5) F1-macro (K=10) F1-macro (K=20)
Salary 0.962 0.919 0.869 0.088 0.223 0.395 0.964 0.920 0.865
Disk Usage 0.954 0.910 0.861 0.109 0.244 0.418 0.955 0.910 0.863
Temperature 0.947 0.913 0.864 0.117 0.238 0.393 0.944 0.911 0.861

TABLE IV
AVERAGE QUERY INFERENCE TIME (IN MS) FOR EACH DATASET AND

BINNING LEVEL.

Dataset K = 5 K = 10 K = 20
Salary 0.42 0.47 0.51
Disk Usage 0.38 0.45 0.50
Temperature 0.35 0.40 0.48

tings, several limitations outline its current design boundaries.
It assumes a one-dimensional, continuous-valued input with
meaningful variability. In scenarios involving attributes with
near-constant values or categorical semantics, the transforma-
tion may result in low-utility classifiers. Moreover, the pipeline
does not dynamically adapt to data skew or latent structure
within the input distribution, which could affect bin allocation
in heterogeneous datasets. Finally, the discretization scheme
is statically coupled with the learned model; changes in bin
granularity require retraining, which may reduce flexibility in
exploratory or evolving workloads.

In summary, the proposed approach introduces a viable
alternative for approximate, low-cost indexing in modern data
pipelines where statistical guidance is sufficient and strict
tuple-level access is not required. Its lightweight nature and
integration potential make it a compelling option for systems
that benefit from learned approximations.

V. CONCLUSION

This paper introduces a lightweight, neural-based surrogate
indexing approach for numeric attributes in modern database
systems. By reframing value localization as a multi-class clas-
sification task over discretized bins, the method eliminates the
need for explicit indexing structures and enables approximate
query guidance with minimal computational overhead. The
model is trained in a self-supervised manner using discretized
unlabeled data, making it suitable for integration into unsu-
pervised data pipelines and dynamic environments.

We evaluated the proposed method on three real-world
datasets, salary, disk usage, and temperature, across multiple
discretization granularities. Experimental results show that the
model achieves high classification accuracy (exceeding 94.7%
for coarse binning with K = 5), consistent macro-F1 scores,
and well-calibrated probability estimates. Inference times re-
mained below 0.6 ms in all cases, confirming the approach’s
applicability to latency-sensitive tasks. The method also sup-
ports key design trade-offs, such as the balance between
bin resolution and prediction confidence, and demonstrates
robustness across attribute distributions.

Future work will explore adaptive binning strategies that
adjust to data skew and semantic boundaries, aiming to im-

prove accuracy in heterogeneous distributions. Additionally,
extending the method to handle multivariate numeric inputs
could enhance its applicability in scenarios where composite
indexing or multi-attribute filtering is required. Investigating
mechanisms for dynamic reconfiguration of bin granularity
without full retraining also remains an open direction. Overall,
the proposed model offers a practical step toward learned, low-
cost indexing in modern, learning-augmented data systems.

REFERENCES

[1] Q. Liu, M. Li, Y. Zeng, Y. Shen, and L. Chen, “How good are
multi-dimensional learned indexes? an experimental survey,” The VLDB
Journal, vol. 34, no. 2, pp. 1–29, 2025.

[2] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska,
“Bao: Making learned query optimization practical,” in Proceedings of
the 2021 International Conference on Management of Data, 2021, pp.
1275–1288.

[3] Y. Park, S. Zhong, and B. Mozafari, “Quicksel: Quick selectivity learn-
ing with mixture models,” in Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, 2020, pp. 1017–1033.

[4] S. Idreos, O. Papaemmanouil, and S. Chaudhuri, “Overview of data
exploration techniques,” in Proceedings of the 2015 ACM SIGMOD
international conference on management of data, 2015, pp. 277–281.

[5] B. Milicevic and Z. Babovic, “A systematic review of deep learning
applications in database query execution,” Journal of Big Data, vol. 11,
no. 1, p. 173, 2024.

[6] E. Dritsas and M. Trigka, “Database systems in the big data era:
Architectures, performance, and open challenges,” IEEE Access, vol. 13,
pp. 95 068–95 084, 2025.

[7] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The case
for learned index structures,” in Proceedings of the 2018 international
conference on management of data, 2018, pp. 489–504.

[8] P. Ferragina and G. Vinciguerra, “The pgm-index: a fully-dynamic com-
pressed learned index with provable worst-case bounds,” Proceedings of
the VLDB Endowment, vol. 13, no. 8, pp. 1162–1175, 2020.

[9] J. Ding, U. F. Minhas, J. Yu, C. Wang, J. Do, Y. Li, H. Zhang,
B. Chandramouli, J. Gehrke, D. Kossmann et al., “Alex: an updatable
adaptive learned index,” in Proceedings of the 2020 ACM SIGMOD
international conference on management of data, 2020, pp. 969–984.

[10] A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper, T. Kraska, and
T. Neumann, “Radixspline: a single-pass learned index,” in Proceedings
of the third international workshop on exploiting artificial intelligence
techniques for data management, 2020, pp. 1–5.

[11] M. Mishra and R. Singhal, “Rusli: real-time updatable spline learned in-
dex,” in Proceedings of the Fourth International Workshop on Exploiting
Artificial Intelligence Techniques for Data Management, 2021, pp. 1–8.

[12] Z. Sun, X. Zhou, and G. Li, “Learned index: A comprehensive experi-
mental evaluation,” Proceedings of the VLDB Endowment, vol. 16, no. 8,
pp. 1992–2004, 2023.

[13] J. Terven, D.-M. Cordova-Esparza, J.-A. Romero-González, A. Ramı́rez-
Pedraza, and E. Chávez-Urbiola, “A comprehensive survey of loss
functions and metrics in deep learning,” Artificial Intelligence Review,
vol. 58, no. 7, p. 195, 2025.

	Introduction
	Motivation and Contribution

	Related Works
	Methodology
	Index-Oriented Learning Pipeline
	Model Evaluation, Metrics, and Hyperparameter Design

	Experimental Setup and Evaluation Discussion
	Empirical Evaluation and Quantitative Results
	Discussion, Practical Applicability, and Limitations

	Conclusion
	References

